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Abstract
We define two metrics dy o and doo o 0n each Schreier family 8y, o < w1, with which
we prove the following metric characterization of the reflexivity of a Banach space

X: X is reflexive if and only if there is an o < w1 such that there is no mapping
®: 8, — X for which

cdoou(A, B) < |®(A) — ®(B)| < Cd1,o(A. B) forall A,B€S8,.

Additionally we prove, for separable and reflexive Banach spaces X and certain
countable ordinals «, that max(Sz(X),Sz(X™*)) < « if and only if (84,d1,a) does
not bi-Lipschitzly embed into X. Here Sz(Y') denotes the Szlenk index of a Banach
space Y .
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1. Introduction and statement of the main results

In this article we seek a metric characterization of the reflexivity of Banach spaces.
By a metric characterization of a property of a Banach space we mean a characteriza-
tion which refers only to the metric structure of that space but not its linear structure.
In 1976 Ribe [31] showed that two Banach spaces that are uniformly homeomorphic
have uniformly linearly isomorphic finite-dimensional subspaces. In particular, this
means that the finite-dimensional or local properties of a Banach space are deter-
mined by its metric structure. Based on this result Bourgain [10] suggested the “Ribe
program,” which asks to find metric descriptions of finite-dimensional invariants of
Banach spaces. Bourgain [10] proved the following characterization of superreflexiv-
ity: a Banach space X is superreflexive if and only if the binary trees B, of height
at most n, n € N, endowed with their graph metric, are not uniformly bi-Lipschitzly
embedded into X. A binary tree of height at most n is the set B, = (J;_o{—1, 1}k,
with the graph or shortest path metric d(o,0’) =i + j —2max{t >0:05, =0,,5 =
1,2,...,t}, for o = (0y)i_, #0' = (U§)§=1 in (Jj_o{—1,1}*. A new and shorter
proof of this result was recently obtained by Kloeckner [19]. Baudier [6] extended this
result and proved that a Banach space X is superreflexive if and only if the infinite
binary tree Boo = (o o{—1,1}" (with the graph distance) does not bi-Lipschitzly
embed into X . Nowadays this result can be deduced from Bourgain’s result and Ostro-
vskii’s [27, Theorem 1.2], which states that a locally finite metric space A embeds bi-
Lipschitzly into a Banach space X if all of its finite subsets uniformly bi-Lipschitzly
embed into X . Johnson and Schechtman [17] characterized superflexivity, using the
diamond graphs, D,, n € N, and proved that a Banach space X is superreflexive if
and only if the D,, n € N do not uniformly bi-Lipschitzly embed into X. There are
several other local properties, that is, properties of the finite-dimensional subspaces
of Banach spaces, for which metric characterizations have been found. The following
are some examples: Bourgain, Milman, and Wolfson [11] characterized having non-
trivial type by using Hamming cubes (the sets {—1, 1}", together with the £;-norm),
and Mendel and Naor [22], [23] presented metric characterizations of Banach spaces
with type p, 1 < p <2, and cotype ¢, 2 < g < oco. For a more extensive account
on the Ribe program we refer the reader to the survey articles [5] and [24] and the
book [28].

Instead of only asking for metric characterizations of local properties, one can
also ask for metric characterizations of other properties of Banach spaces, proper-
ties which might not be determined by the finite-dimensional subspaces. A result in
this direction was obtained by Baudier, Kalton, and Lancien [7]. They showed that
a reflexive Banach space X has a renorming which is asymptotically uniformly con-
vex (AUC) and asymptotically uniformly smooth (AUS) if and only if the branch-
ing trees T, of length n € N, do not uniformly bi-Lipschitzly embed into X. Here
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T, = U —o N*, together with the graph metric, that is, d(a,b) =i + j — max{t >
O0:ay =bs,s =1,2,...,t}, for a = (a1,az2,....a;) #b = (b1,b2,...,b;) in T,.
Among the many equivalent conditions for a reflexive Banach space X to be AUC-
and AUS-renormable (see [25]), one of them states that Sz(X) = Sz(X™*) = w, where
Sz(Z) denotes the Szlenk index of a Banach space Z (see Section 5 for the defini-
tion and properties of the Szlenk index). Dilworth, Kutzarova, Lancien, and Randria-
narivony [13, Theorem 6.3] showed that a separable Banach space X is reflexive and
AUC- and AUS-renormable if and only if X admits an equivalent norm for which
X has Rolewicz’s B-property. According to [20] a Banach space X has Rolewicz’s
B-property if and only if
llx = xull .

Bx()=1- sup{inf{T ‘n> 1} D (xn)52, C Bx.sep[(xp)] >1t.x € BX}

>0,

for all ¢ > 0, where sep[(z,)] = inf,£, || Zm — za||, for a sequence (z,) C X. The
function ,5 x is called the B-modulus of X . Using the equivalence between the posi-
tivity of the S-modulus and the property that a separable Banach space is reflexive and
AUC- and AUS-renormable, Baudier and Zhang [8] were able to establish a new and
shorter proof of the above-cited result from [7]. Metric descriptions of other nonlocal
Banach space properties, for example, the Radon—Nikodym property, can be found
in [29].

In our article we concentrate on metric descriptions of the property that a Banach
space is reflexive and subclasses of reflexive Banach spaces. Ostrovskii [29] estab-
lished a submetric characterization of reflexivity. Let T be the set of all pairs (x, y)
in £; x £; for which |x — y|l; <2|x — y|ls, where || - |1 denotes the usual norm
on £; and || - ||s denotes the summing norm, that is, ||z||s = supgey | ZI;‘=1 z;l, for
z = (zj) € £,. Theorem 3.1 of [29] states that a Banach space X is not reflex-
ive if and only if there are a map f :£; — X and a number 0 < ¢ < 1 such that
cllx =yl <1 fx) = fO) < |lx — y|1 for all (x,y) € T. In Section 12 we will
formulate a similar result, using a discrete subset of £ x £;, witnessing the same
phenomena. Recently, Prochdzka [30, Theorem 3] formulated an interesting metric
description of reflexivity. He constructed a uniformly discrete metric space Mg with
the following properties. If M bi-Lipschitzly embeds into a Banach space X with
distortion less than 2, then X is nonreflexive. The distortion of a bi-Lipschitz embed-
ding f of one metric space into another is the product of the Lipschitz constant of f
and the Lipschitz constant of f -1 Conversely, if X is nonreflexive, then there exists
arenorming | - | of X such that Mg embeds into (X, | - |) isometrically.

Our article has the goal of finding a metric characterization of reflexivity. An opti-
mal result would be a statement, similar to Bourgain’s result, of the form “all mem-
bers of a certain family (M;);er of metric spaces embed uniformly bi-Lipschitzly
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into a space X if and only if X is not reflexive.” In the language introduced by Ostro-
vskii [28], this would mean that (M;);cs is a family of test spaces for reflexivity.
Instead, our result will be of the form (see Theorem A below) “there is a family of
sets (M;);er, and for i € I, there are metrics doo,; and d; ; on M; with the property
that a given space X is nonreflexive if and only if there are injections ®; : M; — X
and 0 < ¢ <1 such that cdeo,i (x,y) < ||x — y|| <dj,i(x,y), forall x,y € M;.” In
Section 12 we will discuss the difficulties in obtaining a characterization of reflex-
ivity of the first form. Nevertheless, if we restrict ourselves to the class of reflexive
spaces, we obtain a metric characterization for the complexity of a given space, which
we measure by the Szlenk index, using test spaces. Roughly speaking, the higher the
Szlenk index is of a given Banach space, the more averages of a given weakly null
sequence that one has to take to obtain a norm null sequence. For a precise formula-
tion of this statement we refer to Theorem 5.3. For the class of separable and reflexive
spaces we will introduce an uncountable family of metric spaces (My)q <, for which
we will show that the higher the complexity of a given reflexive and separable space
X orits dual X* is, the more members of (My)a<e, can be uniformly bi-Lipschitzly
embedded into X .

The definition of the Schreier families 8, C [N]=%, for ¢ < wy, will be recalled in
Section 2, the Szlenk index Sz(X) for a Banach space X will be defined in Section 5,
and the two metrics d;  and de o On &, will be defined in Section 7. The statements
of our main results are as follows.

THEOREM A

A separable Banach space X is reflexive if and only if there is an o < wy for which
there does not exist a map ® : 8, — X, with the property that for some numbers
C>c>0

¢dooa(A, B) < ||®(A) — P(B)| < Cd1a(A,B) forall A,Be8y. (1)
Definition 1.1

Assume that X is a Banach space, o < wy,and C > ¢ > 0. Wecallamap ®: §, > X
with the property that, for all A, B € 84,

cdooa(4, B) < [ ®(A) = B(B)| = Cdi,o(4, B) 2)

ac-lower-deo o and C-upper-d, o embedding of 84 into X . If A is a subset of 8, and
®: A — X is a map which satisfies (2) for all A, B € 4, we call it a c-lower-deo o
and C -upper-d, o embedding of A into X .

Our next result extends one direction (the “easy direction”) of [7, Main Result]
to spaces with higher-order Szlenk indices. As in [7] reflexivity is not needed here.
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THEOREM B
Assume that X is a separable Banach space and that max(Sz(X), Sz(X*)) > w®, for
some countable ordinal . Then (8, d o) embeds bi-Lipschitzly into X and X*.

We will deduce one direction of Theorem A from James’s [16] characterization
of reflexive Banach spaces and show that for any nonreflexive Banach space X and
any o < w1 there is a map @, : 8, — X which satisfies (1). The converse will follow
from the following result.

THEOREM C
Assume that X is a reflexive and separable Banach space. Let € < w1, and put B =

w®. If for some numbers C > ¢ > 0 there exist a c-lower-dy, g2 and C-upper-d; g2
embedding of 82 into X, then Sz(X) > P or Sz(X*) > B.

Theorem C and, thus, the missing part of Theorem A will be shown in Section 11
in Theorem 11.6. Combining Theorems B and C, we obtain the following characteri-
zation of certain bounds of the Szlenk index of X and its dual X *. This result extends
[7, Main Result] to separable and reflexive Banach spaces with higher-order Szlenk
indices.

COROLLARY 1.2

Assume that w < o < w1 is an ordinal for which ®* = «. Then the following state-
ments are equivalent for a separable and reflexive space X .

(a)  max(Sz(X),Sz(X*)) <.

(b) (84, d1,a) is not bi-Lipschitzly embeddable into X .

Corollary 1.2 and a result in [26] yield the following corollary. We thank Christian
Rosendal, who pointed it out to us.

COROLLARY 1.3

If @ < w1 with @ = 0%, then the class of separable and reflexive Banach spaces X
for which max(Sz(X),Sz(X™*)) < « is Borel in the Effros—Borel structure of closed
subspaces of C[0, 1].

A proof of Corollaries 1.2 and 1.3 will be presented at the end of Section 11.
For the proof of our main results we will need to introduce some notation and to
make several preliminary observations. The reader who is at first only interested in
understanding our main results will only need the definition of the Schreier families
84, @ < w1, given in Section 2.2, the definition of repeated averages stated at the
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beginning of Section 3, and the definition of the two metrics d; o and deo,e ON 84
introduced in Section 7.

