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ASYMPTOTICALLY SYMMETRIC SPACES

WITH HEREDITARILY NON-UNIQUE

SPREADING MODELS

DENKA KUTZAROVA AND PAVLOS MOTAKIS

(Communicated by Stephen Dilworth)

In memory of Ted Odell

Abstract. We examine a variant of a Banach space X1
0,1 defined by Argy-

ros, Beanland, and the second-named author that has the property that it
admits precisely two spreading models in every infinite dimensional subspace.
We prove that this space is asymptotically symmetric and thus it provides a
negative answer to a problem of Junge, the first-named author, and Odell.

1. Introduction

The notion of an asymptotically symmetric Banach space was introduced in
[JKO]. A Banach spaceX is asymptotically symmetric if the asymptotic behavior of
arrays of bounded sequences in X behaves well under permutations in the following

way: there exists C ≥ 1 so that if (x
(1)
j )j , . . . , (x

(n)
j )j , are bounded sequences in X

and σ is a permutation of {1, . . . , n}, then whenever the iterated limits

L1 = lim
j1→∞

· · · lim
jn→∞

∥∥∥∥∥
n∑

i=1

x
(i)
ji

∥∥∥∥∥ and L2 = lim
j1→∞

· · · lim
jn→∞

∥∥∥∥∥
n∑

i=1

x
(σ(i))
ji

∥∥∥∥∥
both exist, then L1 ≤ CL2. The original definition from [JKO] is using ultrafilters,
however it is observed in their preliminary section that the above formulation is
indeed equivalent. The property of being asymptotically symmetric is isomorphic
and it is a relaxation of the notion of stable spaces from [KM], in which L1 = L2.
As it was observed in [JKO], this is indeed a relaxation of stability: Tsirelson space
from [T] is asymptotically symmetric but does not admit an equivalent stable norm.
This is because stable spaces must always contain a subspace X isomorphic to some
�p, 1 ≤ p < ∞ (see [KM]) and the space T is an asymptotic-�1 space that contains
no such subspace X. Naturally one may wonder whether asymptotically symmetric
spaces must have subspaces that are asymptotic-�p spaces.

Problem A ([JKO]). Let X be an asymptotically symmetric Banach space. Does
X contain an infinite dimensional asymptotic-�p or asymptotic-c0 subspace?
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1698 D. KUTZAROVA AND P. MOTAKIS

This problem belongs to a general class of questions that ask whether a property
concerning the asymptotic behavior of arrays of sequences (or any other structure
for that matter) in a Banach space X can provide more information about other as-
pects of the asymptotic behavior of X (see, e.g., [FOSZ] and [AM3]). The property
of being an asymptotic-�p or c0 space concerns the asymptotic behavior of a Banach
space X as a whole and not only that of arrays of sequences. It was first introduced
in [MT] for a Banach space X with a basis (ei)i. Such an X is called asymptotic-�p
(or asymptotic-c0 if p = ∞) if there exists C ≥ 1 so that for every n ∈ N every
normalized block sequence (xi)

n
i=1 of (ei)i≥n is C-equivalent to the unit vector basis

of �np . In this case (ei)i is called an asymptotic-�p (or asymptotic-c0 if p = ∞) basis
of X. The definition was later generalized in [MMT] to all that of Asymptotic-�p
Banach spaces and it relies on the notion of a two-player game between a player
that chooses co-finite dimensional subspaces and a player that chooses vectors. It
is not hard to see that a Banach space contains an asymptotic-�p basis in the sense
of [MT] if and only if it contains an Asymptotic-�p subspace in the sense of [MMT].

To solve Problem A in the negative direction we consider a slight variation X
1/2
0,1

of a reflexive Banach space X1
0,1 defined in [ABM]. In that paper a sequence of spaces

(Xn
0,1)n is defined and the space X

1/2
0,1 is a variation of Xn

0,1 for the case n = 1. These

spaces have hereditarily heterogeneous spreading model structure. Recall, if (xj)j
is a sequence in a Banach space and (ei)i is a sequence in a seminormed space we
say that (xj)j generates (ei)i as a spreading model if for every n ∈ N and scalars
a1, . . . , an

lim
j1→∞

· · · lim
jn→∞

∥∥∥∥∥
n∑

i=1

aixji

∥∥∥∥∥ =

∥∥∥∥∥
n∑

i=1

aiei

∥∥∥∥∥.
The above definition is from [BS]. It is almost evident that if X is an asymptotic-
�p (or asymptotic-c0) space, then every spreading model generated by a weakly
null sequence in X must be equivalent to the unit vector basis of �p (or c0). The
characterizing property of the spaces Xn

