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Examples of k-iterated spreading models

by

Spiros A. Argyros and Pavlos Motakis (Athens)

Abstract. It is shown that for every k ∈ N and every spreading sequence {en}n that
generates a uniformly convex Banach space E, there exists a uniformly convex Banach
spaceXk+1 admitting {en}n as a k+1-iterated spreading model, but not as a k-iterated one.

Introduction. The aim of the present note is to continue some research
initialized by B. Beauzamy and B. Maurey in [8]. Before we state our re-
sult, we need to recall the definition of k-iterated spreading models. As is
well known, spreading models are a central concept in Banach space the-
ory, invented by A. Brunel and L. Sucheston in [9]. For k ≥ 2, the k-iterated
spreading models of a Banach space X are inductively defined as the spread-
ing models of the spaces generated by the k − 1-iterated spreading models
ofX, where by 1-iterated models, we understand the usual spreading models.
For detailed definitions see Section 1.

H. P. Rosenthal asked whether the k-iterated, k ≥ 2, spreading models
of any Banach spaces coincide with the 1-iterated ones. Beauzamy and Mau-
rey answered that question by showing that the 2-iterated spreading mod-
els are, in general, different from the 1-iterated ones. More precisely they
showed that there exists a Banach space X, generating a spreading model,
isomorphically containing `1 and such that `1 is not a spreading model of X.
A related question is whether every Banach space admits c0 or some `p
as a spreading model. This was answered in the negative by E. Odell and
Th. Schlumprecht [18], who constructed a Banach space failing this property.
A result in the same direction is given in [2], where it is shown that there
exists a Banach space X such that every non-trivial spreading model of X
isomorphically contains `1 and `1 is not a spreading model of X. A naturally
arising problem, which appeared in [18], is whether there exists a Banach
space that does not admit c0 or `p as a k-iterated spreading model, for any
k ∈ N. A space with this property is exhibited in [4].
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In the present paper we separate the k-iterated and the k + 1-iterated
spreading models for every k ∈ N. More precisely, the following is proved.

Theorem 1. Let {en}n be a spreading sequence (1) generating a uni-
formly convex Banach space E. Then there exists a sequence {Xk}k of uni-
formly convex Banach spaces, each one with a symmetric basis, such that
for every k ∈ N, the space Xk admits a k-iterated spreading model {ẽn}n
equivalent to {en}n and, for every i < k, E is not isomorphic to a subspace
of the space generated by any i-iterated spreading model of Xk.

Denoting by SMit
k (X) the class of all k-iterated spreading models of a

Banach space X, it is an easy observation that these classes form an in-
creasing family with respect to k. The above-mentioned family {Xk}k has
the additional property that for every k ∈ N the family {SMit

i (Xk)}ki=1 is
strictly increasing.

It is worth pointing out that the k-iterated spreading models of a Ba-
nach space X, for k ≥ 2, are not easily visualized from the structure of
the space X, and this is an obstacle for studying the structure of the space
generated by them. The key property of the aforementioned sequence {Xk}k
is that the space generated by a spreading model of any Xk, k ≥ 2, is
isomorphic either to a subspace of Xk, or to a subspace of Xk−1 (see Lem-
ma 5.4).

The definition of the sequence {Xk}k relies on well known methods and
results, which we combine in order to obtain the desired properties for these
spaces. Some features of B. Beauzamy and B. Maurey’s construction [8], and
also the classical result that every space with an unconditional basis embeds
into a space with a symmetric basis [10], [16], [22], are used. In particular,
among those three papers, W. J. Davis’ approach [10], based on the W. J.
Davis, T. Figiel, W. B. Johnson, and A. Pełczyński interpolation method [11],
is the one which is the most convenient for our needs. We also make heavy
use of results of T. Figiel and W. B. Johnson from [14], in particular those
concerning renormings of superreflexive spaces with an unconditional basis.
Of independent interest is also Proposition 4.1, characterizing the structure
of the spreading models of spaces with a 1-symmetric basis.

1. Preliminaries. Our notation concerning Banach space theory will
follow the standard one from [17].

Definition 1.1. Let (X, ‖ · ‖) be a Banach space and (E, ‖ · ‖∗) a semi-
normed space. Let {xn}n be a bounded sequence in X and {en}n a sequence
in E. We say that {xn}n generates {en}n as a spreading model if there exists

(1) A sequence {en}n in a seminormed space (E, ‖ · ‖∗) is called spreading if for every
n ∈ N, k1 < · · · < kn ∈ N and a1, . . . , an ∈ R, we have ‖

∑n
j=1 ajej‖∗ = ‖

∑n
j=1 ajekj‖∗.
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a sequence {δn}n of positive reals with δn ↘ 0 such that for every n ∈ N,
n ≤ k1 < · · · < kn and every choice {ai}ni=1 ⊂ [−1, 1] the following holds:∣∣∣∣∥∥∥ n∑

i=1

aixki

∥∥∥−∥∥∥ n∑
i=1

aiei

∥∥∥
∗

∣∣∣∣ < δn.

We also say that the Banach space X admits {en}n as a spreading model,
or {en}n is a spreading model of X, if there exists a sequence in X which
generates {en}n as a spreading model.

Remark. In the literature, the notion of a spreading model is sometimes
understood differently, i.e. if {xn}n and {en}n are as in the definition above,
the spreading model of {xn}n is said to be the space Ē, where Ē denotes
the completion of the linear span of {en}n (see [7]).

It is more convenient, in general, to understand the sequence {en}n itself
as the spreading model of {xk}k and to refer to Ē as the space generated by
the spreading model (see [3], [4] and [5]).

Brunel and Sucheston proved that every bounded sequence in a Ba-
nach space has a subsequence which generates a spreading model. The main
property of spreading models is that they are spreading sequences, i.e. for
every n ∈ N, k1 < · · · < kn and every choice {ai}ni=1 ⊂ R we have
‖
∑n

i=1 aiei‖∗ = ‖
∑n

i=1 aieki‖∗.
Spreading sequences are classified into four categories with respect to

their norm properties. These are the trivial, the unconditional, the singular
and the non-unconditional Schauder basic spreading sequences (see [4]).

A spreading sequence {en}n is called trivial if the seminorm on the space
generated by the sequence is not actually a norm. In this case, Proposition
13 from [4] yields the following. If E is the vector space generated by {en}n
and N = {x ∈ E : ‖x‖∗ = 0}, then E/N has dimension at most 1. It is
also worth mentioning that a sequence in a Banach space X generates a
trivial spreading model if and only if it has a norm convergent subsequence.
For more details see [4], [7]. From now on, we will only refer to non-trivial
spreading models.

A spreading sequence is called singular if it is not trivial and not Schauder
basic. A simple example of a singular spreading sequence is the following. Let
X be c0 or `p, 1 < p <∞ and let {ei}i denote the unit vector basis ofX. Then
the sequence {xi}i with xi = ei+1 − e1 is spreading and not Schauder basic.