2. Regular families, Schreier families, and fine Schreier families

In this section we first recall the definition of general regular subfamilies of [N]=%.
Then we recall the definition of the Schreier families 8, and the fine Schreier families
Fpa> 0 < B < wq (see [1]). The recursive definition of both families depends on
choosing for every limit ordinal a sequence (¢, ) which increases to «. To ensure that
our proof will work out, we need () to satisfy certain conditions.

2.1. Regular families in [N]=¢

For a set S we denote the subsets, the finite subsets, and the countably infinite subsets
by [S], [S]=%, and [S]“, respectively. We always write subsets of N in increasing
order. Thus, if we write A = {ay,as,...,a,} € [N]~? or A = {a1,as,...} € [N]®,
we always assume that a; < a, < ---. Identifying the elements of [N] in the usual
way with elements of {0, 1}?, we consider on [N] the product topology of the discrete
topology on {0, 1}. Note that it follows for a sequence (A4,) C [N]=% and A4 € [N]=®
that (A;) converges to A if and only if for all k¥ > max A there is an m so that 4, N
[1,k] = A, for all n > m.

For A € [N]=“ and B € [N] we write A < B if max(A4) < min(B). As a matter
of convention we put max(#) = 0 and min(@) = oo, and thus, A < @ and 4 > @
is true for all A € [N]=®. For m € N we write m < A or m < A if m < min(A) or
m < min(A), respectively.

We denote by < the partial order of extension on [N]=¢; that is, A = {a;,as,...,
ai} = B={b1,bs,....by}ifl <manda; = b;,fori =1,2,...,1,and we write A <
Bif A< B and A # B. We say that ¥ C [N]= is closed under taking restrictions if
A € ¥ whenever A < B and B € ¥ and is hereditary if A € ¥ whenever A C B and
B e ¥, and ¥ is called compact if it is compact in the product topology. Note that a
family which is closed under restrictions is compact if and only if it is well founded,
that is, if it does not contain strictly ascending chains with respect to extensions.
Given n,a; < --- <dy,b; <--- < b, in N we say that {b;,...,b,} is a spread of
{ai,...,an} if a; <b; fori =1,...,n. A family ¥ C [N]=% is called spreading
if every spread of every element of ¥ is also in ¥. We sometimes have to pass
from a family ¥ C [N]=® to the subfamily £ N[N]® ={4 € ¥ : A C N}, where
N C N is infinite. A second way to pass to a subfamilies is the following. Assume
that ¥ C [N]=® and N = {n1,n,,...} € [N]?; then we call

FN=n;:jeA:AcF)}

the spread of ¥ onto N.
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A family ¥ C [N]= is called regular if it is hereditary, compact, and spreading.
Note that if ¥ C [N]= is compact, spreading, and closed under restriction, then it
is also hereditary and thus regular. Indeed, if B = {b1,bs,...,b;} € F and 1 <i; <
ip <---<ix <I,then A ={b; ,bi,,...,b; }isaspread of B’ ={by,bs,..., b}, and
since B’ € ¥, it also follows that A € % .

If ¥ C [N]=%, we denote the maximal elements of ¥, that is, the elements A € ¥
for which there is no B € ¥ with A < B, by MAX(¥'). Note that if ¥ is compact,
then every element in ¥ can be extended to a maximal element in % .

For & C [N]=® and A € [N]=® we define

F(A)={Be[N]"*:A<B,AUBe¥F}.

Note that if ¥ is compact, spreading, closed under restrictions, or hereditary, then so
is ¥ (A).

If ¥ C [N]=® is compact, we denote by CB(¥) its Cantor-Bendixson index,
which is defined as follows. We first define the derivative of ¥ by

F'={AeF :3(An) CF \{A}. Ay >nooo A}
=F \{A e F : Aisisolated in F}.

Every maximal element A of & is notin ¥, and if & is spreading, then ' =
F\MAX(¥F). For A € [N]=? it easily follows that

F'(4) = (¥ (1) 3)
By transfinite induction we define for each ordinal « the ath derivative of ¥ by

FO=g

FO=(FYY ifa=y+1,  and

F@ = ﬂ FY)if @ is a limit ordinal.

y<a
It follows that F®) ¢ @ if o < B. By transfinite induction, (3) generalizes to
FO(A) = (F(4)@., forall A €[N~ and ordinal . &)

Assume that ¥ C [N]=¢ is compact. Since ¥ is countable and since every count-
able and compact metric space has isolated points, it follows that for some o < w; the
ath derivative of & is empty, and we define

CB(¥) = min{o : F @ = ).

Note that CB(F") is always a successor ordinal. Indeed, if & < w; is a limit ordinal
and ) = ¢ for all y < a, then it follows that @ = N F») £ g.
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Definition 2.1
For ¥,9 C [N] we define

FlU<E:={AUB:A€¥F,Beg, and A < B}, (5)

L"JB._neN,31<B2<---<Bn,B,~eﬁ,izl,Z,...,n, ©
b and {min(B;):i =1,2,...,n} € F '

i=1

78]

It is not hard to see that if ¥ and ¥ are regular families, then so are ¥ LI ¥ and
F 8.

2.2. The Schreier families
We define the Schreier families 8, C [N]=% by transfinite induction for all @ < w; as
follows:

8o ={{n}:n e N} U{0}; (7)
ifa=y+1, welet
50::81[81/]
n
= {U Ejin<min(Ey).Ey <Ey<-<EnE; €8, ) = 1,2,...,n}; )
j=1

and if « is a limit ordinal, we choose a fixed sequence (A(a,n) : n € N) C [1, o) which
increases to « and put

8y ={E :3k <min(E), with E € 8)(q.x)}- 9)

An easy induction shows that §, is a hereditary, compact, and spreading family
for all o < w;. It is not very hard to see by transfinite induction that §, is in the
following very limited sense backward spreading:

if A={ay,as,...,a,} €84, thenl{ay,as,...,an—1,an —1} € S,. (10)

So, in particular, if A € 8, \ {@} is not maximal, then (4 U {k})k>max(4) C Sa-
Additionally, by transfinite induction we can easily prove that &, is “almost”
increasing in « in the following sense.

PROPOSITION 2.2
For all ordinals o < 8 < wy, there is an n € N such that

8y N[n,00)~% C 83.
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The following formula for CB(8§,,) is well known and can easily be shown by
transfinite induction for all @ < w;.

PROPOSITION 2.3
For o < w1 we have CB(8,) = w®* + 1.

We now make further assumptions on the approximating sequence (A(x,n)) C
[1, ) that we had chosen to define the Schreier family S, for limit ordinals @ < w;.
We will choose (A(a,n)) recursively. Assume that « is a countable limit ordinal and
that we have defined (A(y, n)), for all limit ordinals y < &, and thus &, forall y < a.
Recall that @ can be represented uniquely in its Cantor normal form

o= mp + o5 mp_y + -+ 0¥'my, (11)

where & > &1 > --- > &1, mg,mp_q,...,my €N, and since « is a limit ordinal,
&1 >1.

We distinguish between three cases.

Case 1: k > 2 or mp > 2. In this case we put forn € N

Ma,n) = 0% my + 0= Tmg_y 4+ 0f (my — 1) + A ,n). (12

Before considering the next cases we need to make the following observation.

PROPOSITION 2.4
Assume that for all limit ordinals y < « satisfying Case I the approximating
sequences (A(y,n) : n € N) satisfy the above condition (12). It follows for all y < «,
with
y = ofmy 4+ o5 =1mp_y + -+ 0flmy

being the Cantor normal form, that

8, =38,,[8,,], where for some j =1,....,1,
(€]

yi =0 m + o5 mpy 4+ 4 0% m| and
Y2 = ijmi.z) + a)ijlmj_l ot wélml’
with m(,m? € NU{O} mj =mSP +m?. (13)

Proof
We will show (13) by transfinite induction for all y < . Assume that (13) holds for all
7 <y.Ify =wf, then(13)is trivially satisfied. Indeed, in thatcase y =y +0=0+y
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are the only two choices for writing y as the sum of two ordinals, and we observe that
So[8y] = 8,[80] = 8,.

It is left to verify (13) in the case in which / > 2 orm; > 2. Let y = y; + y» be
a decomposition of y as in the statement of (13). We can without loss of generality
assume that y, > 0.

If y, = B + 1 for some B (which implies that y itself is a successor ordinal), it
follows from the induction hypothesis and (8) that §,, 1 g+1 = 81[85[8y,]], so we
need to show that

8 [/Sﬂ (87, ]] =38p+1[8y, ]

If A€ 8[83[8,,]], we can write A as A = /L, A; withm < A} < Ay <--- < 4,

and A; € 8g[8,,], for i = 1,...,n, which in turn means that A4; = U?:l AG. s

where A(i,l) < A(i,z) < .- =< A(i,li)’ A(i,j) S /31’1’ for j = 1,2,...,1;, and

{minAdg; ;y:j=12,....,l;} € 8g,fori =1,2,...,m. This means that {min A; ;) :

j=12,...,0i=12,..m}is in 8g1y, and thus, we conclude that A €

8g+1[8y,]. Conversely, we can show in a similar way that 851 1[8,,] C 81[8g[8y,]].
If y, is a limit ordinal, we first observe that

A(y.n) = A(y1 + y2.n) = y1 + A(y2.n).

If A € 8, 4y,, then it follows that there is an n < min A such that, using the induction
hypothesis, we have

A €8y faram) = Sagam 8-

This means that A = U';l:l Aj with 4] < Ay <--- < Ay, {min(4;): j =1,2,...,
m} € Sry,m), and A; €8, , for j =1,2,...,m. Since n < min(A4) = min(4,), it
follows that {min(A4;): j =1,2,...,m} € §,, and, thus, that 4 € §,,[8,,]. Con-
versely, we can similarly show that if 4 € §,,[&,,], then it follows that 4 € 8y, 4,,.

O

If Case 1 does not hold, o must be of the form ¢ = w?.
Case 2: o = w®", for some k < w;. In this case we make the following require-
ment on the sequence (A(x,n) :n € N):

Sran) C8r@n+1), forallmeN. (14)

We can ensure that (14) holds as follows: first choose any sequence A'(«,n) which
increases to «. Then we notice that Proposition 2.2 yields that for a fast enough
increasing sequence (/) C N, it follows that 8/ (a.n)+1, C Si/(@,n+1)+1,4, - Indeed,
we first note that the only set A € §,,, y < «, which contains 1 must be the singleton
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A = {1}. This follows easily by induction. Additionally, we note that by (8) it follows
that [{2,3,...,n}] C 8y4x, for each y <« and n € N, which yields our claim. Set
Aa,n) = A (a,n) + 1.

The remaining case is the following.

Case 3: o = w® T where 1 <& < w*. We first observe that in this case k and &
are uniquely defined.