0,1, n ∈ N, is that all spreading models
generated by normalized weakly null sequences in these spaces are either equivalent
to the unit vector basis of �1 or of c0 and both of these sequences appear as spreading
models in all of their subspaces. Thus, for n ∈ N, the space Xn

0,1 has no asymptotic-

�p or asymptotic-c0 subspace. We slightly modify the definition of the space X1
0,1 to

obtain a space X
1/2
0,1 that retains the aforementioned property and it is additionally

asymptotically symmetric. It is possible that the space X1
0,1 is also asymptotically

symmetric, however, this is not entirely clear and the small modification is necessary

in our proof of the fact that X
1/2
0,1 has the desired property.

It is also worth mentioning that the space X
1/2
0,1 is related to a class of spaces

studied in [BFM]. These spaces are also based on the method from [ABM]), however
the modification is more substantial. In [BFM] for every closed subset F of [1,∞],
consisting of the terms of a (finite or infinite) strictly increasing sequence in [1,∞]
and its supremum, a Banach space XF is defined. This space XF has F as its

stable Krivine set. The space X
1/2
0,1 is very similar to the X{1,∞} and thus it has

{1,∞} as a stable Krivine set.

The space X
1/2
0,1 is defined with a norming set via the method of saturation under

constraints with very fast growing averages. This is a Tsirelson-type method that
was first used by Odell and Schlumprecht in [OS1] and [OS2]. It was later refined
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ASYMPTOTICALLY SYMMETRIC 1699

in [ABM], [AM1], and others. In these papers a central tool in this method was
introduced, namely the α-index. This index is assigned to a block sequence in the
ambient Banach space and it can obtain either one of two values: zero or not zero.
This tool is useful in deciding what spreading model is generated by a given block
sequence. We refine this tool by defining the quantified α-index of a block sequence

in X
1/2
0,1 . This refinement allows us to provide better estimates that eventually

yield that the space X
1/2
0,1 is asymptotically symmetric. In addition to the above,

the quantified α-index allows us to characterize the asymptotic models of the space

X
1/2
0,1 . Recall that an infinite array of sequences (x

(i)
j )j , i ∈ N, in a Banach space

X generates a sequence (ei)i in a seminormed space as an asymptotic model if for
every n ∈ N and scalars a1, . . . , an

lim
j1→∞

· · · lim
jn→∞

∥∥∥∥∥
n∑

i=1

aix
(i)
ji

∥∥∥∥∥ =

∥∥∥∥∥
n∑

i=1

aiei

∥∥∥∥∥.
This definition was introduced in [HO]. The definition of asymptotically symmetric
spaces can be restated in terms of asymptotic models. A space X is asymptotically
symmetric if there exists C so that for any infinite array of normalized sequences

(x
(i)
j )j inX and every permutation σ of N so that both (x

(i)
j )j and (x

(σ(i))
j )j generate

asymptotic models (ei)i and (di)i, respectively, we have that (di)i is C-equivalent
to (eσ(i))i. A similar characterization can be given by using the notion of joint
spreading models form [AGLM] instead of asymptotic models. Regarding the as-

ymptotic model structure of X
1/2
0,1 , every asymptotic model generated by an array

of weakly null sequences in X
1/2
0,1 is a sequence of a certain type in the space c0⊕ �1.

At the time that this paper was being prepared another Banach space Xiw

from [AM3] was observed to be asymptotically symmetric without asymptotic-�p
or asymptotic-c0 subspaces. The space Xiw negatively answers a question of Odell
from [O1], [O2], and [JKO]. All spreading models generated by normalized weakly
null sequences in Xiw are uniformly equivalent to �1 but Xiw has no asymptotic-
�1 subspace. Thus, Xiw is a counterexample of a completely different kind. Our
example additionally demonstrates that asymptotically symmetric spaces can have
heterogeneous spreading model structure in all subspaces.