The definition of the other two cases is the obvious one.
The following notation is from [18].

Notation. (1) Let E0, E be Banach spaces. We write E0 → E, if E
is generated by a spreading sequence, which is a spreading model of some
seminormalized sequence in E0. Also, for k ∈ N, the notation E0

k−→ E
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means that E0 → E1 → · · · → Ek−1 → E for some sequence of Banach
spaces E1, . . . , Ek−1.

(2) Let E0, E be a Banach spaces such that E0 has a Schauder basis. We
write E0→

bl
E if E is generated by a spreading sequence which is a spreading

model of some seminormalized block sequence of the basis of E0. Also, for
k ∈ N, the notation E0

k−→
bl
E means that E→

bl
E1→

bl
. . .→

bl
Ek−1→

bl
E for some

sequence of Banach spaces E1, . . . , Ek−1 with Schauder bases.

Definition 1.2. (1) Let E0 be a Banach space, {en}n be a spreading
sequence in a seminormed space, k ∈ N. Then {en}n is said to be a k-iterated
spreading model of E0 if there exists a Banach space E such that E0

k−1−−→ E
and {en}n is the spreading model of some seminormalized sequence in E.

(2) Let E0 be a Banach space with a Schauder basis, {en}n be a spreading
sequence in a seminormed space, and k ∈ N. Then {en}n is said to be a block
k-iterated spreading model of E if there exists a Banach space E with a
Schauder basis such that E0

k−1−−→
bl

E and {en}n is the spreading model of
some seminormalized block sequence of the basis of E.

Remark. If {en}n, {ẽn}n are non-trivial spreading sequences which gen-
erate the Banach spaces E and Ẽ respectively, we shall say that {en}n and
{ẽn}n are equivalent if the linear map en → ẽn extends to an isomorphism
between E and Ẽ.

Clearly, if X and Y are isomorphic Banach spaces, then any non-trivial
spreading model admitted by X is equivalent to one admitted by Y and vice
versa.

In accordance with the above, we shall say that a sequence {xn}n iso-
morphically generates {en}n as a spreading model if {xn}n generates {ẽn}n
as a spreading model and {ẽn}n is equivalent to {en}n.

2. Interpolating spaces with a symmetric basis. We begin by pre-
senting some estimations concerning sequences of ‖·‖mk

q,p norms, next defined.

Definition 2.1. Let 1 ≤ q < p. For a real number m ≥ 1, define ‖ · ‖mq,p
on `p as follows:

‖x‖mq,p = inf

{
λ > 0 :

x

λ
∈ mB`q +

1

m
B`p

}
.

Remarks. The following statements are true for all real numbersm ≥ 1:

(i) 1
m+1/m‖ · ‖p ≤ ‖ · ‖

m
q,p ≤ m‖ · ‖p, thus ‖ · ‖mq,p ∼ ‖ · ‖p.

(ii) If x ∈ `q, then ‖x‖mq,p ≤
‖x‖q

m+1/m .
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(iii) ‖ · ‖mq,p is a symmetric norm, i.e. if {ai}i ∈ `p, then∥∥∥ ∞∑
i=1

aiei

∥∥∥m
q,p

=
∥∥∥ ∞∑
i=1

εiaieπ(i)

∥∥∥m
q,p

for any choice {εi}i of signs and any permutation π of the naturals.

Lemma 2.2. Let 1 ≤ q < p, {xn}n be a sequence in `p, ε > 0, and
{mk}k be an unbounded sequence of real numbers, greater than or equal
to one, such that ‖xn‖p > ε for all n ∈ N and limn ‖xn‖∞ = 0. Then
sup{‖xn‖mk

q,p : n, k ∈ N} =∞.

Proof. Towards a contradiction, suppose that sup{‖xn‖mk
q,p :n, k∈N}<C.

Then for all n, k ∈ N there exist 0 < λkn < C, ykn ∈ B`q , zkn ∈ B`p such that

xn = λkn

(
mky

k
n +

1

mk
zkn

)
.

Choose k0 ∈ N such that (λn0
n /mk0)‖zk0n ‖p < ε/2 for all n ∈ N. Then

(1) λk0n mk0‖yk0n ‖p > ε/2 for all n ∈ N.

Since the norms are symmetric, we may assume that if xn =
∑∞

i=1 aiei, then
ai ≥ 0 for all i ∈ N. Moreover, if ykn =

∑∞
i=1 biei, z

k
n =

∑∞
i=1 ciei, we may

assume that 0 ≤ λknmkbi, (λknmk)ci ≤ ai for all i ∈ N.
Otherwise, with simple calculations one may find yk′n =

∑∞
i=1 b

′
iei, z

k′
n =∑∞

i=1 c
′
iei, satisfying this condition, such that xn = λkn(mky

k′
n + (1/mk)z

mk′
n )

and yk′n ∈ B`q , z
k′
n ∈ B`p . This means that λk0n mk0‖yk0n ‖∞ ≤ ‖xn‖∞ → 0

as n → ∞. Since λk0n mk0‖y
mk0
n ‖q < Cmk0 for all n ∈ N, by using the

Hölder inequality, it is easy to see that λk0n mk0‖y
mk0
n ‖p → 0 as n→∞. This

contradicts (1), which completes the proof.

Lemma 2.3. Let 1 ≤ q < p, {xn}n be a sequence in `p, and {mk}k be an
unbounded sequence of real numbers, greater than or equal to one, such that
limn ‖xn‖∞ = 0 and sup{‖xn‖mk

q,p : n, k ∈ N} <∞. Then for every ε > 0 and
k0 ∈ N there exists n0 ∈ N such that for all n ≥ n0, max{‖xn‖mk

q,p : k ∈N,
k ≤ k0} < ε.

Proof. Towards a contradiction, suppose that there exist ε>0 and k0∈N
such that for all n ∈ N there exists jn ≥ n with max{‖xjn‖mk

q,p : k ∈ N, k≤k0}
≥ ε. By passing to a subsequence of {xn}n, we can find k ≤ k0 such that
‖xn‖mk

q,p ≥ ε for all n ∈ N. But ‖ · ‖mk
q,p ∼ ‖ · ‖p, hence ‖xn‖p ≥ ε′ for all

n ∈ N. By Lemma 2.2, this means that sup{‖xn‖mk
q,p : n, k ∈ N} =∞. Since

this cannot be the case, the proof is complete.

The following theorem is due to W. J. Davis [10]. See also [17, Theorem
3.b.2, p. 124].
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Theorem 2.4. Let X be a (reflexive, uniformly convex) Banach space
with a 1-unconditional basis. Then there exists a (reflexive, uniformly convex)
Banach space D with a 1-symmetric basis such that X is isomorphic to a
complemented subspace of D.

Moreover D is saturated with subspaces of X, i.e. if Z is a subspace of D,
then there exists a further subspace of Z which is isomorphic to a subspace
of X.