LEMMA 2.5

Let a be an ordinal number such that there are ordinal numbers «, £ with £ < ©* and
o = 0 & Then for every k', £ with € < w* so that o = w0® +E e have k = K’
and £ = ¢/,

Proof

Let @ = 0@ +§ = @ +€ be as above. By [33, Section 7.2, Theorem 41] * + & =
o + & If k' <k, then o + & <w¥'2 <X 0 =T <w¥ <w* + &, which is
a contradiction. We conclude that k¥ < «’, and therefore, by interchanging the roles of
« and k' we obtain that k¥ = «’. In conclusion, w* + § = w* + £, and therefore £ = &’
as well. O

We now choose a sequence (A(£, 1)), of ordinal numbers increasing to w¥ so that
8ok o n) C Swok g(e.n+1)s (15)
and we define

Ao, n) = 0® O(€, n). (16)

We describe how (15) can be obtained. Start with an arbitrary sequence (6'(&,n)),
increasing to w®. We shall recursively choose natural numbers (k,)nen, so that by
setting 8(&,n) = 0/(&,n) + ky, (15) is satisfied. Assuming that k1, ..., k, have been
chosen, choose k1 as in the argument yielding (14), so that

S0 0(En) C B0k 0/ (Ent 1)tk -

We will show that this k1 is the desired natural number, that is, that

800 o(En) C Sk @/ Ent1)+kn 1)

First note that, by using finite induction and Proposition (2.4), it is easy to verify that
fory <o, withy = a)f, for some £ < wy, and forn e N

Sy =8,[8y - 8,18,]]. (17)
————— ——
n times

and thus,
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B0k @/ En+ 1) kg 1)
= Suor ot +oo by = Sook [ [Soor [Suor o nrnll]
~—————

kp41 times

D 81[++ [81[800% grems DI]] = Buor 0/ et )tknss 2 S o(en)-
———
Ky 41 times

We point out that the sequence (8(£,n)), also depends on «.
PROPOSITION 2.6

Assume that the approximating sequences (A(a,n) : n € N) satisfy the above condi-
tions for all limit ordinals o. It follows for all y < w1, with

y = my 4+ o5 =1mp_y + -+ 0flmy
being the Cantor normal form, that
Srym) CBaan+1y Sforalln € Nify is a limit ordinal, (18)
8y = 8y,[8y,]1, where for some j =1,2,...,1,
y1=ofm +of1=tmp_y 4+ wé.jmgl) and
V2 = a)’;/’m;z) + a)é-f—‘m_f_1 + ot 0fimy,
withm, m® e NU{0}, m; =m" +m; (19)
and if B = w®* and y is a limit ordinal with y < B, then

there is a sequence (77()/, n))n increasing to y so that A(By,n) = Bn(y,n). (20)

(This sequence (n(y,n)), can depend on f8.)

Proof

We first prove (18) and (19) simultaneously for all y < w;. Assume that our claim is
true for all y < y. Then (19) follows from Proposition 2.4.

If | =m; =1, we deduce (18) from the choice of A(y,n), n € N (see (14), (15),
(16)). If | > 2 or m, > 2, we deduce from (13) and the induction hypothesis that

Sl(y,n) = Swék my+-+o2mr+wilm+A(wl ,n)
= Sk(wél ,n) [gwék my +otof2 m2+w51 ml]

C Sx(wél ,n+1)[8w5kmk+-~~+w52m2+wflml] = Sirn+1)-

which verifies (18) also in that case.
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To verify (20) let ¥ < w; with B = @®* > y. Recall that by (16) A(w® té1 1) =
w®* 0(£1,n). For each n, define n(y,n) = w&m; + wfi—vm;_y +---+ w1 (m; — 1) +
0(&1,n). We will show that (1(y, n)),en has the desired property. Note that the Cantor
normal form of By is By = 0® Térm; + w® FE—1m;_y + -« + 0?1 m . Hence,
by (12)

ABy.n) = 0 TEmy + 0 Tty 4+ 0 Ty — 1) + A0 T n)
— 0 ey 4 0 Ty et 0 (i — 1) + 0° 0(E1,n)
= 0" (a)élml + ¥ " mp_y 4+ of (my — 1) + 0(€1,m)

— Bu(r.n). .

Remark

The proof of Proposition 2.6 (in particular, the definition of (n(y,n)),) implies the
following. Let £ be a countable ordinal number, and let y < 8 = ©®° be a limit
ordinal number. If y = ¢, then

n(y,n) =60(&,n), forallneN., 21
Otherwise, if the Cantor normal form of y is

y:wézml +w§1—1ml_1 +"'+a)$‘m1

y1 = a)flml + a)él—'ml_l 44 a)sjm;l), and Yo = wéjmgz) _|_a)$j—lmj_1 4+

wf1m;, with mgl), m§.2) eNU{0},m; = mS-l) + m§~2), then we have

n(y.n) =y1 +n(yz2,n), forallneN. (22)

COROLLARY 2.7
If @ < w1 is a limit ordinal, then it follows that

8y = {4 € NI\ {0} : 4 € S1(@.min(ay } U {0}. (23)

Remark 2.8

If we had defined §, by (23) for limit ordinals o < wy, where (A(a,n) :n € N) is
any sequence increasing to «, then we would not have ensured that the family &, is a
regular family.

2.3. The fine Schreier families
We will now define the fine Schreier sets. For that we will also need to choose appro-
priate approximating sequences for limit ordinals. We will define the fine Schreier
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sets as a doubly indexed family ¥, C [N]=*, @ < B < w;. Later in the proof of
Theorems A and C, we will fix 8, depending on the Banach space X that we are
considering.

Definition 2.9

For a countable ordinal number & and 8 = a)“’é, we recursively define a hierarchy of

families of finite subsets of the natural numbers (¥, ), <g as follows:

(@  Fpo=1{9};

(b) ify <pB,then g1 ={{n}UF:Fe¥g,,neN}(e., Fgp41=Fp,1U<
F,y); and

()  if y <P is alimit ordinal number, then 3, =, en(FBn(y.n) N [1,00)=?),
where (1(y,n)), is the sequence provided by Proposition 2.6 (and it depends
on B).

Remark

It can be easily shown by transfinite induction that each family g , is regular. In the
literature, fine Schreier families are usually defined recursively as a singly indexed
family (Fo)a<e, Of subsets of [N]=®. In that case, Fp and F, are defined for suc-
cessor ordinals as in Definitions 2.9(a) and 2.9(b). And if « is a limit ordinal %, is
defined as in Definition 2.9(c), without assuming that the approximating sequence
(n(a,n))nen depends on any 8 > «.

Let £ be a countable ordinal number, and let £ < wé. If B = ©®° and y = 0,
then it follows by (21) that n(y,n) = 6(y,n) for n € N. The choice of (8(£1,n))nen
may be done so that, along with (15), we also have

Farny = Fpo@.n) C Fpo¢E n+1) = Fpanean+1)- (24)

This can be achieved by possibly adding to 6’(£;,n) a large enough natural number.
The following observation can be shown in a similar way as Proposition 2.6. We
omit the proof.

PROPOSITION 2.10

Let & be a countable ordinal number and B = w®® . Assume that for all limit ordinals
y < B the approximating sequence (n(y,n)), satisfies conditions (21) and (22), and
for the case y = w¥! the approximating sequence (8(£1,n)), satisfies condition (24).
Then, for all y < B whose Cantor normal form is

J/ :a)élml +Cl)él_lml—1 +"'+6!)E1ml,

we have that
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FB.ne.n) C Fp sy foralln e Nify is alimit ordinal, (25)

and if. for some 1 < j <1, y1 = o¥m; + o¥-1mj_; + -+ + a)g-/’m;l) and y, =
a)gfm;z) +@bi=tmj_y + -+ wf1my with mﬁ-l),mﬁz) eNU{0}, m; = mg.l) +m§2),
then

?Bsy = ‘?71351’2 u< ?ﬁayl N (26)

COROLLARY 2.11

Let £ be a countable ordinal number, and let y < B = w®® be a limit ordinal number.
Then

?ﬁ,y = {F € [N]<w Fe ‘?B,n(y,min(F))} U {@}. 27

The following formula of the Cantor-Bendixson index of &, and ¥, can be
easily shown by transfinite induction.

PROPOSITION 2.12
For any a,xk < wy, witha < f8 = »®”,

CB(8y)=w*+1 and CB(Fpq)=o+ 1.
Moreover, by assuming w® < B, for every M € [N]?, there isan M € [N]® such that

8N CFpoe  and  Fy . C 8.

The main result in [14] states that if ¥ and § are two hereditary subsets of [N],
then for any M € [N]® thereisan N € [M]? sothat F N[N]=* C G or§N[N]=® C
F . Together with Proposition 2.12 this yields the following.

PROPOSITION 2.13
Foro,y,k <oy, B =w®, and any M € [N]<®, there is an N € [M]<® so that

SN C 8, N[N C Fp, ifo*<y<B, and

}vﬂ[YyC?ﬂ,yﬂ[Nrwcga ify <w“andy < B.

2.4. Families indexed by subsets of [N]=%

We consider families of the form (x4 : A € ) in some set X indexed over ¥ C
[N]=®. If & is a tree, that is, closed under restrictions, then such a family is called
an indexed tree. Let us also assume that ¥ is spreading. The passing to a pruning of
such an indexed tree is what corresponds to passing to subsequences for sequences.
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Formally speaking we define a pruning of (x4 : A € ¥) as follows. Let 7 : ¥ —
be an order isomorphism with the property that if F' € ¥ is not maximal, then for any
n € Nsuch thatn > max(A) and AU {n} € ¥, 7(AU {n}) is of the form 7 (A4) U{s, },
where (s5,) is a sequence which increases with n. We then call the family (x4 : 4 €
m(¥F)) apruning of (xq4: A€ F). Let Xg =xpqyfor Ac F.Then (Xq: A€ F)is
simply a relabeling of the family (x4 : A € n(¥)), and we call it also a pruning of
(x4 : A € ¥F). Itis important to note that the branches of a pruning of an indexed tree
(x4 : A € F) are a subset of the branches of the original tree (x4 : A € ¥). Here a
branch of (x4 : A € ¥) is a set of the form

fF:(X{al}»x{al,az}v-~-,x{al,azz,...,a[}) f0rF={a1,a2,_._,al}€37_

Also the nodes of a pruned tree, namely, the sequences of the form (X quny : AU{n} €
F), with A € F not maximal, are subsequences of the nodes of the original tree.

Let us finally mention how we usually choose prunings inductively. Let {4, : n €
N} be a consistent enumeration of ¥ . By this we mean that if max(A4,,) < max(4,),
then m < n. Thus, we also have that if A,, < A, thenm <n, and if A,, = AU {s} €
F and A, = AU{t} € F for some (nonmaximal) A € ¥ and s <t in N, then m < n.
Of course, A1 = @ and 7(¥) = @, and assuming now that 7w (A1), 7(A42),...,7(Am)
have been chosen, A, +; must be of the form A, = A; C {k}, with [ <m = 1.
Moreover, if kK > max(4;) + 1 and if 4; U{k —1} € ¥, then 4; U {k — 1} = 4;
with] < j <m+1,and 7(4;) = n(A4;) U {s} for some s has already been chosen.
Thus, we need to choose 7 (Ay,+1) to be of the form 7 (A;) U {¢}, where, in the case
in which A; U{k — 1} € ¥, we need to choose ¢ > s.

The following well-known Ramsey-type result follows from [4, Corollary 2.5,
Proposition 2.6].

PROPOSITION 2.14
Assume that ¥ C [N]=% is compact. Let r € N and f : MAX(¥) — {1,2,...,r}.
Then for every M € [N]? there existan N € [M]® and ani € {1,2,...,r} such that

MAX(F)N[N]® C{AeMAX(F): f(A) =i}.