In Section 2 we introduce the necessary definitions and then we define the

space X
1/2
0,1 . In Section 3 we prove the properties of the space X

1/2
0,1 , namely that

it is asymptotically symmetric and that it does not contain a subspace that is
asymptotic-�p or asymptotic-c0. We also classify (up to a constant) all the spread-

ing models and asymptotic models admitted by the subspaces of X
1/2
0,1 . Although

some results have been proved elsewhere we include all necessary arguments for the
sake of self-containment.

2. Definition of the space X
1/2
0,1

We define a small variation of the definition of the space X0,1 from [ABM]. The
difference is that we use a coefficient 1/2 when defining functionals that result from
adding very fast growing sequences of averages in the norming set. This gives us
better control for estimating a crucial upper estimate (see Proposition 3.4) that
will eventually yield the desired result.
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1700 D. KUTZAROVA AND P. MOTAKIS

2.1. Preliminaries. For two subsets A and B of N we say A < B if max(A) <
min(B). We use the convention max(∅) = 0 and min(∅) = ∞. For a Banach space
X with a Schauder basis (xi)i we define the support of a vector x =

∑
i aixi to

be the set supp(x) = {i : ai �= 0} and we define the range of x to be the smallest
interval of N containing supp(x). For a vector x =

∑
i aixi with finite support and

a set E ⊂ N we define Ex =
∑

i∈E aixi. For two vectors x and y in X we write
x < y to mean supp(x) < supp(y). A finite or infinite sequence (yi)i in X is called
a block sequence if for all i > 1 we have yi−1 < yi. The space of all scalar sequences
with finitely many non-zero entries is denoted by c00(N) and its unit vector basis
is denoted by (ei)i. Given two elements f and x of c00(N) we write f(x) to mean
the usual inner product on this vector space.

To define the Banach space X
1/2
0,1 we will first construct an appropriate subset

W0,1 of c00(N), called a norming set. We then consider a norm ‖ · ‖ on c00(N)

given by ‖x‖ = sup{f(x) : f ∈ W0,1}. The space X
1/2
0,1 will be the completion of

(c00(N), ‖ · ‖). The following notions are required to define the set W0,1.

Notation. Let G ⊂ c00(N).

(i) A vector α0 ∈ c00(N) will be called an α-average of G if there are d, n ∈ N,
with d ≤ n, and f1 < · · · < fd in G so that α0 = (1/n)(f1 + · · ·+ fd). We
define the size of this α-average to be s(α0) = n.

(ii) A finite sequence (αi)
k
i=1 of α-averages of G is called admissible if α1 <

· · · < αk and k ≤ min supp(α1).
(iii) A finite (or infinite) sequence (αi)i of α-averages of G is called very fast

growing if α1 < α2 < · · · , s(α1) < s(α2) < · · · , and s(αi) > max supp(αi−1)
for i > 1.

(iv) A vector f in c00(N) will be called a Schreier functional of G if there is
an admissible and very fast growing sequence of α-averages of G (αi)

k
i=1 so

that f = (1/2)(α1 + · · ·+ αk).
(v) For every Schreier functional f ∈ G with f = (1/2)(α1+ · · ·+αk) we define

the size of f to be s(f) = s(α1) and the length of f to be �(f) = k. A finite
(or infinite) sequence (fi)i of Schreier functionals of G is called very fast
growing if f1 < f2 < · · · , s(f1) < s(f2) < · · · , and s(fi) > max supp(fi−1)
for i > 1.

Although the notions of size and length are not necessarily uniquely defined this
causes no problems. The notation introduced in item (v) is not necessary to define

the space X
1/2
0,1 ; we require it, however, in the proof of the main result.

2.2. The space X
1/2
0,1 . We now define the space X

1/2
0,1 and give an explicit descrip-

tion of the functionals in the norming set W0,1.

Definition 2.1. We define W0,1 to be the smallest symmetric subset W of c00(N)
that contains the unit vector basis of c00(N), every α-average of W , and every
Schreier functional of W . We define a norm on c00(N) given by ‖x‖ = sup{f(x) :
f ∈ W0,1} and we set X

1/2
0,1 to be the completion of (c00(N), ‖ · ‖).
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Remark 2.2. The setW0,1 can be explicitly described by taking the increasing union
of a sequence of sets (Wm

0,1)
∞
m=0 where W 0

0,1 = {±ei : i ∈ N} and

Wm+1
0,1 =Wm

0,1 ∪
{
α0 : α0 is an α-average of Wm

0,1

}

∪
{
f : f is a Schreier functional of Wm

0,1

}
.