Given a Banach space X with a 1-unconditional basis, D is defined to
be the diagonal subspace of X =

(∑∞
k=1

⊕
(`p, ||| · |||mk

q,p )
)
X
, where the norms

||| · |||mq,p are defined on `p and are of the form

|||x|||mq,p = inf

{
(‖y‖2`q + ‖z‖2`p)1/2 : x = my +

1

m
z, y ∈ `q, z ∈ `p

}
for 1 < q < p, and the sequence {mk}k is chosen to satisfy a condition found
in [17, p. 126], namely the following. Choose a sequence {nk}k of natural
numbers such that if mk = n

(p−q)/(2pq)
k , the inequality

(2)
1

mk

k−1∑
i=1

mi +mk

∞∑
i=k+1

1

mi
<

1

2k+1
for all k ∈ N

is satisfied. Then {mk}k is the desired sequence.
If we denote ẽn = {en, en, . . .}, where {en}n is the natural basis of `p,

then ẽn ∈ X and {ẽn}n is the 1-symmetric basis of D. Observe that for every
real numberm ≥ 1, we have ‖·‖mq,p ≤ |||·|||mq,p ≤

√
2 ‖·‖mq,p. It easily follows that

the spaces X and X′ are isomorphic, where X′ =
(∑∞

k=1

⊕
(`p, ‖ · ‖mk

q,p )
)
X
.

As shown in [17, Proposition 3.b.4], X embeds into D as a complemented
subspace and every subspace of D contains a further subspace isomorphic
to a subspace of X. The latter is shown in [14, Lemma 2.2], but a proof also
follows from the above and the following.

Lemma 2.5. Let Y be a block subspace of D. Then there exists a further
block subspace Z of Y such that limn ‖zn‖∞ = 0, where {zn}n denotes the
normalized block basis of Z.

Proof. Let {yn}n be a normalized block basis of Y . If, after passing to a
subsequence, ‖yn‖∞ → 0, then there is nothing more to prove. Otherwise,
again after passing to a subsequence, there is ε > 0 such that ‖yn‖∞ > ε for
all n ∈ N.

Denote by j the map j : D → `p with j
(∑∞

i=1 aiẽi
)

=
∑∞

i=1 aiei. Notice
that the natural projection P1 : X′ → (`p, ‖·‖m1

q,p ) is of course bounded. Then
j is the restriction of P1 to D and hence it is also bounded.
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Choose finite subsets I1 < · · · < Ik < · · · of the natural numbers with
|Ik| ≥ (‖j‖k/ε)p for all k ∈ N. Then

‖j‖
∥∥∥∥1

k

∑
i∈Ik

yi

∥∥∥∥
D

≥
∥∥∥∥1

k

∑
i∈Ik

j(yi)

∥∥∥∥
p

=
1

k

(∑
i∈Ik

‖j(yi)‖pp
)1/p

≥ 1

k

(∑
i∈Ik

‖yi‖p∞
)1/p

>
ε

k
|Ik|1/p.

Thus ‖(1/k)
∑

i∈Ik yi‖D ≥ 1 and of course ‖(1/k)
∑

i∈I yi‖∞ ≤ 1/k.
Set zk = ‖(1/k)

∑
i∈Ik yi‖

−1
D ((1/k)

∑
i∈Ik yi); then it easily follows that

{zk}k is normalized and ‖zk‖∞ → 0.

Proposition 2.6. Let {yn}n be a normalized bounded sequence in D
such that limn ‖yn‖∞ = 0. Then {yn}n has a subsequence which is equivalent
to a block sequence in X.

Proof. Use Lemma 2.3 and a sliding hump argument with respect to the
decomposition {(`p, ‖ · ‖mk

q,p )}k of X′.

Since every subspace ofD contains a further subspace which is isomorphic
to a block subspace of D, it follows that D is saturated with subspaces of X.

3. Uniformly convex Schreier–Baernstein spaces. We begin by
presenting some key definitions and results from [14].

Definition 3.1. Let X be a Banach space with a 1-unconditional basis
{en}n. The norm on X is said to be p-convex if for every n ∈ N and real
numbers a1, . . . , an, b1, . . . , bn,∥∥∥ n∑

i=1

(|ai|p + |bi|p)1/pei
∥∥∥ ≤ (∥∥∥ n∑

i=1

aiei

∥∥∥p +
∥∥∥ n∑
i=1

biei

∥∥∥p)1/p.
Analogously, it is called q-concave if for every n ∈ N and real numbers
a1, . . . , an, b1, . . . , bn,∥∥∥ n∑

i=1

(|ai|q + |bi|q)1/qei
∥∥∥ ≥ (∥∥∥ n∑

i=1

aiei

∥∥∥q +
∥∥∥ n∑
i=1

biei

∥∥∥q)1/q.
The norm on X is said to satisfy an upper `p estimate if

‖x+ y‖ ≤ (‖x‖p + ‖y‖p)1/p

whenever x and y are disjointly supported with respect to the basis {en}n.
Analogously, it is said to satisfy a lower `q estimate if

‖x+ y‖ ≥ (‖x‖q + ‖y‖q)1/q

whenever x and y are disjointly supported with respect to the basis {en}n.
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It is immediate that if the norm on X is p-convex (resp. q-concave), then
it satisfies an upper `p estimate (resp. a lower `q estimate).

The following two results are restatements of Remark 3.2 and Theorem
3.1, respectively, of [14].

Theorem 3.2. Let X be a uniformly convex Banach space with an un-
conditional basis. Then there exists an equivalent 1-unconditional norm on
X which is p-convex and q-concave for some 1 < p ≤ q < ∞. Moreover, if
the initial norm on X is spreading or 1-symmetric, the same is true for the
equivalent norm.

Lemma 3.3. Let X be a Banach space with a 1-unconditional basis. If
for some 1 < p ≤ q < ∞ the norm on X is p-convex and satisfies a lower
`q estimate, then X is uniformly convex.

Let X be a Banach space with a 1-unconditional basis {en}n. We denote
by S the Schreier family S = {F ⊂ N : minF ≥ |F |}. Let 1 ≤ r <∞. Define
the following norm on c00(N):

‖x‖X,r = sup
{( d∑

j=1

‖Fjx‖rX
)1/r}

where the supremum is taken over all finite sequences {Fj}dj=1 ⊂ S which
are pairwise disjoint. Define the Schreier–Baernstein space SBX,r to be the
completion of c00(N) with the aforementioned norm.

It can be easily seen that the usual basis of c00(N) forms a 1-unconditional
basis of SBX,r.

Proposition 3.4. Let X be a Banach space with a 1-unconditional basis
{en}n and with a p-convex norm ‖ · ‖X , for some 1 < p ≤ ∞. Let r ≥ p.
Then the space SBX,r is uniformly convex.