3. Repeated averages on Schreier sets

We recall repeated averages defined on maximal sets of Sg, @ < w; (cf. [3]). Asin our
previous sections we will assume that 8, is recursively defined using the conditions
given in Section 2.2. We first need the following characterization of maximal elements
of 84, @ < w1, which can be easily proven by transfinite induction using Corollary 2.7
for the limit ordinal case.
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PROPOSITION 3.1

Let o < wq.

(a) A € MAX(8y+1) ifand only if A = U?’:] Aj, withn =min(Ay) and A1 <
Ay <o < Ay being in MAX(8,,). In this case the A;’s are unique.

(b)  Ifaisalimit ordinal, then A€MAX(8y) if and only if A€ MAX(8),(4,min(4)))-

For each o < w; and each A € MAX(8,) we will now introduce an element
Z(a,4) €S o with supp(z(e,4)) = A, which we will call the repeated average of com-
plexity o on A € MAX(8y). If @« = 0, then MAX(8y) consists of singletons, and
for A = {n} € MAX(8,) we put z(y (»}) = en, the nth element of the unit basis of
£1. Assume that for all y < « and all 4 € MAX($,) we have already introduced
Z(y,4), Which we write as z(, 4) = D c 4 Z(y,4)(@)ea, With z(, 4) > 0 for all a € A.
If @ =y + 1 for some y < w; and if 4 € MAX(8,), then by Proposition 3.1(a) we
write A in a unique way as A = U’]l'=1 Aj,withn =min4 and A1 < A, <--- < A4,
being maximal in §,,. We then define

1 « 1 «
Za) = Zz(y,Aj) = Z Z Z(y,4;)(@)ea. (28)
j=1 J=la€A;
and thus,
1
Z(a,4)(a) = ;z(yij)(a) for j=1,2,...,nanda € 4;. (29)

If o is a limit ordinal and A € MAX(48y), then by Corollary 2.7, A € ) (,min(4)), and
we put

Z(@A) = Z(amin(A).4) = Y Z((amin(4)).4) (@)ea. (30)

acA

The following result was, with slightly different notation, proved in [3].

LEMMA 3.2 ([3, Proposition 2.15])
Forall e >0, all y <, and all M € [N]|?®, there isan N = N(y,a, M,¢) € [M]?
such that )" ,c 4 Z(a.B)(@) < € for all B € MAX(8, N [N]=®) and A € §,.

The following proposition will be proved by transfinite induction.

PROPOSITION 3.3
Assume o < w1 and A € 8y (not necessarily maximal). If By, By are two extensions
of A which are both maximal in 8, then it follows that

Z(a,B)(@) = Z(q,By) (@) foralla € A.
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Remark

Proposition 3.3 says the following: if ¢« < w1 and A = {a;1,as,...,a,} is in
MAX(8y), then z(q, 4)(a1) only depends on ay, zZ(q,4)(a2) only depends on a; and
a», and so on.

Proof of Proposition 3.3

Our claim is trivial for &« = 0. Assume that « = y + 1 and that our claim is true for
y,and let A € 8,4 . Without loss of generality A # @; otherwise, we would be done.
Using Proposition 3.1, we can find an integer 1 </ <min 4, sets Ay, A>,...,A;_1 €
MAX(Sy), and 4; € S, (not necessarily maximal in Sy ) so that A} < A <--- < 4;
and A =J;_, 4;. By Proposition 3.1, any extension of 4 to a maximal element in

S, will then be of the form B = J_, 4; U™ B;, where 4; < B; < B4, <
-++ < Bpin(a) (B; may be empty, in which case A; < Bj11 < --+ < Bpin(4)), S0 that
A; U By and Bjiq,..., Byincq) are in MAX(8,,). No matter how we extend A4 to a

maximal element B in &, 41, the inductive formula (28) yields

1
Z(y+1,B)(@) = mz(y,Aj)(a)
whenever for some j =1,2,...,/ —1 wehavea € 4;.

In the case in which a € Ay, then, by our induction hypothesis, z,, 4,uB, (@) does not
depend on the choice of Bj, and

1
Zy+1,B)(a) = ;Z(V,ANBI)(") whenever a € A;.

Thus, in both cases, the value of z(, 11, g)(a) does not depend on how we extend A to
a maximal element B in §, 1.

If « is a limit ordinal and A € §, is not maximal, then we also can assume that
A # @, and thus, it follows from (23) in Corollary (2.7) that A € 3 (a,min(4))- For any
two extension B of A into a maximal set of MAX(8y), it follows from Proposition 3.1
that B is maximal in &y min(4)) and that z¢ By = Zj(a,min(4),8)- Thus, also in this
case our claim follows from the induction hypothesis. O

Using Proposition 3.3 we can consistently define z(y,4) € B+ for any o < w;
1
and any A4 € S, by

Z(q,A) = Z Z(a,B)(a)eq, where B is any maximal extension of 4 in MAX(8y).

acA

In particular, this implies the following recursive definition of z(y 4). If A € 441\
{@}, then we can write A in a unique way as A = U;f:l Ap, where Ay < Ay <--- <
Ay, Aj e MAX(8,), for j =1,2,...,n—1, and 4, € Sy \ {9}, and note that
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1 d
Z(a+1,4) = min(A) Z(a,4)> (31)
j=1
and if « is a limit ordinal, then
Z(a,A) = Z(A(a,min(A)),A)- (32)

For D € 8, define {(«, D) = z(y, p)(max(D)). For A € &, it therefore follows
that

Zaa) = Y _ L@ D)emanD)-
D=A
We also put { (o, @) = 0 and epux(g) = 0.
By transfinite induction we can easily show the following estimate for 1 <« <

w1.

1
minA4’

{(a, A) < (33)

From Proposition 2.6 we deduce the following formula for z (g 4).

PROPOSITION 3.4
Assume that @ < wy and that its Cantor normal form is

a = mp+ o =tmp_y + -+ ofimy.

Let j =1.2.....l andm'D . m'P e NU {0}, with m" +m? =m;. Pur

yi=0m;+ o tmy_y -+ a)éj_lmj—l + a)éf'mg-l),

szwéjm§2)+w$j_lmj—1+"'+a)¥1m1.

For A e MAX(8y) we use Proposition 2.6 and write A = U;;l Aj, where A; € 8,
Jorj=12,....n A1 <Ay <--<Ap,and B={min(4;):j =1,2,....n} €8,,.
Then it follows that Aj € MAX(8,,), for j =1,2,...,n, B € MAX(8,,), and

n
Zad) = Y 228 (Min(4)) 2,49 34
i=1

In 0th~er words, if 9 < D < A and, thus, D = U_i]»_:ll A;U ffi,for some 0 <1i <n, and
0 < A; < A;, then

¢(a. D) =¢(y2. {min(4)) : j = 1.2,....i}) - S(y1. Ai). (35)
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Proof
We prove by transfinite induction for all 8 < w;, with Cantor normal form

ﬁ :a)é/ml _|_wéj—lmj_l + .- _l_a)élml’
the following.

CLAIM
If y < w1 has Cantor normal form

y = ¥y + 0¥y 44 0¥ i,

where mj could possibly be vanishing, and if A = U:’l:l A; € MAX(8,48) =
MAX(8g(8y]), where A; € &8, for i =1,2,....n, Ay < Ay < -+ < Ay, and
B ={min(4;):i =1,2,...,n} € 8g, then it follows that A; € MAX(8,,) for i =

1,2,...,n, Be MAX($,,), and

n
Zaa) = Y _ 2(8.8)(min(4i))z¢,4,). (36)

i=1

For f = 0 the claim is trivial, and for 8 = 1, our claim follows from Proposi-
tion 3.1 and the definition of z(y, 41,4y for A € MAX(8,+1).

Assume now that the claim is true for all 5 < B and that y < w; has the above
form. Let A = J/_; A; € MAX(8,+p), where A; € 8, fori =1,2,...,n, A; <
Ay << Ay,and B={min(4;):i =1,2,...,n} € 8.

First we note that (10) implies that the 4;’s are maximal in &,,. Indeed, for some
io=1,2,...,n,if A;, is not maximal in &,,, then if iy = n, it would directly follow
that A cannot be maximal in &, g, and if i9 < n, we could define /L- = A;, for
i=1,2,...,1—1, 4 = A;, U{min(Ajj+1)}. A; = (A; U{min(4;41)}) \ {min(4;)},
fori =ip,ig+1,...,0 —1,and A; = A; \ {min A;}. Then, by (10) and the fact that
the Schreier families are spreading, 4 =  J;_, Ajisalsoa decomposition of elements
of &, with B ={min(4;):i =1,2,....n} € 8. But now A, is not maximal in 8,
and we again get a contradiction.

It is also easy to see that B is maximal in 8g. To verify (36) we first assume
that f is a successor ordinal, say, 8 = « + 1. Then we can write B as B = | J;-, B;,
where m = min(B) = min(A), By < B, <--- < By, and B; € MAX(8y), for i =
1,2,...,m. We can write B; as B; = {min(4g) : s = k;_1 + L ki1 +2,...,ki},
with ko = 0 < ki <+ <k =n. Weput 4; = UL, | As € 8yya = Sul8)),
fori =1,2,...,m. From the definition of z(g 1, ) and from the induction hypothesis
we deduce now that
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1 m
“otatiA) = o Zz(yﬂx,zi)
i=1

1

m ki
==Y > Zasy(min(dy))zg.a,
m i=1 S=k,‘_1+1

n
=Y z8.8)(min(45))z(y.4,)-

s=1

which proves the claim if § is a successor ordinal.
If B is a limit ordinal, it follows from Corollary 2.7, our definition of zg, p) and
Z(y+8,4), and our choice of the approximating sequence (A(y + ), n) that

Z(y+B,4) = Z(A(y+B,min(4)),4)
= Z(y+A(B,min(B)),4)

n
= zGBmin(8).B) (Min(4,))z¢.4,)
i=1

n
= z(8.5)(Min(4,))z(,4,).
j=1

which also proves our claim in the limit ordinal case. U

If o < wy and A € MAX($,), then 2z, 4) is an element of Sy, N ET and can
therefore be seen as a probability on A. We denote the expected value of a function f
defined on A or on all of N as E(q 4)(f). As done in [32], we deduce the following
statement from Lemma 3.2.

COROLLARY 3.5 ([32, Corollary 4.10])
For each a < w1 and A € MAX(8y,), let f4: A — [—1,1] have the property that
Eo,4(f4) = p for some fixed number p € [—1,1]. For § > 0 and M € [N]® put

IB € MAX(Sy N [M]=®),
A =48, N[M]~?: o
oM { €5 0 [M] ACB, and fp(a)>p—F8forallac A

Then CB(As p) = 0% + 1.
We finish this section with an observation, which will be needed later.

Definition 3.6
If A C N\ {0} is finite, we can write it in a unique way as a union A = U;'.'_ Aj,
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where 4] < Ay <+ < Ag, A; e MAX(8))if j=1,2,....,d —1,and A5 € 81\
{@}. We call (A j);?:l the optimal 81-decomposition of A, and we define

[1(A) =min(Ay) —#A4,4.

For A =@ we put [{(A) =0.