This description of the norming set is fundamental in proving estimates of func-
tionals on vectors.

Remark 2.3. One can verify by induction on N that if f =
∑

i aiei ∈ W0,1, then
for any E ⊂ N and choice of signs (εi)i the vectors Ef and

∑
i εiaiei are both in

W0,1. Hence, for any vector x =
∑

i biei in X
1/2
0,1 and choice of signs (εi)i we have

‖
∑

i biei‖ = ‖
∑

i εibiei‖, i.e., the basis (ei)i of X
1/2
0,1 is 1-unconditional.

Remark 2.4. Let (fi)
k
i=1 be a very fast growing sequence of Schreier functionals so

that �(f1) + · · · + �(fk) ≤ min supp(f1). Then f = f1 + · · · + fk is in W0,1. This
almost trivial observation is important in this paper. It allows us to quantify the
α-index and use it to make the necessary estimates (Proposition 3.4).

3. Properties of the space X
1/2
0,1

In this section we define the quantified α-index and use it as a tool to give a
more precise description of the spreading models and the asymptotic models of the

space X
1/2
0,1 than was possible with the classical α-index.

3.1. The quantified α-index. In the majority of constructions that have been
performed with the method of saturation under constraints the α-index has been one
of the most important tools for describing the spreading models of the corresponding
space. The α-index α(xi)i of a block sequence (xi)i can take two possible values:
zero and not zero. In this paper we assign to a block sequence (xi)i a quantified
α-index α̃(xi)i which is a non-negative real number. Importantly, α(xi)i is zero if
and only if α̃(xi)i is zero. The actual value of α̃(xi)i gives information regarding

the spreading models and the asymptotic models of the space X
1/2
0,1 . Let us first

recall the definition of the α-index.

Definition 3.1 (Definition 3.1 [ABM]). Let (xi)i be a bounded block sequence

in X
1/2
0,1 . We define the α-index of (xi)i as follows: if for every sequence of very

fast growing average (aj)j in W0,1 and every subsequence (xij )j of (xi)i we have
lim |αj(xij )| = 0, then we say α(xi)i = 0. Otherwise we say that α(xi)i > 0.

The α̃-index is an extension of the above definition.

Definition 3.2. Let (xi)i be a bounded block sequence in X
1/2
0,1 . We define the

quantified α-index of (xi)i to be the infimum of all θ > 0 that have the following
property: for all N ∈ N there exist s0, i0 ∈ N so that for all Schreier functionals
f ∈ W0,1 with s(f) ≥ s0 and �(f) ≤ N and for all i ≥ i0 we have |f(xi)| < θ.

Clearly, 0 ≤ α̃(xi)i ≤ lim supi ‖xi‖. The proof of the following is fairly straight-
forward and it uses the fact that W0,1 is closed under taking restrictions to intervals
of N. We include a description of the argument for completeness.
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1702 D. KUTZAROVA AND P. MOTAKIS

Proposition 3.3. Let (xi)i be a bounded block sequence in X
1/2
0,1 . Then α(xi)i = 0

if and only if α̃(xi) = 0.

Proof. Assume that α̃(xi)i = 0. For θ > 0 apply Definition 3.2 for N = 1. It easily
follows that for any very fast growing sequence of α-averages (αj)j in W0,1 and
every subsequence (xij )j of (xi)i we have lim sup |αj(xij )| ≤ 2θ. Assume now that
α̃(xi)i > 0, i.e., there exist θ > 0 and N0 ∈ N so that for every s0, i0 ∈ N there are
i ≥ i0 and a Schreier functional f ∈ W0,1 with s(f) ≥ s0 and l(f) ≤ N0 so that
|f(xi)| ≥ θ. If we write f in the form f = (1/2)(α1 + · · · + αk), with k ≤ N0 and
s(aq) ≥ s0 for 1 ≤ q ≤ k, then there must be an index q so that |αq(xi)| ≥ 2θ/N0.
By restricting the range of αq we may assume that ran(αq) ⊂ ran(xi). We have
thus shown that for every s0, i0 ∈ N there are i ≥ i0 and an α-average α0 in
W0,1 with s(α0) ≥ s0 and ran(α0) ⊂ ran(xi) so that |α0(xi)| ≥ 2θ/N0. It is now
straightforward to find a very fast growing sequence of α-averages (αj)j in W0,1