Proof. We will show that the demands of Lemma 3.3 are satisfied. First
we show that ‖ · ‖X,r is p-convex. Let {ai}ni=1, {bi}ni=1 ⊂ R. Then for some
{Fj}dj=1 ⊂ S and by the p-convexity of the norm on X,∥∥∥ n∑
i=1

(|ai|p + |bi|p)1/pei
∥∥∥
X,r

=
( d∑
j=1

∥∥∥∑
i∈Fj

(|ai|p + |bi|p)1/pei
∥∥∥r
X

)1/r
≤
( d∑
j=1

(∥∥∥∑
i∈Fj

aiei

∥∥∥p
X

+
∥∥∥∑
i∈Fj

biei

∥∥∥p
X

)r/p)(p/r)(1/p)
≤
(( d∑

j=1

∥∥∥∑
i∈Fj

aiei

∥∥∥r
X

)p/r
+
( d∑
j=1

∥∥∥∑
i∈Fj

biei

∥∥∥r
X

)p/r)1/p
≤
(∥∥∥ n∑

i=1

aiei

∥∥∥p
X,r

+
∥∥∥ n∑
i=1

biei

∥∥∥p
X,r

)1/p
.
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Thus ‖ · ‖X,r is p-convex. Moreover, if x, y are finitely disjointly supported,
then there exist finite sets {Fj}d1j=1, {Ej}

d2
j=1 of natural numbers such that

‖x‖X,r =
( d1∑
j=1

‖Fjx‖rX
)1/r

and ‖y‖X,r =
( d2∑
j=1

‖Ejy‖rX
)1/r

.

We may clearly assume that Fi ∩ Ej = ∅ for all i, j. Then

‖x+ y‖rX,r ≥
d1∑
j=1

‖Fjx‖rX +

d2∑
j=1

‖Ejy‖rX = ‖x‖rX,r + ‖y‖rX,r.

Thus ‖ · ‖X,r satisfies a lower `r estimate and the space SBX,r is uniformly
convex.

Proposition 3.5. Let X be a Banach space with a 1-unconditional basis
{en}n and with a norm ‖ · ‖X which satisfies a lower `q estimate for some
1 ≤ q <∞. Let r ≥ q. Then for every E ∈ S and real numbers {ai}i∈E,∥∥∥∑

i∈E
aiei

∥∥∥
X,r

=
∥∥∥∑
i∈E

aiei

∥∥∥
X
.

Proof. By the definition of the norm on the space SBX,r it clearly follows
that ‖

∑
i∈E aiei‖X,r ≥ ‖

∑
i∈E aiei‖X . Therefore it is sufficient to show the

inverse inequality. For some {Fj}dj=1 ⊂ S and by the lower `q estimate of the
norm on X,∥∥∥∑

i∈E
aiei

∥∥∥
X,r

=
( d∑
j=1

∥∥∥∑
i∈Fj

aiei

∥∥∥r
X

)1/r
≤
( d∑
j=1

∥∥∥∑
i∈Fj

aiei

∥∥∥q
X

)1/q
≤
∥∥∥∑
i∈E

aiei

∥∥∥
X
.

Corollary 3.6. Let X be a Banach space with a 1-unconditional and
spreading basis {en}n and with a norm ‖ · ‖X which satisfies a lower `q
estimate for some 1 ≤ q <∞. Let r ≥ q. Then the basis of SBX,r generates
the basis of X as a spreading model.

This is an immediate consequence of Proposition 3.5 and the spreading
property of the basis of X.

Proposition 3.7. Let X be a Banach space with a 1-unconditional basis
{en}n. Let 1 ≤ r < ∞. Let {xn}n be a normalized block sequence in SBX,r

such that limn ‖xn‖∞ = 0. Then {xn}n has a subsequence equivalent to the
usual basis of `r.

The proof is the same as for the classical Schreier–Baernstein space
SB`1,2, where such a sequence has a further subsequence which is equiva-



66 S. A. Argyros and P. Motakis

lent to the basis of `2. It also follows that the space SBX,r is `r-saturated.
If the norm on X satisfies a lower `q estimate and r > q, then the space
X cannot contain `r. Thus in this case the spaces X and SBX,r are totally
incomparable.

4. Spreading models of Banach spaces with a symmetric basis.
In this section we study the structure of spreading models in Banach spaces
with a 1-symmetric basis. We start with the following, which is critical for
our proofs. This result and the next proposition can be traced back to [8]
and are closely related to [7, Lemma IV.2.A.3].

Proposition 4.1. Let X be a Banach space with a 1-symmetric and
boundedly complete basis. Let {xn}n be a normalized block sequence in X and
assume that there is some ε > 0 such that ‖xn‖∞ > ε for all n ∈ N. Then,
after passing to an appropriate subsequence, there exist block sequences {yn}n
and {zn}n in X and a disjointly supported 1-symmetric sequence {un}n in X
with the following properties:

(i) xn = yn + zn for all n ∈ N and supp yn ∩ supp zm = ∅ for all
n,m ∈ N.

(ii) limn ‖zn‖∞ = 0.
(iii) {yn}n isometrically generates {un}n as a spreading model.
(iv) ‖un‖∞ = ‖u1‖∞ > 0 for all n ∈ N.
Proof. Since the basis of X is boundedly complete and symmetric, for

every δ > 0, there exists m(δ) ∈ N such that, for every x ∈ X with ‖x‖ = 1,
#{i : |x(i)| ≥ δ} ≤ m(δ). Otherwise the basis of X would be equivalent to
the basis of c0.

Since X has a 1-symmetric basis, we may assume that xn(i) ≥ 0 for all
n, i ∈ N and the non-zero entries of each xn are in decreasing order. For
each xn, we set Gn = suppxn. Let Gn = {in1 , . . . , indn}; then we put

x̃n(`) =

{
xn(in` ) if ` ≤ dn,
0 otherwise.

We notice that x̃n is the backward shift of all non-zero entries of xn to an
initial interval of the natural numbers.

By passing to a subsequence if necessary, we may assume that for every
i ∈ N the sequence {x̃n(i)}n is convergent to some real number λi. Then
‖
∑m

i=1 λiei‖ = ‖limn
∑m

i=1 x̃n(i)ei‖ = ‖limn P[1,m]x̃n‖ ≤ ‖x̃n‖ = ‖xn‖ = 1
for m ∈ N.

Since the basis of X is assumed to be boundedly complete, we conclude
that the series

∑
λiei converges in norm to some x ∈ X. Observe that for

every m ∈ N,
(3) lim

n
‖P[1,m](x̃n − x)‖ = 0.
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Choose sequences {δk}k, {εk}k of positive reals, both strictly decreasing
to zero.

Inductively choose a decreasing sequence {Lk}k of infinite subsets of the
natural numbers and a (not necessarily strictly) increasing sequence {mk}k
of natural numbers such that, for every k0 ∈ N and k ∈ Lk0 , we have:

(α) #{i : x̃k(i) ≥ δk0} = mk0 .
(β) ‖P[1,mk0

](x̃k − x)‖ < εk0 .