The significance of this number and its connection to the repeated averages is
explained in the following lemma.

LEMMA 3.7

Leta € [1,w1), A € 8y, and let (Aj)‘]’-'=1 be its optimal 81-decomposition.

(a) [1(A)=0ifand only if A =0 or Ay € MAX(&).

(b) If A e MAX(8,), then Az € MAX(81) and, thus, I{(A) = 0.

(c) If11(A) > 0, then for all max(A) <k <kp <--- <kj, (a) it follows that A U
{kl,kz, .. ,kll (A)} (S /Sa and

Ll AUtk Ky, kiY) = (. A) foralli =1,2.....1;(A).

(d) Ifm>11(A) and max(A) < k; < kp <--- < ky, have the property that A U
{ki.ka,....km} € 84, then

1
(e AUtk ko ki) < .
I1(A)+1

(e) IfA#D, then

1
> é’(a,D)fmin(A) and

D=A,1{(D")=0

1
Z ¢ D) = min(A4)

D=<A,l1(D)=0

(Recall that D’ = D \ {max D} for D € [N|<? \ {#} and @' = @.)

Proof

We prove (a)—(e) by transfinite induction for all « € [1,w1). For « = 1, (a), (b), (¢),
and (e) follow from the definition of §; and the definition of ¢(«, A), for A € &1,
while (d) is vacuous in that case. Assume that our claim is true for some o < wq,
and let A € 8441. Without loss of generality we can assume that A # @. Indeed,
if A =0, then (a) is clear, (b), (c), and (e) are vacuous, and (d) follows easily by
induction from the fact that always ¢ (o, A) < m if A € 8,\{@}. By the definition
of 8441, A can be written in a unique way as 4 = U;l'=1 B;, where B; € MAX(8,),
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forj =1,2,...,n—1,and B, € 84.For j =1,2,...,nlet (Aj,,-)f;1 be the optimal
&1-decomposition of B;. From the induction hypothesis for (b), it follows that (4 ;)
are maximal in &, for j <n or for j =n and i < ¢,. Therefore, it follows that
(A4;:j=12,....,n,i =1,2,...,c;) (appropriately ordered) is the optimal &;-
decomposition of A, and it follows that /,(4) =1;(B,) and Ag = An ¢, -

We can deduce (a) from the induction hypothesis. If A € MAX(Sy+1), then, in
particular, B, € MAX(Sy) and, thus, /1(A) = [;(B,) = 0. Conversely, if /{(A) =
[1(By) =0, then Ay = Ay, € MAX(S1). This proves (b) for o + 1.

If /1 (A) > 0 and max(A) = max(B,) < ki <kp <--- <kj,(4), then it follows
from the fact that /; (A) = [;(B,) and our induction hypothesis that B, U{k1,k»,...,
kll(A)} € 84 and

E(o By U {kr.kan ... ki}) = £ (e, By).

Therefore, A U {k1,k2,..., ki, (4)} € Sa+1, and using our recursive formula, we
obtain

(e AUtk ko, ... ki)

= mln(A)é'(O[, Bn U {k],k2, e ,ki})

1
~ min(A)

¢(a, Bp) = ¢(a, A),

which verifies (c). To show (d), let m > [;(A) and max(A) < k1 <k, <--- <kp,
be such that A U {ky,ks,...,km} € 8q+1. We distinguish between two cases. First

we consider B, U {k1,k2,...,km} € 84. In that case we deduce from the induction
hypothesis that
§( AUk, k k}) ! g“( By, Uik, k k})
a? 9 90 = . a’ 9 90
1,1/2 m mll‘l(A) n 1,R~2 m
1
< .
kll (A)+1

For the second case, we can write A U {k1,ko,...,kin} as AU {ky, ko, ... .k} =
Uj=:1 B; UUY_, B}, where p >n, B, < B, < B, <---<Bj, B, UB, €
MAX(8a), By y1s---» B)_y € MAX(8y), and B), € 8, \ {0}. Let s < m such that
ks =min(Bj). Then s > [1(B,), and [ (B, U B;,) = 0. It follows therefore from (31)

and the induction hypothesis that

1
~ min(A)

L+ 1, AUk ko, .. ko)) (CR LN R Y

1

kln(A)+1'

1
<—<
%S
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This proves (d) in both cases.
Finally, to verify (e) we observe by the induction hypothesis and (31) that

> te+1.D)= (A)Z > D)

D=A,11(D")=0 j=1D<B;,l,(D")=0

n

- 1 Z 1
~ min4 mln(B )

__n 1 - 1 ,
~ min(A4) min(4) — min(A4)

which proves the first part of (e), while the second follows in the same way.

If @ < wy is a limit ordinal and assuming that our claim is true for all y < «, we
proceed as follows. For A € §,, we can again assume that A # @, and it follows from
Corollary 2.7 that A € (4, min(4)) and, by Proposition 3.1, A is maximal in &, if and
only if it is maximal in &} (q,min(4)). Therefore, (a)—(e) follow from our claim being
true for A (o, min(A)). O

Remark

Recall that if 8 = ©®® is a countable ordinal number and y < B, then by (17) we
have 8g(,+1) = 88[8s,]. An argument very similar to what was used in the proof
of Lemma 3.7 implies the following: if By < --- < By are in MAX(8g,) so that
B = {min(B;) : 1 < j <d} is a nonmaximal §g-set, D = U?=1 Bj,and C € &g,
with D < C, then

L(C)=L(DUC). 37)

COROLLARY 3.8

Let A ={ay.as,...,a;) and A = {a, ..., a5} be two sets in [N]=® whose optimal
&1-decompositions (A j)?zl and (A j)‘;’=1, respectively, have the same length and
satisfy min(A4;) = min(/fj), for j =1,2,...,d. Then it follows for @ < wy that A €
8y if and only lf/f € 8y, and in the case in which D < A and D < /I, with#D = #D,
it follows that ¢ (o, D) = ¢(a, D).

Proof
We prove this lemma by transfinite induction on . If « = 1, then A; = A4, A 1= ff,
and a; = d;, and thus (1, D) = ¢(1, D) forall D < Aand D < A.

Assume that the conclusion holds for some «, and let A € 8441, A € [N]<®
satisfy the assumption. Let A = Uf;l Ci, where C; < --- < Cp_; are in MAX(8,),
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whereas C), € 8, and p < min(A). Write also Aas A= Uf=1 C;, where C; < -+ <
C, and choose the C;’s such that #C; = #C, for j =1,2,...,p— 1.

From Lemma 3.7(b) it follows that for some sequence 0 =dyp <d; <dp <--- <
dp = d the sequence (A4 J')?[= dii+1 is the optimal §;-decomposition of C; for i =

1,2,..., p. Now we can first deduce that (4 j)l;'lz | is the optimal §;-decomposition
of Cy, then deduce that (/I j)?zz d Jrlis the optimal §;-decomposition of C», and so

on. We are therefore in a position to apply the induction hypothesis and deduce that,
foralli =1,2,...,p, D <C;, and D < C;, it follows that {(a, D) = ¢(a, D). Our
claim follows therefore from our recursive formula (31).

As usual in the case in which « is a limit ordinal, the verification follows easily
from the definition of . O

LEMMA 3.9
Let X be a Banach space, o be a countable ordinal number, B € MAX(8,,), and
(x4)a<B be vectors in Bx. Then

2
Cla, Axa— ) Cla, A)xqa| < — . (38)
HAsz A ,4523 AH min(B)
Proof
Using Lemma 3.7(c) and then Lemma 3.7(e) we obtain
|3t ayea =3 e a)xa
A=<B A<B
=| X @@t - an)w
A=<B
11 (4))#0
Xt | 5 cesn
A<B A=<B
I1(4)=0 11(4)=0
< Y fad+ D b
A<B A<B
11 (4)=0 11(4)=0
- 2
~ min(B)’ O

4. Trees and their indices

Let X be an arbitrary set. We set X <® = o2, X", the set of all finite sequences in
X, which includes the sequence of length zero denoted by @. For x € X we shall write
x instead of (x); that is, we identify X with sequences of length 1 in X . A tree on X is
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a nonempty subset ¥ of X =% closed under taking initial segments: if (x1,...,x,) €
F and 0 <m <n, then (x1,...,xy) € F. A tree ¥ on X is hereditary if every
subsequence of every member of isalsoin ¥ .

Given X = (X1,...,Xpy) and y = (¥1,..., yy) in X=%, we write (x,y) for the
concatenation of X and y:

(Y’Y) = (xls'-'9XM1yl9'-'7yn)'

Given ¥ C X=“ and X € X =%, we let
FE)={JeX*:x.y)e¥F}.

Note that if ¥ is a tree on X, then so is ¥ (X) (unless it is empty). Moreover, if ¥ is
hereditary, then so is ¥ (X) and ¥ (X) C ¥

Let X denote the set of all (infinite) sequences in X. Fix § C X . For a subset
F of X=% the S-derivative 3731 of ¥ consists of all X = (x1,x2,...,x7) € X~ for
which there is a sequence (y;)72, € S with (X, y;) € ¥ foralli € N.

Note that if # is a hereditary tree, then it follows that ¢ C # and that Fg is
also a hereditary tree (unless it is empty).

We then define higher-order derivatives ¥, 35“) for ordinals & < w; by recursion as
follows:

FO=5,  FOY = (F®)s fora<w;,  and
7z S(A) = ﬂ 7. Sga) for limit ordinals A < w;.

a<A

r"(d)

It is clear that F¢ ' D F. S(ﬂ ) if o < B and that ¥ S(a) is a hereditary tree (or the

empty set) for all o whenever F is a hereditary tree. An easy induction also shows
that

(FE@)Y = (F)F) forallTe X<, a <w;.
We now define the S-index Is(¥') of ¥ by
TN — mi ()
Is(¥)=min{a <w,: Fg~ =0}
if there exists o < w; with Téa) =0, and by Is5(F) = w; otherwise.

Remark
If A is a limit ordinal and Fg @) —£ g for all o < A, then, in particular, @ € Fy 7 for all
a < A, and hence Fg 7 & = (). This shows that I5(¥) is always a successor ordinal.
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Examples 4.1

(a) A family ¥ C [N]=® can be thought of as a tree on N: a set F = {m,...,my} €
[N]=® is identified with (m,...,my) € N=?. (Recall that m; < --- < my by our
convention of always listing the elements of a subset of N in increasing order.)

Let S be the set of all strictly increasing sequences in N. In this case the S-index
of a compact family ¥ C [N]=% is nothing else but the Cantor-Bendixson index of
F as a compact topological space, which we will continue to denote by CB(F). We
will also use the term Cantor-Bendixson derivative instead of S-derivative and use
the notation ' and ¥ @,

(b) If X is an arbitrary set and S = X®, then the S-index of a tree ¥ on X is
what is usually called the order of ¥ (or the height of ) and is denoted by o(F).
Note that in this case the S-derivative of ¥ consists of all finite sequences X € X =%
for which there exists y € X such that (X, y) € ¥. The function o(-) is the largest
index: for any S C X® we have o(F) > Is(¥).