and a subsequence (xij )j of (xi)i with lim inf |αj(xij )| ≥ 2θ/N0. �

3.2. Arrays of sequences in X
1/2
0,1 . The following proposition provides the main

estimate of this paper. It is used to derive estimates for asymptotic models in the
space, spreading models in the space, and in the end to prove that the space is
asymptotically symmetric.

Proposition 3.4. Let x0 ∈ X
1/2
0,1 and (x

(1)
j )i, . . . , (x

(n)
j )i be bounded block sequences

in X
1/2
0,1 . For every ε > 0 there exist j1 < j2 < · · · < jn so that if we set x

(0)
j0

= x0

and A = ‖
∑n

i=0 x
(i)
ji
‖, then

max

{
max
0≤i≤n

‖x(i)
ji
‖,

n∑
i=1

α̃(x
(i)
ji
)

}
− ε ≤ A ≤ 2 max

0≤i≤n
‖x(i)

ji
‖+ 2

n∑
i=1

α̃(x
(i)
j ) + ε.

Proof. As we are allowed a small error ε > 0 in our estimate we may assume that x0

is finitely supported. For 1 ≤ i ≤ n define θi = α̃(x
(i)
j )−ε/n. Using the definition of

the quantified α-index we can find infinite sets L1 = {j(1)q : q ∈ N}, . . . , Ln = {j(n)q :
q ∈ N}, natural numbers N1, . . . , Nn, and very fast growing sequences of Schreier

functionals (f
(1)
q )q, . . . , (f

(n)
q )q so that for 1 ≤ i ≤ n and q ∈ N we have �(f

(i)
q ) ≤ Ni

and f
(i)
q (x

(i)
jq
) ≥ θi. We may also naturally assume that supp(f

(i)
q ) ⊂ supp(x

(i)
jq
) and,

by perhaps passing to subsequences, we may assume that for all q1 < · · · < qn in N

we have that

supp(x0) < supp(x
(1)
jq1

) < · · · < supp(x
(n)
jqn

) and

N1 + · · ·+Nn ≤ min supp(x
(1)
jq1

).

It follows by Remark 2.4 that if we pick any q1 < · · · < qn, then we have that

f = f
(1)
q1 + · · ·+ f

(n)
qn is in W0,1 and

f
(
x0 +

n∑
i=1

x
(i)
jqi

)
≥

n∑
i=1

α̃(x
(i)
jqi

)− ε.

It easily follows that for any such q1 < · · · < qn we have

max

{
max
0≤i≤n

‖x(i)
jqi

‖,
n∑

i=1

α̃(x
(i)
jqi

)

}
− ε ≤ A.
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We now set out to find q1 < · · · < qn so that the desired upper inequality will
be satisfied as well. To simplify notation we shall assume that L1 = · · · = Ln = N.
We will choose q1 < · · · < qn so that for 1 ≤ i ≤ n and 0 ≤ i′ < i so that if

Ni′ = max supp(x
(i′)
qi′ ), then for every Schreier functional f ∈ W0,1 with s(f) ≥

min supp(x
(i′+1)
qi′+1

) and �(f) ≤ Ni we have

(1)
∣∣∣f(x(i)

qi )
∣∣∣ < α̃(x

(i)
j )j +

ε

2n
.

We will use the definition of the quantified α-index. Set N0 = max supp(x
(0)
q0 ) and

for 1 ≤ i ≤ n pick s0i , q
0
i ∈ N so that for every Schreier functional f ∈ W0,1 with

s(f) ≥ s0i and �(f) ≤ N0 for all q ≥ q0i we have that |f(x(i)
q )| < α̃(x

(i)
j )j + ε/(2n).