We only present here the first step of the induction, as the general step
is identical to the first one.

For every k ∈ N, we have #{i : x̃nk
(i) ≥ δ1} ≤ m(δ1). Using the pigeon-

hole principle, there exists an infinite setM1 of natural numbers and m1 ∈ N
with #{i : x̃nk

(i) ≥ δ1} = m1 for all k ∈ M1. Using (3), we may choose an
infinite subset L1 of M1 such that (β) is also satisfied.

Choosing n1 < n2 < · · · with nk ∈ Lk for all k ∈ N and relabeling, we
see that for every k0 ∈ N and k ≥ k0:

(a) #{i : x̃k(i) ≥ δk0} = mk0 .
(b) ‖P[1,mk0

](x̃k − x)‖ < εk.

Define {yk}k as follows:

yk(i) =

{
xk(i) if xk(i) ≥ δk,
0 otherwise,

and set zk = xk − yk. Conditions (i) and (ii) are obviously satisfied.
Also observe that if k0 ∈ N, then for every k ≥ k0, P[1,mk0

]x̃k = P[1,mk0
]ỹk

and P[1,mk0
]x̃k0 = ỹk0 , where the ỹk are defined in the same way as the x̃k.

The above is due to the fact that the non-zero entries of each xk are assumed
to be in decreasing order.

For δ > 0, y ∈ X define Rδy ∈ X by

Rδy(i) =

{
y(i) if |y(i)| < δ,
0 otherwise.

Claim.
lim
δ→0

sup{‖Rδyk‖ : k ∈ N} = 0.

Let ε > 0. We will first show that we can choose k0 ∈ N such that
‖
∑∞

i=mk0
+1 λiei‖ < ε/2. If the sequence {mk}k is unbounded, then such a

k0 clearly exists. Otherwise, choose k0 ∈ N with mk0 = max{mk : k ∈ N}.
Then x̃k(i) = 0 for all k ∈ N and i > mk0 . We conclude that λi = 0 for all
i > mk0 and hence k0 has the desired property.

By taking a larger k0, we may also assume that εk < ε/2 for all k ≥ k0.
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Let k ∈ N. We will estimate the norm of Rδk0 ỹk. If k<k0, then Rδk0 ỹk=0.
Otherwise, the fact that P[1,mk0

]x̃k = ỹk for k ≥ k0 yields

Rδk0 ỹk = ỹk − P[1,mk0
]ỹk = P[1,mk]x̃k − P[1,mk0

]x̃k

= P(mk0
,mk]x̃k = P(mk0

,mk](x̃k − x) +

mk∑
i=mk0

+1

λiei.

Hence, for δ ≤ δk0 and k ≥ k0, using property (b) we have

‖Rδyk‖ = ‖Rδỹk‖ ≤ ‖Rδk0 ỹk‖ ≤ ‖P(mk0
,mk](x̃k − x)‖+

∥∥∥ mk∑
i=mk0

+1

λiei

∥∥∥
≤ ‖P[1,mk](x̃k − x)‖+

∥∥∥ ∞∑
i=mk0

+1

λiei

∥∥∥ < εk +
ε

2
< ε.

Thus, we have proved the Claim.
Choose a partition {Nk}k ⊂ [N]∞ of the naturals into infinite sets and set

uk =
∑∞

i=1 λieNk(i). It is immediate that {uk}k is 1-symmetric and ‖uk‖∞ =
‖u1‖∞ > 0 for all k ∈ N. We will prove that any spreading model generated
by {yk}k is isometric to {uk}k.

Let ` ∈ N, {ai}`i=1 ⊂ [−1, 1] and ε > 0. We will find j0 ∈ N such that,
for every j0 ≤ j1 < · · · < j`,∣∣∣∣∥∥∥∑̀

i=1

aiyji

∥∥∥− ∥∥∥∑̀
i=1

aiui

∥∥∥∣∣∣∣ < ε.

The above is evidently sufficient to complete the proof.
For k, i∈N we set PNi(mk)ui=

∑mk
i=1 λieNk(i), and choose k0∈N such that

(4)
∣∣∣∣∥∥∥∑̀
i=1

aiPNi(mk)ui

∥∥∥− ∥∥∥∑̀
i=1

aiui

∥∥∥∣∣∣∣ < ε

3
for all k ≥ k0.

Observe that if {mk}k is bounded, then mk0 ≤ max{mk : k ∈ N}; in this
case we may therefore assume that mk0 = max{mk : k ∈ N} and Rδk0yj = 0
for all j ∈ N.

In any case, using the claim and choosing, if necessary, an even larger k0,
we achieve that, for any natural numbers j1 < · · · < j`,

(5)
∥∥∥∑̀
i=1

aiR
δk0yji

∥∥∥ < ε

3
.

Choose j0 ≥ k0 such that εj < ε/(3`) for all j ≥ j0. Let now j0 ≤ j1 <
· · · < j` be natural numbers.

For i = 1, . . . , ` we set y′i = yji − Rδk0yji . Then y′i is a spreading of
P[1,mk0

]ỹji = P[1,mk0
]x̃ji .
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For i = 1, . . . , ` we also set u′i = PNi(mk0
)ui. Then u′i is a spreading of

P[1,mk0
]x. As the basis of X is symmetric, we may assume for a moment that

supp y′i = suppu′i for i = 1, . . . , `. Then by property (b) we have∥∥∥∑̀
i=1

ai(y
′
i − u′i)

∥∥∥ < ∑̀
i=1

εji <
ε

3
.

We conclude that

(6)
∣∣∣∣∥∥∥∑̀
i=1

ai(yji −Rδk0yji)
∥∥∥− ∥∥∥∑̀

i=1

aiPNi(Mk0
)ui

∥∥∥∣∣∣∣ < ε

3
.

By combining (4)–(6), it follows that
∣∣‖∑`

i=1 aiyji‖ − ‖
∑`

i=1 aiui‖
∣∣ < ε,

proving the proposition.

The following result corresponds to Proposition 4.1 in the setting of
Schreier–Baernstein spaces.

Proposition 4.2. Let X be a Banach space with a 1-symmetric basis
{en}n with a norm which satisfies a lower `q estimate for some 1 ≤ q <∞.
Let r ≥ q. Let {xn}n be a normalized block sequence in SBX,r and assume
that there is some ε > 0 such that ‖xn‖∞ > ε for all n ∈ N. Then after
passing to an appropriate subsequence, there exist block sequences {yn}n and
{zn}n in SBX,r and a disjointly supported 1-symmetric sequence {un}n in
X with the following properties:

(i) xn = yn + zn for all n ∈ N and supp yn ∩ supp zm = ∅ for all
n,m ∈ N.

(ii) limn ‖zn‖∞ = 0.
(iii) {yn}n isometrically generates {un}n as a spreading model.
(iv) ‖un‖∞ = ‖u1‖∞ > 0 for all n ∈ N.