We say that S C X contains diagonals if every subsequence of every member
of § also belongs to S and if for any sequence (X,) in S with X, = (x,,;)72, there
exist iy <ip <--- in N so that (x,,;,)5>, belongs to S. If § contains diagonals, then
the S-index of a tree on X may be measured via the Cantor—Bendixson index of the
fine Schreier families (Fy)a<w, -

PROPOSITION 4.2 ([26, Proposition 5])

Let X be an arbitrary set, and let S C X®. If S contains diagonals, then for a hered-

itary tree A on X and for a countable ordinal o the following are equivalent.

(a) o < Isg(A).

(b) There is a family (Xf)feg,\{gy C s such that for F = (my,ma,...,my) €
Fo the branch Xp = (X{m,}» X{m;,ma}> -+ X{my,ma,.omy}) IS in A and
(XFUnY)n>max F is in S if F is not maximal in Fy.

Definition 4.3
Let ¥ C [N]=® be regular, let S be a set of sequences in the set X, and let (x4 :
A€ F)beatree in X indexed by F. We call (x4 : A € ¥) an S-tree if for every
nonmaximal A € ¥ the sequence (xqu{n) 17 €N, with A U {n} € ¥) is a sequence
in S.

If X is a Banach space and S are the w-null sequences, we call (x4: A€ F) a
w-null tree. Similarly we define w*-null trees in X *.

Remark 4.4
In the case of X = N and S = [N]® we deduce from Proposition 4.2 that if A C
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[N]=% is hereditary and compact, then CB(4) > « if and only if there is an order
isomorphism 7 : ¥, — A, so that for all 4 € ¥, \ MAX(¥,) and n > max(A4) it
follows that w(A U {n}) = n(A) U {s,}, where (s,) is an increasing sequence in
{s eN:s>maxm(A)}.

Examples 4.5
(a) The weak index. Let X be a separable Banach space. Let S be the set of all weakly
null sequences in By, the unit ball of X. We call the S-index of a tree ¥ on X the
weak index of ¥ , and we shall denote it by I, (¥'). We shall use the term weak deriva-
tive instead of S-derivative and use the notation ¥, and #.*) When the dual space
X* is separable, the weak topology on the unit ball By or on any bounded subset of
X is metrizable. Hence, in this case the set S contains diagonals, and Proposition 4.2
applies.

(b) The weak™ index. We can define the weak™ index similarly to the weak index.
If X is a separable Banach space, then the w*-topology on B} is metrizable. This
implies that the set S of all w*-null sequences in By~ is diagonalizable. We call the
S-index of a tree ¥ on X* the weak™ index of ¥, and we shall denote it by I« (F).
We shall use the term weak™ derivative instead of S-derivative and use the notation
¥, « and ?u()i) .

5. The Szlenk index
Here we recall the definition and basic properties of the Szlenk index and prove further
properties that are relevant for our purposes.

Let X be a separable Banach space, and let K be a nonempty subset of X *. For
e >0, set

K/= * X*:H * K *_ 1' *= * *_ * >
c={x" € (x,) C Kw Jim x, = x and [|x; —x*|| > ¢},

and define K éa) for each countable ordinal « by recursion as follows:
KO =k, KetY=(K®) fora <w;,  and

K® = m K@ for limit ordinals A < @;.

a<A

Next, we associate to K the following ordinal indices:

n(K,e) =sup{e < w; :Ke(“) £ 0} and n(K) =supn(K,e).

>0

Finally, we define the Szlenk index Sz(X) of X to be n(Bx=), where By is the unit
ball of X *.
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Remark

The original definition of the derived sets K in [34] is slightly different and might
lead to different values of Sz(K,e). However, if X does not contain £, then the
two definitions lead to the same Sz(K) and, thus, to the same Sz(X). Nowadays the
above definition is the standard one, because the later proven £;-theorem of Rosenthal
guarantees that Sz(X) < w; if and only if X* is separable.

Szlenk used his index to show that there is no separable, reflexive space universal
for the class of all separable, reflexive spaces. This result follows immediately from
the following properties of the function Sz(-).

THEOREM 5.1 ([34])

Let X and Y be separable Banach spaces.

(1) X* is separable if and only if Sz(X) < w.

(1)  If X isomorphically embeds into Y, then Sz(X) < Sz(Y).

(iii)  For all @ < wq there exists a separable, reflexive space with Szlenk index at
least .

We also recall the following observation of [21] about the form of the Szlenk
index of a Banach space with separable dual.

PROPOSITION 5.2 ([21, Proposition 5.2])
If X has a separable dual, then there is an a < w1 with Sz(X) = w®.

The following theorem combines several equivalent descriptions of the Szlenk
index of a separable space not containing £;.

THEOREM 5.3

Assume that X is a separable space not containing £1 and o < wy. The following

conditions are equivalent.

(a) Sz(X) > w*.

(b) There are an &€ > 0 and a tree (2 : A € 8y) C Bx= so that for any nonmaxi-
mal A € 8,

w*—nli)ngo ZA0tn) = 74 and 124 = Zaumll  >e  forn>max(A).

(39)

(©) There are an & > 0, a tree (z; : A € 84) C By, and a w-null tree (z4: A €
84) C By, so that
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zp(z4)>¢ forall A, B € 8, \ {0}, with A < B, (40)
|z5(za)| <€/2 forall A, B € 8, \ {9}, with A £ B, 41)
and for all nonmaximal A € 8, we have
* 1: * Lk
w 'nll)rgoZAU{n}_ZA' (42)

(d) There arean N € [N]®, an ¢ > 0, and a w-null tree (x4 : A € 84 N [N]=?) s0

that for every maximal B in 8, N [N]=® we have

[ >t Aywa] z e

A<B

(e) There is an € > 0 such that 1,(F¢) > w®, where
1 1
Fe = {(X1,X2,---,XI) C Sx: V()= C[01] Hzajxj H 282611‘}-
j=1 j=1

) There is an € > 0 such that I~ (8;) > 0%, where

G, = {(xf,x;,...,xl*)CBX* : ||x;f|| >¢

J
and ” E x;
i=1

51,f0rj=1,2,...,l}.

Proof
To show that (a)=>(b), we first prove the following.

LEMMA 5.4

Let X be a separable Banach space, let K C X* be w*-compact, let 0 < ¢ < 1, and
let B < wy. Then for every x* € Ke(ﬂ) there is a family (Z(*x* 4 A€ Fp) CK such
that

*

Z{x*,A) ek and z(*x*,@) =x¥, (43)
if A is not maximal in ¥p,  then |2+ gy = Z(r vyl > €
for all n > max(A), 44)

if A is not maximal in Fp,  then z{i« 4 = w*nll)ngo Z(e* AULnY). 45)

Proof
We will prove our claim by transfinite induction for all 8 < w;. Let us first assume
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that B = 1. For x* € K/ choose a sequence (x; ) which w*-converges to x*, with
[x* —x; | > e, for n € N. Thus, we can choose z(y+ gy = x*, and z(x* (ny) = X, This
choice satisfies (43), (44), and (45), for 8 = 1. (Recall that 1 = {{n} :n € N} U {@}.)
Now assume that our claim is true for all y < . First assume that 8 is a suc-
cessor ordinal, and let y < w; sothat =y + 1. Let x* € Kéyﬂ). Thus, there is a
sequence (x,;) C Kéy) which w*-converges to x*, with || x; —x*| > ¢, forn € N. By
our induction hypothesis we can choose for each n € N a family (z(*x;.;, nE AeF,)
satisfying (43), (44), and (45), for y and x; instead of x*. For every A € ¥, 1 it
follows that A \ {min A} € ¥,,, and we define Z(*x*,@) :=x" and for 4 € F,,11 \ {9}

* P *
Z(x*,4) "7 F(er, oA\ min(4))

It is then easy to see that (ZE“x* nE A € ¥, 1) satisfies (43), (44), and (45).

Assume that 8 < w; is a limit ordinal, and let (u(B8,n) : n € N) C (0, 8) be the
sequence of ordinals increasing to 8, used to define Fg. We abbreviate 8, = u(B,n),
forn e N.Letx* € Kéﬂ) =, <p K. Since Bn+1 < B, wecanuse foreachn e N
our induction hypothesis and choose a family

(Zz‘n,x*,A) A e yﬂn"rl) - X*v

satisfying (43), (44), and (45), for B, + 1. In particular, it follows that x* = w*-
lim; o Z(*n xr (jp» for all n € N. Since the w*-topology is metrizable on K we
can find an increasing sequence (j, :n € N) in N, j, > n, for n € N, so that x* =

WMy 00 2, 1 1)
Consider for n € N the set

Fpp+10n) ={A €[N~ : j, <minA and {j,} U A € Fp,41}

={A€ Fp,: jn <minA}.

Since Fg, is spreading, for n € N, we can choose L, = {lfn), 15"), ...} € [N]® so that

Frr = UMM, My Hayas.. . am) € Fp, )} C Fpur1(n)-

Bn ap >raz >
We define the map

O Fpy = Fpor1Uin)e {ar.az,...amp > {00 1)

Then we put for A € Fp
Xx* ifA=0,
zfx*7A) = z?x*,{jn)) if A ={n} for some n € N,
26 Giugn(sy 1f A=1{n}U B forsomen € Nand B € Fq, \ {0},

which has the desired property. O
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We now continue with our proof of Theorem 5.3(a)=Theorem 5.3(b). By assum-
ing that Sz(X) > B = w®, it follows that By 9” # @ for some ¢ > 0. We choose
x*e[B X*]Eﬁ ) and apply Lemma 5.4 to obtain a tree in By+ indexed by ¥, satisfy-
ing the conditions (43), (44), and (45). Now Proposition 2.12 and a relabeling of the
tree yield (b).

(b)=>(c). For A € 8, \ {#} we define A’ = A\ {max(A)}. Now let (4,,)men be a
consistent ordering of 8, (see Section 2.4). We write A <j;, B or A <y, Bif A = A,
and B = A,, for m <n or m < n, respectively.

Let e >0 and (z} : A € 8y) C By~, so that (39) is satisfied. Then choose for
each A € 8, \ {0} an element x4 € Sx so that (z} —z7,)(x4) > &.

Let 0 <n<¢g/8, and let (n(A) : A € 84) C (0, 1) satisfy the following condi-
tions:

(n(A)) is decreasing with respect to the linear ordering <y, (46)
> n(4)<n, (47)
Ae8y
> nB)<n(4). forallAeS,.  and (48)

Be8y,B>inA

() <2—T forallmeN 49)

———, forallmeN.

O P

Since X does not contain a copy of £; we can apply Rosenthal’s £;-theorem
and assume, possibly after passing to a pruning, that for each nonmaximal A € §,
the sequence (X4u{n})n>max(4) is weakly Cauchy. Since (Z:;U{n} — 2 ) n>max(4) 18
w*-null we can assume, possibly after passing to a further pruning, that (z} )~
23 (X 4u{n—1}) < (A U {n}), for all nonmaximal 4 € 8, and n > 1 4+ max(4).

Let zg = 0. For a nonmaximal element 4 € §, and n > 1 + max(A) let

ZAU(n) = E(xAu{n} — X AU{n—1})
and
ZAU{max(4)+1} = XAU{max(4)+1}-

Then the families (z4 : A € 8,) and (z7 : A € 84) are in By and By, respectively,
(z4 1 A € 8y) is weakly null, and (27 : A € §,) satisfies (42). Moreover, it follows
that

(2% —2%)(z4) > % —(A), forall A€ 8\ {0). (50)

Since w-limy, 500 ZBugny = 0 and w*-lim, 00 ZBUny = ZB> for every nonmax-
imal B € &, we can, after passing again to a pruning, assume that
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(25— z3) )| <n(B)  and

(51)
|Zf1(23)} <n(B) forall 4, B € 8,, with A <j;, B.