Pick q1 with q1 ≥ max1≤i≤n q
0
i and min supp(x

(1)
q1 ) ≥ max1≤i≤n s

0
i . Define N1 =

max supp(x
(1)
q1 ) and for 2 ≤ i ≤ n pick s1i , q

1
i ∈ N so that for every Schreier functional

f ∈ W0,1 with s(f) ≥ s1i and �(f) ≤ N1 for all q ≥ q1i we have that |f(x(i)
q )| <

α̃(x
(i)
j )j + ε/(2n). Pick q2 > q1 with q2 ≥ max2≤i≤n q

1
i and min supp(x

(2)
q2 ) ≥

max2≤i≤n s
1
i . Proceed like so.

Define C = 2max0≤i≤n ‖x(i)
qi ‖ + 2

∑n
i=1 α̃(x

(i)
j ) + ε. We will prove by induction

on m ∈ N that for all f ∈ Wm
0,1 (see Remark 2.2) we have |f(

∑n
i=0 x

(i)
qi )| ≤ C.

This is trivial for the case m = 0. Assume now that this conclusion holds for every
f ∈ Wm

0,1 and let f ∈ Wm+1
0,1 . If f is an α-average of Wm

0,1, then this follows by
convexity. Otherwise f is a Schreier functional of Wm

0,1 and it may be written as

f = (1/2)
∑d

r=1 αr where (αr)
d
r=1 is a very fast growing and admissible sequence

of α-averages of Wm
0,1. We define

i0 = min{0 ≤ i ≤ n : max supp(f) ≥ min supp(x(i)
qi )}

and

r0 = max{1 ≤ r ≤ d : s(αr) ≤ min supp(x(i0+1)
qi0+1

)}.

It follows that if we set g = (1/2)
∑

r>r0
αr, then g is a Schreier functional in W0,1

with s(g) > min supp(x
(i0+1)
qi0+1 ) and �(g) ≤ Ni0 . That is, for i > i0 and the functional

g, (1) is satisfied.

We observe that max supp(αr0−1) < min supp(x
(i0+1)
qi0+1 ) which yields:

∣∣∣f( n∑
i=0

x(i)
qi

)∣∣∣ ≤ |f(xi0
qi0

)|+
∣∣∣f( ∑

i>i0

x(i)
qi

)∣∣∣
≤ ‖x(i0)

qi0
‖+

∣∣∣1
2
αr0

( ∑
i>i0

x(i)
qi

)∣∣∣ + ∣∣∣g( ∑
i>i0

x(i)
qi

)∣∣∣
≤ max

0≤i≤n
‖x(i)

qi ‖+
1

2
C +

n∑
i=1

α̃(x
(i)
j ) +

ε

2
=

1

2
C +

1

2
C = C.

The proof is complete. �

We can now understand, up to an equivalence constant 4, all asymptotic models

of arrays of weakly null sequences in the space X
1/2
0,1 . In fact, they are all certain

sequences in c0 ⊕ �1.
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Corollary 3.5. Let (x
(i)
j )j be an infinite array of normalized weakly null sequences

in X that generate an asymptotic model (zi)i. Then there exists a sequence of non-
negative scalars (wi)i so that for any n ∈ N and sequence of scalars (λi)

n
i=1 we

have

max

{
max
1≤i≤n

|λi|,
n∑

i=1

wi|λi|
}

≤
∥∥∥∥∥

n∑
i=1

λizi

∥∥∥∥∥ ≤ 2 max
1≤i≤n

|λi|+ 2
n∑

i=1

wi|λi|.

In particular, (zi)i is 4-equivalent to the sequence (ei, wiei)i in (c0 ⊕ �1)∞.

Proof. Set x0 = 0 and for i = 1, . . . , n define (x
(i)
j )j = (λix

(i)
j )j and apply Proposi-

tion 3.4 to obtain that wi = α̃(x
(i)
j ), i ∈ N are the desired scalars. �

3.3. Sequences in X
1/2
0,1 . The fact that every spreading model generated by a

weakly null sequence in X
1/2
0,1 is equivalent to either the unit vector basis of c0

or of �1 and that every subspace of X
1/2
0,1 admits both of these spreading models

is proved in a nearly identical manner as it was proved in [ABM]. The idea is
the following: a sequence (xi)i generating a c0 spreading model can be blocked
by setting yn =

∑
i∈Fn

xi appropriately so that (yn)n generates an �1 spreading
model. Similarly, a sequence (xi)i generating an �1 spreading model can be blocked
by setting yn = (1/#Fn)

∑
i∈Fn

xi appropriately so that (yn)n generates an �1
spreading model. For the sake of self-containment we include the proof.

