Fall 2017, Math 304

Last name:

First name:

UIN:

"An Aggie does not lie, cheat or steal or tolerate those who do."

This exam consists of **ten** problems, the total point value of which is 100 points.

The answer to each question must be **justified in detail**.

The duration of this exam is two hours.

The use of electronic devices, such as cellphones, tables, laptops, and calculators is prohibited.

Pr. 1	Pr. 2	Pr. 3	Pr. 4	Pr. 5	Pr. 6	Pr. 7	Pr. 8	Pr. 9	Pr. 10	Total
10	10	10	10	10	10	10	10	10	10	100

Problem 1.

Problem 1.
Consider the vectors in
$$\mathbb{R}^4$$
: $x_1 = \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ -1/2 \end{bmatrix}$, $x_2 = \begin{bmatrix} 1/6 \\ 1/6 \\ 1/2 \\ 5/6 \end{bmatrix}$, $x_3 = \begin{bmatrix} -\sqrt{2}/2 \\ \sqrt{2}/2 \\ 0 \\ 0 \end{bmatrix}$, $x_4 = \begin{bmatrix} \sqrt{2}/3 \\ \sqrt{2}/3 \\ \sqrt{2}/2 \\ \sqrt{2}/6 \end{bmatrix}$.
(i) Find $||x_1||$, $||x_2||$, $||x_3||$, and $||x_4||$.
(ii) Find $\langle x_1, x_2 \rangle$, $\langle x_1, x_3 \rangle$, $\langle x_1, x_4 \rangle$, $\langle x_2, x_3 \rangle$, $\langle x_2, x_4 \rangle$, and $\langle x_3, x_4 \rangle$.
(iii) If $w = [1 \ 1 \ 1 \ 1]^{\top}$ write this vector as $w = c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4$.
(iv) Write the transition matrix from the basis $F = \{x_1, x_2, x_3, x_4\}$ to the usual basis $E = \{e_1, e_2, e_3, e_4\}$ and the transition matrix from E to F .
Take $u = (-\sqrt{2}/2)x_1 + (1/2)x_2 + (\sqrt{2}/3)x_3 + (1/6)x_4$ and $z = (\sqrt{2}/2)x_2 + (2/3)x_3 + (\sqrt{2}/6)x_4$.
(v) Find $||u||$ and $||z||$.
(vi) Find $\langle u, z \rangle$.
(vi) Find the angle θ between u and z .
 $1 pts$.

Problem 2. Let S be the subspace of \mathbb{R}^4 spanned by $x = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$, $y = \begin{bmatrix} 0 \\ 1 \\ 2 \\ -1 \end{bmatrix}$].
(i) Find an orthonormal basis of S .	$\overline{3} pt.$
(ii) Write the orthogonal projection matrix P onto S .	2 pt.
(iii) Find an orthonormal basis for the the orthogonal complement S^{\perp} of S.	2 pt.
(iv) Find the orthogonal projection matrix \tilde{P} onto S^{\perp} .	2 pt.
(v) What is $P + \tilde{P}$?	1 pt.

Problem 3.

Consider the vector space C[-1,1] endowed with the inner product

$$\langle f,g\rangle = \int_{-1}^{1} f(x)g(x)dx.$$

If f(x) = x and $g(x) = x^2 + x$ let $S = \text{Span}\{f, g\}$ as a subspace of C[-1, 1]. Use the the Gram-Schmidt orthogonalization process to find an orthonormal basis for the space S. 10 pts.

Problem 4.

Consider the matrix

$$A = \left[\begin{array}{cc} 2 & 1 \\ -1 & -2 \end{array} \right].$$

(i) What is the determinant of A?	3 pt.
(ii) What is the trace of A?	3 pt.
(iii) What are the eigenvalues of A .	3 pt.
(iv) Is A diagonalizable? Justify your answer.	1 pt.

Problem 5.

Consider the matrix

$$A = \left[\begin{array}{rrr} -1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right].$$

(i) Write the characteristic polynomial of A and find the eigenvalues of A .	4 pt.
(ii) What are the eigenspaces of A ?	4 pt.
(iii) Is A diagonalizable? Justify your answer.	2 pt.

(ii) What are the eigenspaces of A?(iii) Is A diagonalizable? Justify your answer.

(i) Consider the matrix

$$A = \begin{bmatrix} 3 & 3 & -1 \\ 2 & 3 & 2 \\ 2 & -1 & 6 \end{bmatrix}.$$

It is given that 3 and 5 are eigenvalues of A. Find all eigenvalues of A. 4 pt. (ii) If B is a 2×2 matrix with tr(B) = 5 and det(B) = 4 find all the eigenvalues of the matrix B. 4 pt.

(iii) If C is a 3×3 matrix with tr(C) = 5 and $\lambda_1 = 1 + i$ is an eigenvalue of C find all the eigenvalues of C.

Problem 7.

(i) If D is an $n \times n$ diagonal matrix all diagonal entries of which are either 1 or -1 show that necessarily $D^2 = I$. 4 pt.

(ii) If A is an $n \times n$ orthogonal matrix and λ is an eigenvalue of A show that necessarily $|\lambda| = 1$.

(iii) If A is a diagonalizable $n \times n$ orthogonal matrix and it has only real eigenvalues show that necessarily $A^2 = I$. 2 pt. **Problem 8.** Let A be a 2×2 orthogonal matrix with eigenvalues $\lambda_1 = 1$ and $\lambda_2 = -1$.

(i) If x_1 is an eigenvector of A belonging to $\lambda_1 = 1$ and x_2 is an eigenvector of A belonging to $\lambda_2 = -1$ show that $x_1 \perp x_2$. 4 pt.

We additionally assume that $x_1 = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}^\top$ is an eigenvector of A belonging to $\lambda_1 = 1$.

(ii) Find the eigenspace of A belonging to $\lambda_2 = -1$. 4 pt. (iii) Find the matrix A. 2 pt.

Problem 9.

(i) Let A be an $n \times n$ matrix. Show that A is singular if and only if $\lambda = 0$ is an eigenvalue of A. 4 pt.

(ii) Let A be a non-singular $n \times n$ matrix and let λ be an eigenvalue of A with corresponding eigenvector **x**. Show that $1/\lambda$ is an eigenvalue of A^{-1} with corresponding eigenvector **x**.

(iii) If A is a 2×2 matrix with eigenvalues 2, 3 and corresponding eigenvectors $\begin{bmatrix} 1 & 0 \end{bmatrix}^{\top}$, $\begin{bmatrix} -1 & 1 \end{bmatrix}^{\top}$ find A^{-1} . 2 pt.

Problem 10. A patch of farmland has a total area of 1000 acres. Initially, 30% of the area is covered by shrubs and 70% is clear. Every year 1/10 of the clear area is reclaimed by the shrubs and 3/10 of the shrubland is cleared manually.

(i) Find the area of the shrubland and the clear area after one year.	$5 \ pt$
(ii) Find the area of the shrubland and the clear area after k years.	$3 \ pt$
(iii) Find the area of the shrubland and the clear area as $k \to \infty$.	2 pt