We are left with verifying (40) and (41) for /4 instead of e. To show (40) let
A, B € 8, \ {0}, with A < B. Wechoose/l e Nand A = By < By < By << B =

B so that B;. =Bj_y,for j =1,2,...,/, and deduce from (50) and (51)

1
23(za) = D (25, — 25 ) + (21— 23)(Ea) + 25 ()
j=1

=

N ™

1
=Y n(B)—=2n(4)> 7.
j=1

To show (41), let A, B € 8, \ {0}, with A ﬁ B. We choose [l e N and @ = By <
By < B, <--- < B; = B so that B} =Bj_y,for j =1,2,...,/, and since for every

Jj=12,... 1 either A <y, Bj or B} <iin A we deduce from (51) and the conditions
(47) and (49) on 7(-) that

)
25| = [ YGE, — 25 )G + |z Gl
j=1 '

< > |Gh, —25)E)]

A<inBj

+ > (25,0l + |25, , o) +n(4)

A>in B

< D nBH+2 Y n(A)+n(4)

A<inBj B, <in4
&
<(2#{j <1:Bj <in A} +2)n(A) < T

which verifies (41) and finishes the proof of our claims.

(©)=(d). Lete >0, (z : A€ 8y), and (z4 : A € 8,) satisfy the condition in (c).
Then it follows for a maximal B € 8, that

|3tz 2 Yt nzpenze Yt =
A=<B

A<B A=<B
which proves our claim.

(d)=(e). Assume that N € [N]?, e > 0,and (x4 : A € 8, N[N]=?) C By satisfy

(d). For B e MAX (8, N[N]=®) put yg =Y 4 g ¢(a, A)x 4, and choose y} € Sy~
so that yz(yp) = [ysl > e.
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For B e MAX(8,) N [N]=?, we define fp: B — [-1,1], b = y5(X(aeB.a<b})-
From Corollary 3.5 it follows now for § = ¢/2 that CB(+s ) = w® + 1, where

< AB e MAX(Sy N [N]=9),
=34 N @ . )
Ao { €% NN ACB, and fg(a) > 6§ forallac A

But from Proposition 4.2 and the remark thereafter we deduce that there is an order
isomorphism 7 : Fye — s v such that for every nonmaximal 4 € F,¢ and any
n > max(A) it follows that 7 (A U {n}) = 7 (A) U {s, }, for some increasing sequence
(sn) C N. By putting z4 = Xy (4) it follows that (z4) 4%, is a weakly null tree and
for every A ={a1,as,...,a;} it follows that (Z{al,az,m,ai})f=1 € F5. Again applying
Proposition 4.2 yields (e).

(e) <= (a). This follows from [2, Theorem 4.2], where it was shown that
Sz(X) = sup,..o Iy (F¢) if £1 does not embed into X .

(b) <= (f). This follows from Proposition 2.13, an application of Proposition 4.2
to the tree §; on By+, and S = {(x,;) C By : w*-lim, o = 0}. O

Remark
We note that in the implication (a)=>(b) the assumption that £; does not embed into
X was not needed. In fact, (a) is equivalent to (b) for all separable Banach spaces.

We will also need the following dual version of Theorem 5.3.

PROPOSITION 5.5

Assume that X is a Banach space whose dual X* is separable, with Sz(X™*) > w®*.
Then there are an ¢ > 0, a tree (z4 : A € 84) C By, and a w*-null tree (z7 : A €
84) C By such that

z%(zp)>¢ forall A, B € 8, \ {0}, with A< B, (52)

kﬂmﬂ<§‘ﬁmﬂmBe&\WLMMAﬁB (53)

Proof

Recall that, as stated above, the implication (a)=>(b) of Theorem 5.3 holds even if the
space to which the theorem is applied contains £;. Applying this implication to X *,
we find ¢ > 0 and {z}* : A € 8,} C By~ so that (39) is satisfied. Then choose for
each A € 8, \ {0} an element x € Sx so that (z* — z7)(x}) > &. Again let (4,)
be a consistent enumeration of §,, and write A,;, <j, A, if m <n. We also assume
that (n(A4) : A € 84) C (0, 1) has the property that

Z:W®<%- (54)

A€y



A METRIC INTERPRETATION OF REFLEXIVITY FOR BANACH SPACES 3035

After passing to a first pruning we can assume that for all nonmaximal A4 € §, the
sequence (X7, ) w*-converges and that for any B € 8, the sequence z5" (X7, )
converges to some number r4 p. (For fixed A, B € §, we only need to pass to a

subsequence of (AU {n}:n eN, AU {n} >, B).) Since (zZ"L‘J{n} — 23" )n>max(4) 18

w*-null, we can assume, after passing to a second pruning, that we have
(5" —zp) (x| <n(B) forall A, B € 8y, with A <y, B. (55)

We put z; = 0 and for any nonmaximal element 4 € §,

Zjlu{max(A)+1} = xZU{max(A)+1} and

1 .
sz{n} = i(x;klu{n} — x:fw{n_l}) if n > max(A4) + 1.

It follows that (z}} : A € 8) is a w*-null tree in By« and that for any 4 € &,

(z4 ZA')(ZA)>2 5

Since z5*(x7 {n}) converges to r4,p we can assume, after passing to a third pruning,
that

B
|Z:;* (zz)} < ? whenever 4 <y, B, (56)
and hence,
e

——n(A) forall Ae§,. 57

e >

Since w*-lim,, z7, = zy* we can assume, by passing to a further pruning, that
(25" —z5)(z2)| <n(B) forall A, B € 8, with A <, B. (58)

Since By is w*-dense in By we can choose, for every A € 8,, a vector z4 €
By so that

|z4(zB) —z5*(z3)| <n(B), forall A, B € 8, with A <y, B. (59)
Combining (58) and (59) we obtain that for all A and B in 8, with A <, B we have
24(zB) — 25 (20| < |24 (zB) — 25" (2| + | (25" — 25 (Z)| <2n(B).  (60)

Using that (2 : A € 84) is a w*-null tree, we can pass to a further pruning, so
that

|z5(z4)| <n(B), forall A, B € 8, with A <, B. (61)
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We deduce from (58) and (59), for A, B € 8, with A <y, B’ (resp., A <jj, B), that

< |z4(zp) — 25 )| + |24 (z) — 257 (21)|

+ |(zz* — Z;;T)(ZZ)|

<2n(B) + n(B). (62)

|z4(zB —zm))

By (60), (56), and (61) for A, B € 8, with B/ <y, A < B we obtain

< |z;‘1(23) —z}’f(zj)| + |Z§’f(zj)| + |Z;(1(ZB/)

<2n(B) + 2n(A). (63)

|z4(z8 —zm)

We now claim that the families {z4 : 4 € 84} and {z7 : A € &,} satisfy (52) and
(53). To verify (52), let A, B € 8, \ {@}, with A < B. Thenlet k e N and B; € §,,
for j =0,1,2,...,k,besuchthat A= By < B; < By <---< By =B andB} = Bj,
for j =1,2,...,k. We have that

k
z4(zp) = ZZZ(ZBJ. —ZB}) +z5(z4)
j=1
k
> 25Nz — |25 (@) — 2 )| — 2 Es —za)| - D |zhGes, - zp))
j=2

k
> =3n()=2) (B =7 (by (57).(59). (62). and (60)).

J=1

I

which yields (52) if we replace ¢ by /4.

To verify (53),let A, B € 8, \ {0}, with A ﬁ B.If A >};, B, we deduce our claim
from (61). If A <;;, B and, thus, A <y, B, we choose k € N and By < B1 < By <
.-+ < By = B, with B} =Bj_,forj=1,2,...,k,and By <jin A <iin B1. Applying
(63), (61), (62), and finally (54), we obtain

k
|z4(zB)| < |z4(zB, — zBy)| + |24(zBo)| + ‘ZZZ(ZB,- —Zp’)
Jj=2

k

<2n(B1) + n(Bo) + 3n(A) + Y _(2n(B;) + n(Bj-1)) <
j=2

&
8 3

which proves our claim. O
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Example 5.6

Let us construct an example of families (z4 : A € [N]™®) C B, and (z}} : A €
[N]=®) C By, satisfying Proposition 5.5. Let <j;, again be a linear consistent order-
ing of [N]<®. We first choose a family (4 : A € [N]<?) C [N]<® with the following
properties:

Ais a spread of A, foreach A € [N]=¢, (64)
A<B ifandonlyif A< B, (65)
if A, B € [N]=“,0# A <y, B, and

C € [N]™® is the maximal element in [N]<% (66)

suchthathAandCjB,then(/f\é)ﬂ(é\C')zﬂ.

We define for A € [N]=®

_ * *
ZA_Zea and ZA_emax(/f)’
acA

where (e;) and (e7) denote the unit vector bases in ¢o and {1, respectively. It is now
easy to verify that the tree (z%) is w*-null and that (52) is satisfied for any ¢ € (0, 1).
To verify (53), let A, B € [N]<® with A £ B.If A >}, B, then max(A) ¢ B, and our
claim follows. If A <j;, B, let C € [N]=? be the maximal element for which C < A
and C < B. It follows that C < A, but also that C < B, which implies by (66) that
max(A) ¢ B and, thus, our claim.

6. Estimating certain convex combinations of blocks by using the Szlenk index
In this section we will assume that X has an FDD (F;). This means that F; C X is
a finite-dimensional subspace of X, for j € N, and that every x has a unique repre-
sentation as the sum x = Y72, x;, with x; € F;, for j e N.Forx =) %2 x; € X
we call supp(x) = {j € N:x; # 0} the support of x (with respect to (F;)), and the
smallest interval in N containing supp(x) is called the range of x (with respect to
(F;)) and is denoted by ran(x). A (finite or infinite) sequence (x,) C X is called a
block (with respect to (F;)) if x, # 0, for all n € N, and supp(x,) < supp(x,+1), for
all n € N for which x4 is defined.

We call an FDD shrinking if every bounded block (x,)52 is weakly null. As in
the case of bases, X * is separable, and thus, Sz(X) < w; if X has a shrinking FDD.

THEOREM 6.1
Let X be a Banach space with a shrinking FDD, and let a be a countable ordinal
number with Sz(X) < w®. Then for every ¢ > 0 and M € [N]®, there exists N € [M]®
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satisfying the following: for every B = {by,...,bg} in 84 N [N]=® and sequence
(xi)fl=1 in By, with ran(x;) C (bj—1.b;j41) for j =1,...,d (where by =0 and
bg+1 = 00), we have

IS ¢t By < o
j=1

where Bj ={by,....bj} for j =1,...,d.