The following states that every spreading model of a weakly null sequence in

X
1/2
0,1 is either equivalent to the unit vector basis of c0 or to the unit vector basis of

�1. This was proved in a slightly different manner in [ABM]. Here the result follows
almost immediately from Proposition 3.4.

Corollary 3.6. Let (xj)j be a normalized block sequence in X
1/2
0,1 and assume that

it generates some spreading model (ei)i. Let α = α̃(xj). Then for any n ∈ N and
scalars (λi)

n
i=1 we have

max

{
max
1≤i≤n

|λi|, α
n∑

i=1

|λi|
}

≤
∥∥∥∥∥

n∑
i=1

λiei

∥∥∥∥∥ ≤ 2 max
1≤i≤n

|λi|+ 2α

n∑
i=1

|λi|.

In particular, if α̃(xi) = 0, then (ei)i is equivalent to the unit vector basis of c0 and
otherwise it is equivalent to the unit vector basis of �1.

Proof. Set x0 = 0 and for i = 1, . . . , n define (x
(i)
j )j = (λxj)j and apply Proposition

3.4. �

We next intend to prove that both c0 and �1 appear as spreading models in
every subspace. The following lemma is well known but we include a proof for
completeness.

Lemma 3.7. Let x1 < · · · < xn be normalized finitely supported vectors in X
1/2
0,1 .

Then for any α-average α0 in X
1/2
0,1 we have that

∣∣∣α0

( 1

n

n∑
i=1

xi

)∣∣∣ ≤ 1

s(α0)
+

2

n
.
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Proof. Let α0 = (1/d)(f1 + · · · + fk) where f1 < · · · < fk are in W0,1 and k ≤ d.
Define A = {i : ran(xi) ∩ ran(fj) �= ∅ for at most one j}. Then for i ∈ A we have
|α0(xi)| ≤ 1/d. For i �∈ A define the set Fi = {j : ran(xi) ∩ ran(fj) �= ∅}. It follows
that max(Fi) ≤ min(Fi′) for all i < i′ �∈ A and therefore

∑
i �∈A #Fi ≤ 2k. We

conclude: ∣∣∣α0

( 1

n

n∑
i=1

xi

)∣∣∣ ≤ 1

n

∑
i∈A

|α0(xi)|+
1

n

∑
i �∈A

#Fk

d
≤ 1

d
+

2

n
.

�

Proposition 3.8. Let X be a block subspace of X
1/2
0,1 . Then there exists a nor-

malized block sequence in X that generates a spreading model equivalent to the unit
vector basis of �1 and there exists another normalized block sequence in X that
generates a spreading model equivalent to the unit vector basis of c0.

Proof. Start with an arbitrary normalized block sequence (xi)i in X that generates
some spreading model (ei)i. Pick for each i ∈ N an fi ∈ W0,1 with fi(xi) = 1
and ran(fi) ⊂ ran(xi). Choose successive subsets of the natural numbers (Fn)n
with #Fn → ∞ and #Fn ≤ min(Fn). If (ei)i is equivalent to the unit vector
basis of c0 set yn =

∑
i∈Fn

xi and αn = (1/#Fn)
∑

i∈Fn
fi. It follows that there

is C > 0 so that sup ‖yn‖ ≤ C and for all n ∈ N |αn(yn)| ≥ 1. Thus (yn)n is
bounded and it has positive α-index, i.e., it has a subsequence generating an �1
spreading model. If on the other hand (ei)i is equivalent to the unit vector basis
of �1 set yn = (1/#Fn)

∑
i∈Fn

xi. Then there exists c > 0 so that inf ‖yn‖ ≥ c
and by Lemma 3.7 we have the α-index of (yn)n is zero, i.e., it has a subsequence
generating a c0 spreading model. �

Since X
1/2
0,1 has an unconditional basis, and by Proposition 3.8 it has no subspace

isomorphic to c0 or to �1, we conclude the following by James’ theorem [J].

Corollary 3.9. The space X
1/2
0,1 is reflexive.