Proof. Throughout this proof any finitely supported block vector of SBX,r

will sometimes also be considered as a block vector of X in the natural way
and vice versa. We start by making the following remarks which will be used
in the proof:

(I) The basis of SBX,r satisfies a lower `r estimate.
(II) For every finitely supported vector x we have ‖x‖X,r ≤ ‖x‖X .

The first one follows from the proof of Proposition 4.1 while the second one
follows from the proof of Proposition 3.5.

Using (I) and the fact that the basis of X satisfies a lower `q estimate,
we conclude that the bases of both SBX,r and X are boundedly complete.

Choose a sequence {δk}k of positive reals strictly decreasing to zero,
and arguing as in the proof of Proposition 4.1 find an increasing sequence
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{mk}k of natural numbers such that by passing to a subsequence of {xk}k
if necessary, for every k0 ∈ N and k ≥ k0 we have:

(a) #{i : |xk(i)| ≥ δk0} = mk0 .
(b) min suppxk0 ≥ k0mk0 .

Define {y′k}k as follows:

y′k(i) =

{
xk(i) if |xk(i)| ≥ δk,
0 otherwise.

For δ > 0 and a finitely supported vector y define Rδy as in the proof of
Proposition 4.1. Then the choice of {y′k}k, Proposition 3.5, and (a), (b) yield:

(α) For every k ∈ N and k ≤ j1 < · · · < jk,
⋃k
i=1 supp(y′ji −R

δky′ji) ∈ S,
and hence, if x is a vector with suppx ⊂

⋃k
i=1 supp(y′ji − R

δky′ji),
then ‖x‖X,r = ‖x‖X .

(β) In particular, for every k ∈ N and vector x with suppx ⊂ supp y′k,
we have ‖x‖X,r = ‖x‖X .

Apply Proposition 4.1 to the sequence {y′k}k and the space X and, pass-
ing if necessary to a further subsequence, find block sequences {yk}k and
{z′k}k and a disjointly supported 1-symmetric sequence {uk}k in X satisfy-
ing the conclusion of Proposition 4.1, i.e. such that y′k = yk+z′k for all k ∈ N,⋃
k supp yk ∩

⋃
k supp z′k = ∅, limk ‖z′k‖∞ = 0, {yk}k as a sequence in X iso-

metrically generates {uk}k as a spreading model, and ‖uk‖∞ = ‖u1‖∞ > 0
for all k ∈ N.

Set zk = xk − yk for all k ∈ N. Then, by the choice of {y′k}k, it is easy to
check that {yk}k, {zk}k and {uk}k satisfy (i), (ii) and (iv) of the conclusion.

In order to complete the proof, it remains to show that {yk}k, as a se-
quence in SBX,r, generates {uk}k as a spreading model.

Fix ε > 0, ` ∈ N and a1, . . . , a` ∈ [−1, 1]. The Claim in Proposition 4.1
implies that there exists δk0 such that, for any natural numbers j1 < · · · < j`,

(7)
∣∣∣∣∥∥∥∑̀
i=1

ai(yji −Rδk0yji)
∥∥∥
X
−
∥∥∥∑̀
i=1

aiyji

∥∥∥
X

∣∣∣∣ < ε.

Moreover, (α) shows that for any natural numbers max{k0, `} ≤ j1 < · · ·
< j` we have

(8)
∥∥∥∑̀
i=1

ai(yji −Rδk0yji)
∥∥∥
X,r

=
∥∥∥∑̀
i=1

ai(yji −Rδk0yji)
∥∥∥
X
.

Combining (7), (8) and the unconditionality of the basis of SBX,r, we con-
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clude that for any natural numbers max{k0, `} ≤ j1 < · · · < j` we have∥∥∥∑̀
i=1

aiyji

∥∥∥
X,r

>
∥∥∥∑̀
i=1

aiyji

∥∥∥
X
− ε.

On the other hand, (II) yields ‖
∑`

i=1 aiyji‖X,r ≤ ‖
∑`

i=1 aiyji‖X .
By the above it easily follows that {yk}k, as a sequence in SBX,r, can

only generate the same spreading model as it does when seen as a sequence
in X.

Corollary 4.3. Let X be a Banach space with a 1-symmetric basis
{en}n and with a norm which satisfies a lower `q estimate for some 1 ≤
q < ∞. Let r ≥ q. Let {xn}n be a normalized block sequence in SBX,r

and assume that there is some ε > 0 such that ‖xn‖∞ > ε for all n ∈ N.
Then after passing to an appropriate subsequence, there exists a disjointly
supported 1-symmetric sequence {un}n in X such that:

(i) {xn}n isomorphically generates {un}n as a spreading model.
(ii) ‖un‖∞ = ‖u1‖∞ > 0 for all n ∈ N.

Proof. Apply Proposition 4.2, take the decomposition xn = yn + zn and
the spreading model {un}n of {yn}n. After passing to a further subsequence,
by virtue of Proposition 3.7, {zn}n is equivalent to the basis of `r. Then for
` ∈ N, {ai}`i=1 ⊂ [−1, 1], and so by standard arguments, keeping in mind
that the norm on X satisfies a lower `q estimate and the decomposition’s
properties, one can see that∥∥∥∑̀

i=1

aiui

∥∥∥
X
≤ lim

m

∥∥∥∑̀
i=1

aixi+m

∥∥∥
X,r
≤ C

∥∥∥∑̀
i=1

aiui

∥∥∥
X

for some positive constant C.

5. The main result. We start by stating some general facts about
spreading models admitted by a super-reflexive Banach space X. As is well
known, the class of super-reflexive Banach spaces in a sense coincides with
the one of uniformly convex Banach spaces, meaning that every super-
reflexive Banach space is isomorphic to a uniformly convex one [13].

Suppose that E is a Banach space such that X k−→ E for some k ∈ N.
Any space which is finitely representable in E, is also finitely representable
in X, therefore E must be super-reflexive.

Thus any non-trivial k-iterated spreading model {en}n of X is weakly
convergent. It follows that {en}n must be either unconditional and weakly
null, or singular (see [1] and [4, Propositions 14, 15] or [7, Propositions I.4.2,
I.4.4]).
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Also if {en}n is singular, then it is weakly convergent to some element
e in the Banach space E generated by the sequence {en}n, and if we set
e′n = en−e, then {e′n}n is 1-unconditional, spreading and if E′ = [{e′n}n] then
E = E′⊕〈e〉 and E′ is isomorphic to E (see [4, Remark 5] or [7]). Moreover,
if we take a projection P : E → E with P [E] = 〈e〉 and kerP = E′, by
doing some calculations we deduce that there exist positive constants c, C
such that for every n ∈ N and λ1, . . . , λn ∈ R,

cmax
{∣∣∣ n∑

i=1

λi

∣∣∣,∥∥∥ n∑
i=1

λie
′
i

∥∥∥} ≤ ∥∥∥ n∑
i=1

λiei

∥∥∥(9)

≤ C max
{∣∣∣ n∑

i=1

λi

∣∣∣,∥∥∥ n∑
i=1

λie
′
i

∥∥∥}.
Lemma 5.1. Let {en}n be a singular and spreading sequence. Then there

exists a spreading and weakly null sequence {dn}n with the following proper-
ties:

(i) For every Banach space X which admits {en}n as a spreading model,
X admits {dn}n as a spreading model.

(ii) For every Banach space X and every sequence {xn}n in X such that
{xn}n generates {dn}n as a spreading model, there exists a sequence
{yn}n in [{xn}n] such that {yn}n isomorphically generates {en}n as
a spreading model.

Proof. Set dn = e′n as previously defined, i.e. dn = en − e, where e is the
non-zero weak limit of {en}n.

For (i), let X be a Banach space and {xn}n a sequence in X which
generates {en}n as a spreading model. Since {en}n is singular, {xn}n cannot
contain a Schauder basic subsequence. Thus it contains no subsequence which
is either equivalent to the basis of `1, or non-trivial weak-Cauchy (see [19,
proof of Proposition 2.2]). By Rosenthal’s `1 theorem (see [20]), this means
that it is weakly convergent to some element x ∈ X. By [4, Theorem 38], if
we set x′n = xn − x, then {x′n}n generates {dn}n as a spreading model. See
also [7].

For (ii) suppose that {xn}n is a sequence in X that generates {dn}n
as a spreading model. By Rosenthal’s criterion for spreading sequences ([4,
Proposition 14], see also [7]), {dn}n is Cesàro summable to zero. Observe
that this means that for every infinite subset L of N, for any ε > 0, one may
find a finite subset F of L and positive reals {λi}i∈F with

∑
i∈F λi = 1 such

that ‖
∑

i∈F λixi‖ < ε. This means that {xn}n is weakly null. Otherwise
there would exist ε > 0, x∗ ∈ SX∗ and an infinite subset L of N such that
x∗(xn) > ε for all n ∈ L. This contradicts our previous observation. Take
a non-zero element x in [{xn}n] and set yn = xn + x. By combining [4,
Theorem 38] and (9) (see also [7]), the result follows.
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Lemma 5.2. Let X be a super-reflexive Banach space with a basis. Then
every k-iterated spreading model of X is equivalent to a spreading sequence
in the space generated by a block k-iterated spreading model of X.

Proof. We prove this lemma by induction on k. Let {en}n be a spreading
model of X. As previously mentioned, it must be either 1-unconditional and
weakly null, or singular.

Suppose it is weakly null. If {xn}n is a sequence in X which generates
{en}n as a spreading model, arguing as in the proof of Lemma 5.1, {xn}n is
weakly null, thus has a subsequence equivalent to a block sequence. By the
way the block sequence is chosen, it is easy to see that the block sequence
actually isometrically generates {en}n as a spreading model.

If it is singular, then by (i) of Lemma 5.1, X admits {dn}n as a spreading
model which is 1-unconditional and weakly null. Apply the previous case.
Then there is a block sequence in X that generates {dn}n as a spreading
model. Define d′n = d1+dn+1. Then {d′n}n is a spreading sequence in [{dn}n]
and, arguing as in part (ii) of the proof of Lemma 5.1, one may prove that
it is equivalent to {en}n.

Observe that in either case, the space generated by the block sequence
in X has a basis. This proves the statement for k = 1.

Suppose that it is true for k ∈ N and let {en}n be a k + 1-iterated
spreading model of X. Thus there exists a super-reflexive Banach space Ek
such that X k−→ Ek and {en}n is a spreading model of Ek. By the inductive
assumption there exists a super-reflexive Banach space E′k with a basis such
that X k−→

bl
E′k and Ek ↪→ E′k.

This means that {en}n is equivalent to a spreading model admitted by E′k.
By applying the case k = 1 for E′k, the result follows.

Proposition 5.3. Let X be a uniformly convex Banach space with a
spreading and unconditional basis {en}n. Then there exists q > 1 such that
for every r > q the space `r does not embed into X and there exists a uni-
formly convex Banach space Xr with a 1-symmetric basis with the following
properties:

(i) The space Xr is `r-saturated, in particular the spaces X and Xr are
totally incomparable.

(ii) There exists a sequence {xn}n in Xr generating a spreading model
which is equivalent to the basis {en}n of X.

If moreover {en}n is 1-symmetric, then the following also holds:

(iii) Every spreading model admitted byXr is either equivalent to a spread-
ing sequence in X, or equivalent to a spreading sequence in Xr.
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Proof. Using Theorem 3.2 we may find 1 < p ≤ q < ∞ and renorm X
in such a way that the basis {en}n is 1-unconditional, spreading, p-convex
and q-concave. If moreover {en}n is 1-symmetric with respect to the original
norm, then it retains this property with respect to the new one. The q-
concavity of the norm easily implies that for r > q, `r cannot be isomorphic
to a subspace of X.

For every r ≥ q, we will construct a space with the desired properties. We
start by defining the space SBX,r, which by Proposition 3.4 is uniformly con-
vex and by some remarks made after Proposition 3.7 it is also `r-saturated.

Choose 1 < s < t ≤ p and, for a sequence {mk}k satisfying (2), define
X =

(∑∞
k=1

⊕
(`t, ||| · |||mk

s,t )
)
SBX,r

. As will become clear later, it is crucial that
we choose t ≤ p.

Let Xr = D be the diagonal subspace of X. Then Xr is uniformly con-
vex, it has a 1-symmetric basis and SBX,r is isomorphic to a complemented
subspace of Xr. Property (i) follows from the fact that SBX,r is `r-saturated
and Xr is saturated with subspaces of SBX,r, moreover since X does not
contain a copy of `r, it is totally incomparable to Xr. Property (ii) follows
from the fact that SBX,r embeds into Xr and from Corollary 3.6.

It remains to prove that, in the case when {en}n is 1-symmetric, (iii) is
also satisfied. We will show that if {vn}n is the spreading model of some
block sequence {xn}n in Xr, then {vn}n is either equivalent to a spreading
sequence in X, or equivalent to a spreading sequence in Xr. If the above
is true, using Lemma 5.2 we will conclude that the same is true for every
spreading model of Xr.

Let now {vn}n be the spreading model of a block sequence {xn}n in Xr.
After passing to a subsequence if necessary, one of the following holds: either
limn ‖xn‖∞ = 0, or there exists ε > 0 such that ‖xn‖∞ > ε for all n ∈ N.
We shall treat these cases separately.

Case 1: limn ‖xn‖∞ = 0. Using Proposition 2.6, we may assume that
{xn}n is equivalent to a block sequence {yn}n in SBX,r. We distinguish two
further subcases, namely either limn ‖yn‖∞ = 0, or there is ε > 0 such that
‖yn‖∞ > ε for all n ∈ N.

If the first one holds, then by Proposition 3.7, {yn}n has a subsequence
equivalent to the usual basis of `r, and therefore {vn}n is also equivalent to
the usual basis of `r, which embeds into Xr.