Remark 3.10. We observed that every asymptotic model generated by an array of

weakly null sequences in X
1/2
0,1 is 4-equivalent to a sequence of the form (ei, wiei)i

in (c0⊕ �1)∞. A converse of this is also true: in every infinite dimensional subspace

X of X
1/2
0,1 and every sequence (wi)i in [0, 1] there exists an array of normalized

weakly null sequences in X that generate an asymptotic model 10-equivalent to
the sequence (ei, wiei)i in (c0 ⊕ �1)∞. The way to achieve this is to take, by
Proposition 3.8, a normalized weakly null sequence (xj)j in X that generates a c0
spreading model and a normalized weakly null sequence (yn)n that generates an �1
spreading model. By the non-distortion of �1 we may assume that the spreading
model generated by (yn)n is 5/4-equivalent to the unit vector basis of �1. Assuming

that for all j ∈ N we have xj < yj < xj+1 define for each i, j ∈ N the vector z
(i)
j =

‖xj+wiyj‖−1(xj+wiyj). Then the sequences (z
(i)
j )j satisfy 4wi/10 ≤ α̃(z

(i)
j )j ≤ wi.

Indeed, by Corollary 3.6 we have that α̃(xj) = 0 and that 4/5 ≤ α̃(yj) ≤ 1. Also,
if we fix i ∈ N, then we have 1 ≤ ‖xj + wiyj‖ ≤ 1 + wj ≤ 2. We then observe that

wi

‖xj + wiyj‖
α̃(yj) ≤ α̃(z

(i)
j )j ≤

1

‖xj + wiyj‖
α̃(xj) +

wi

‖xj + wiyj‖
α̃(yj)
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1706 D. KUTZAROVA AND P. MOTAKIS

and combine this with the above estimates to obtain

4wi

10
≤ α̃(z

(i)
j ) ≤ wi,

and hence by Corollary 3.5 any asymptotic model generated by a subarray of (z
(i)
j )j ,

i ∈ N must be 10-equivalent to (ei, wiei)i in (c0 ⊕ �1)∞.

3.4. Conclusion. We now put all the pieces together to show that the space is
asymptotically symmetric, despite not having a unique spreading model in any
subspace.

Theorem 3.11. The space X
1/2
0,1 is asymptotically symmetric.

Proof. Let (x
(i)
j )j , 1 ≤ i ≤ n be an array of bounded sequences in X

1/2
0,1 , let σ be a

permutation of {1, . . . , n}, and assume that the limits

A = lim
j1→∞

· · · lim
jn→∞

∥∥∥ n∑
i=1

x
(i)
ji

∥∥∥ and B = lim
j1→∞

· · · lim
jn→∞

∥∥∥ n∑
i=1

x
(σ(i))
ji

∥∥∥
both exist. By reflexivity and passing to subsequences we may assume that the

limits w-limj x
(i)
j = xi, 1 ≤ i ≤ n exist. Define y0 =

∑n
i=1 xi and λ0 = ‖y0‖. We

may also assume that the sequences (y
(i)
j )j = (x

(i)
j − xi)j are block sequences and

that the numbers λi = limj ‖y(i)j ‖ exist for 1 ≤ i ≤ n. Note that

A = lim
j1→∞

· · · lim
jn→∞

∥∥∥∥∥y0 +
n∑

i=1

y
(i)
ji

∥∥∥∥∥ and B = lim
j1→∞

· · · lim
jn→∞

∥∥∥∥∥y0 +
n∑

i=1

y
(σ(i))
ji

∥∥∥∥∥.
Proposition 3.4 yields that

max
{

max
0≤i≤n

λi,
n∑

i=1

α̃(y
(i)
j )

}
≤ A ≤ 2 max

0≤i≤n
λi + 2

n∑
i=1

α̃(y
(i)
j )

and the exact same estimate for B instead of A. This means A ≤ 4B. �

It was proved in [OS1] that there exist Banach spaces that do not admit an �p
or c0 spreading model. Although asymptotically symmetric Banach spaces do not
necessarily have a unique spreading model, a possible implication of this property
could perhaps be the existence of an �p or c0 spreading model. The following can
be viewed as a necessary modification of Problem A.

Problem 1. Does every asymptotically symmetric Banach spaces admit an �p or
c0 spreading model?
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