If the second one holds, by Corollary 4.3, there exists a symmetric se-
quence {un}n in X such that {vn}n is equivalent to {un}n.

Case 2: There exists ε > 0 such that ‖xn‖∞ > ε for all n ∈ N. Apply
Proposition 4.1 and find block sequences {yn}n and {zn}n in Xr and a
disjointly supported block sequence {un}n in Xr, satisfying the conclusion
of Proposition 4.1. We will show that {vn}n is equivalent to {un}n.
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If, after passing to some subsequence, limn ‖zn‖ = 0, then of course
{vn}n is isometric to {un}n. Otherwise, using Proposition 2.6 once more,
{zn}n may be assumed to be equivalent to a block sequence in SBX,r. The
proof of Proposition 3.4 implies that the norm of SBX,r is p-convex, which
in turn shows that {zn}n is dominated by the usual basis of `p.

Observe that, since limn ‖zn‖∞ = 0, we may assume that ‖yn‖∞ > ε for
all n ∈ N. Arguing as in the proof of Lemma 2.5, we conclude that {yn}n
dominates the usual basis of `t and, since t ≤ p, {yn}n dominates {zn}n.
Using the unconditionality of the basis of Xr we finally conclude that there
exists a constant C > 0 such that, for every n ∈ N, a1, . . . , an ∈ R,∥∥∥ n∑

i=1

aiyi

∥∥∥ ≤ ∥∥∥ n∑
i=1

aixi

∥∥∥ ≤ C∥∥∥ n∑
i=1

aiyi

∥∥∥.
By the above it easily follows that {vn}n is equivalent to {un}n.

5.1. A sequence of uniformly convex Banach spaces with a 1-
symmetric basis. Given a uniformly convex Banach space E with a 1-
unconditional and spreading basis {en}n, we shall inductively construct a
sequence {Xk}k of Banach spaces with the following properties:

(i) Xk is uniformly convex and has a 1-symmetric basis for all k ∈ N.
(ii) Xk is `rk -saturated, where {rk}k is a strictly increasing sequence of

positive reals.
(iii) Xk and E are totally incomparable for all k ∈ N.
(iv) Any spreading model admitted by Xk+1 is either equivalent to a

spreading sequence in Xk, or equivalent to a spreading sequence in
Xk+1, for all k ∈ N.

(v) The basis of E is equivalent to a spreading model of X1 and the
basis of Xk is equivalent to a spreading model of Xk+1 for all k ∈ N.

By Proposition 5.3, find q0 > 1 such that `r does not embed into E for
any r > q0, choose r1 > q0 and define X1 = Er1 to be the space provided by
that proposition. Assume that for some k ∈ N we have chosen real numbers
q0 < r1 < · · · < rk and spaces X1, . . . , Xk satisfying the desired conditions.
Apply once more Proposition 5.3 to the space Xk, which has a 1-symmetric
basis, find qk > 1 such that `r does not embed into Xk for any r > qk, choose
rk+1 > max{qk, rk} and define Xk+1 = X

rk+1

k to be the space provided by
the same proposition.

The construction is complete and properties (i) to (v) are clearly satisfied.

Lemma 5.4. The sequence {Xk}k satisfies the following additional con-
ditions: for every k ∈ N, k ≥ 2, and for every 1 ≤ i < k, if {ẽn}n is an
i-iterated spreading model of Xk, then there exists k − i ≤ m ≤ k such that
[{ẽn}n] is isomorphic to a subspace of Xm.



76 S. A. Argyros and P. Motakis

Proof. If k = 2, then i = 1 and the desired result follows from property
(iv).

Assume now that the statement holds for some k ≥ 2 and let {xn}n be
an i-iterated spreading model of Xk+1 for some 1 ≤ i < k + 1. If [{xn}n] is
isomorphic to a subspace of Xk+1, then the statement is true for m = k+ 1.
If it is not, assume {{xjn}n}ij=1 is the sequence of spreading models leading
to {xn}n, i.e. {x1n}n is a spreading model of Xk+1. If for 1 ≤ j < i, Ej is
the space generated by {xjn}n, then {xj+1

n }n is a spreading model of Ej and
{xin}n = {xn}n.

Set j0 = min{j : Ej is not isomorphic to any subspace of Xk+1}. Then
if j0 > 1, we see that Ej0−1 is isomorphic to a subspace of Xk+1 and, by
property (iv), Ej0 is isomorphic to a subspace of Xk. If j0 = 1, then again by
property (iv), Ej0 is isomorphic to a subspace of Xk. In either case, {xk}k is
equivalent to an i− j0-iterated spreading model of Xk. Since i− j0 < k, by
the inductive assumption there is k + 1− i ≤ k − i+ j0 ≤ m ≤ k such that
[{xn}n] is isomorphic to a subspace of Xm.

Corollary 5.5. The family {SMit
i (Xk)}ki=1 is strictly increasing for all

k ∈ N.

Proof. Let k ∈ N and 1 ≤ i < k. It is always true that SMit
i (Xk) ⊂

SMit
i+1(Xk) and towards a contradiction assume that the inclusion is not

proper.
Consider first the case i < k − 1. Then Xk admits an i + 1-iterated

spreading model equivalent to the basis of Xk−i−1. Since we assume that
SMit

i (Xk) = SMit
i+1(Xk), the basis of Xk−i−1 is an i-iterated spreading

model of Xk and, by Lemma 5.4, there is k − i ≤ m ≤ k such that
Xk−i−1 is isomorphic to a subspace of Xm. Recall that by property (ii),
the space Xk−i−1 is `rk−i−1

-saturated and the space Xm is `rm-saturated.
Since rk−i−1 < rm, this is obviously not possible.

If on the other hand i = k, then Xk admits an i + 1-iterated spreading
model equivalent to the basis of E. Arguing as previously, we conclude that
the basis of E is not an i-iterated spreading model of Xk.

Proof of Theorem 1. If {en}n is 1-unconditional, then the sequence {Xk}k
is the desired one. This is an immediate consequence of properties (i) to (v)
and Lemma 5.4.

If {en}n is not unconditional, it must be singular. Apply Lemma 5.1 and,
keeping in mind that by the way the dn are chosen, dn ∈ E for all n ∈ N,
apply the previous case for {dn}n.

By Lemma 5.1, X1 isomorphically admits {en}n as a spreading model.
Thus Xk isomorphically admits {en}n as a k-iterated spreading model. Also,
E is isomorphic to [{dn}n] and the space generated by an i-iterated spreading
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model of Xk for i < k is isomorphic to a subspace of Xm for k− i ≤ m ≤ k.
Since the spaces Xm, E are totally incomparable, the result follows.

The methods employed here make heavy use of the nice properties of
uniformly convex spaces. Therefore, although our result applies to `p spaces,
1 < p < ∞, it remains unknown whether a similar result can be stated for
c0 and `1.
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