Proof

It is enough to find N in [M]® so that (67) holds whenever B € MAX(8,) N [N]=®.
Indeed, if (67) holds for all B in MAX(Sy) N [N]=%, then for any A € 8§, N [N]=®
and (xl) Z, satisfying the assumption of Theorem 6.1, one may extend A to any
maximal set B and extend the sequence (xx)*4 %=, by concatenating the zero vector
#B — #A times. Toward a contradiction, we assume that such a set N does not exist.
Applying Proposition 2.14 to the partition (¥, 8, \ ) of §,, where

El(xj)CBX,ran(xj)C(bj_l,bj+1),
F =4B=1{b1,bs,...,b,} e MAX(8,) : for j =1,2,...,n, ,
[ Z?‘:lf(ay{b17b2,.-.,bj})xj||>8

yields that there is L in [M]® such that, for all B = {b5 .. bB } in MAX(8,) N

[L]<“’ there exists a sequence ()CB)Z_1 in By with ran(x;) C (b] > 1+1) for j =
.,dp such that

dp
> bl BP)x? H > e, (68)
j=1

where BJB = {bB,.. bB} for j =1,...,dp. For A< B, if A= BB we use the
notation xf =xB e Note that, under th1s notation, (68) takes the more convenient

form

D BT (69)
A<B
and that
ran(x5,) C (max(4”), max(4)), forall A < B with A' # &, (70)

where A” = (A’)’ and max (@) =
We will now apply several stablllzation and perturbation arguments to show that
we may assume that for B € MAX(8,) and A < B the vector x&, only depends on
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A and will then be renamed x 4. By using a compactness argument, Proposition 2.14
yields the following: if A € 8, N [L]=® is nonmaximal with A" # @, then for § > 0,
there is L’ € [L]® such that, for all Dy, D, in MAX(84(4)) N [L']=%, we have
||xﬁ,U Dr_ xﬁ/u D2 | < é. Combining the above with a standard diagonalization argu-
ment we may pass to a further infinite subset of L and a perturbation of the block vec-
tors xg, with B € MAX(8,) N[L]=® and {min(B)} < A < B (and perhaps pass to a
smaller ¢ in (69)), so that, for every By, By in MAX(8y) N[L]<® and A with A" # @
such that A < B; and A < B,, we have xf} = xf,z. For every A € 8, N [L]=%, we
call this common vector x 4. Note that x4 indeed depends on A and not only on A’.
For A such that A" = @, that is, for those sets A that are of the form A = {n} for some
n € L, choose any normalized vector x4 with supp(x4) = {n}. Note that, using (70),
we have

ran(x4) C (max(A”), max(A)) forall A € 8, N[L]~® with A’ # &, (71)

where max (@) = 0, and if A’ = 0, that is, A = {n} for some n € N, then ran(x4) =
{n}. Furthermore, by fixing 0 < § < /12 and passing to an infinite subset of L,
again denoted by L, satisfying min(L) > 1/§, (69) and (38) yield that for all B €
MAX(8y) N[L]=®

|30t drea| = | 3 ¢t Awa] —26
A<B A<B
= [oxmnan + Y @ A)xE ) —28
{min(B)}<A=<B
- g(a,A)xffH 28> ¢35, (72)

A<B

For B e MAX (84 N[L]=?) andi =0, 1,2 define
BY ={A< B :#Amod3 =i}.

By the triangle inequality, for some 0 < i(B) < 2, we have ||} ,cpim) ¢(a,
A)x 4|l = /3 — 4. By Proposition 2.14, we may pass to some infinite subset of L,
again denoted by L, so that for all B € MAX (8, N [L]=?) we have i(B) = iy for
some common iy € {0, 1,2}. We shall assume that iy = 0, as the other cases are treated
similarly. Therefore, for all B € MAX (8, N [L]=®) we have

‘ > C(a,A)xAH 22—5. (73)

AeBO)

Lemmas 3.7(c) and 3.7(e) also imply the following. If B € MAX (S8, N [L]=®), then
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3
Y teh+ Y tedt Y LA s ——- <38 (74
AeB©: AeB©): AeB©® min(B)
[1(4))=0 11 (A7")=0 11(4")=0

Hence, if for B € MAX (8, N [L]=®) we set
BO =BO\I4<B:1;(A)=0, or[;(4") =0, or I;(A") =0},
then

H 3 ;(a,A)xAH 32—48. (75)

AeB©)

If L ={y,4s,....4,...}, define N = {{3,06,...,L3x,L30k+1),...}. For each
A€ 8, N[N]=?, with (#4) mod 3 = 0, we define A € [L]<® as described below.
If A=1{ay,...,aq}, where aj = €3bj and A; ={ay,...,a;} for 1 < j <d, we
define the elements of a set A = {dy,dz,...,d4} in groups of three as follows. If j
mod 3 = 0, we put

(@j—2.aj-1,4;)
_ (aj—.aj-1.aj) ifll(A’j) =0or ll(A’j_l) =0or ll(A’j_z) =0,
(Usp;—2lsp;—1.a;) L L(A}), (A )), (A} _,) #0.

It is not hard to see that A and A satisfy the assumptions of Corollary 3.8; hence,
Ae 8, N[L]<? and ¢(a, A) = ¢(«, A). Observe the following.

(a) If Be MAX(8q N[N]<?) and AD < A® are in B, then AD < 4@,

(b) If BEe MAX(84 N[N]<?) and 4 € B© and

if max(A) = {£3,, then we have max(A”) = {3,_». (76)

Statement (a) is clear, while (b) follows from the fact that A € BO implies that d is
divisible by 3 and /{(A”) # 0.

We define a weakly null tree (z4) 4e8,n[n]<e such that for all B € MAX($, N
[N]°°) we have

H 3t A)za H > % — 4. (77)

A=<B

The choice of § and Theorem 5.3(d) will yield a contradiction.
For A € 8, N [N]=® define

x; if#Amod3 =0and/(A"),l1(A"),[,(A") #0,
ZA =
4 0 else.
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Let C € MAX (8, N [N]=), and by (a), we can find B in MAX (8, N [L]=?) such
that A < B, forall A <C,with#4 =0 mod 3. Then, one can verify that

|3t ayza] = | 3 ¢ Ay

A=<C A=<C

- é‘(a,/f)x[fH

AeC O

o DR

AcBO

23—48.
3

Now let A € 8, N [N]=® be nonmaximal. We will show that w-
limuen Zau{ny = 0. By the definition of the vectors z4, we need only treat the case
in which (#4 + 1)mod3 = 0, that is, when zqu() = X 10m for all n € N with
n > max(A). In this case, by (71), we deduce that if {3, € N, then

min supp(z 4u{es,)) = min supp(xAm}) > max((A u {63,,})”) ={3,—2,

where the last equality follows by (b). Hence, lim,en minsupp(z 4uny) = oo. The
fact that the FDD of X is shrinking completes the proof. O

7. Two metrics on §,, o < w;

Since [N]=® with < is a tree, with a unique root &, we could consider on [N

the usual free distance which we denote by d. For A = {ay,as,...,a;} € [N]=?

or B={b1,bs,...,bp}, welet n = max{j >0:a; =b; fori =1,2,...,j} and

then let d(A, B) = [ + m — 2n. But this distance will not lead to the results we are

seeking. Indeed, it was shown in [7, Theorem 1.2] that for any reflexive space X

the tree [N]=® with the graph metric embeds bi-Lipschitzly into X if and only if

max(Sz(X),Sz(X*)) > w. We will need weighted graph metrics on §,,.

(a) The weighted tree distance on 8. For A, B in S, let C be the largest element
in 8, (with respect to <) such that C < A and C < B (i.e., C is the common
initial segment of A and B), and then let

dia(A.B)= Y Zan@+ > z@s®d)

]<(1)

acA\C beB\C
= Y @D+ Y &@D).
C<D=<A C<D=<B

(b) The weighted interlacing distance on 8, can be defined as follows. For A, B €
8y, say, A ={ay,az,...,a;} and B = {by,bs,...,bp}, witha; <ap <---<
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aj and by < by <--- < by, we put ag = by =0 and a1 = byy+1 = 00 and

define
d =
o.a(A, B) j_max Z Z(a,4)(@)
acA,b;j_1<a<b;
+ _max Z Z(a,B) (D).
=Lt beB,ai_1<b<ai
Remark
To explain do ¢ let us take some sets A ={a1,az,...,am} and B ={by,bs,..., by}
in 8, and fix some i € {0,1,2,...,m}. Now we measure how large the part of B is

which lies between a; and a; 1 (as before ag = 0 and a,,+1 = 00) by putting

mi(B):= Y (a{bi.ba.....D;}).

J-bj€a;ait1)
Then we define m j(A) for j =1,2,...,n similarly and put
doo,a(A, B) = max m;(B)+ max m;(A).
1<i<m 1<j=n

We note that if C is maximal such that C < A and C < Bandif A\ C < B\ C, then
dl,a(As B) = dOO,lX(As B)-

The following observations on the stability of the metrics d} o and doo o, @ < @ are
easy to show.

PROPOSITION 7.1
The metric space (8y,d1,4,) is stable, that is, for any sequences (Ap) and (By,) in 8y
and any ultrafilter U on N it follows that

lim lim dy.(Am. By) = lim lim d1.o(Am. By).
meUneU neUmeU

while (84, doo,a) is not stable.

We can now conclude one direction of Theorem A from James’s characterization
of reflexive spaces.

PROPOSITION 7.2
If X is a nonreflexive Banach space, then for any 0 < ¢ < 1/4 and every o > O there
isamap Py : 8, — X such that

¢dsou(A, B) < |®(A) — ®(B)| <d1,o(A4,B) forall A,B€8y.  (78)
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Remark
Our argument will show that if X is nonreflexive, then there is a sequence (x,) C By
such that for all @ < w; the map

Py 8y —> X, A Y (et D)Xmax(D)
D=<A

satisfies (78). The fact that ¢ > 0 in Proposition 7.2 can be chosen arbitrarily close to
i will be irrelevant for the rest of our arguments; therefore, at the beginning of the
proof, one could also cite [15, Theorem 8] (weakening accordingly the statement of
the proposition).

Proof

Let ® be any number in (0, 1). Then by [16] there is a normalized basic sequence in
X whose basic constant is at most % satisfying

o0 o0
Hza,-x,Hz@Zaj forall (a;) €cop  a; >0, foralljeN. (79)
j=1 Jj=1

Thus, its bimonotonicity constant is at most %, which means that for m < n the pro-
jection

o0 n
Py ) - span(xj) — span(x;), Zajxj — Za,-xj
j=1 j=m

has norm at most %.
We define

o5, —> X, A Z{(a,D)xmax(D).
D<A

For A, B € §, we let C be the maximal element in §, for which C < A and
C < B. Then

[ec)—o®)| =] 3 t@Divmun— Y &@ D)iman|

C<D=<A C<D=<B
< Y @D+ Y {aD)=da(4B).
C<D=<A C<D=<B
On the other hand, if we write A = {a;,az,...,a;} and put a9 = 0 and

ajy1 = oo, it follows foralli =1,2,...,/ + 1 that
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® ®2
[0~ 0(B)| = 2| Py ap (@) -0B)] = S T 2050
aj_1<b<a;

Similarly, if we write B = {b1,bs,...,b,} and put by = 0 and b,,+; = oo, then it
follows forall j =1,2,...,m + 1 that

@2
e —e®B) = Y zam@:
bj_1<a<b;
Thus, forany i =1,2,...,/ andany j =1,2,...,m
@2
[e-e®|z=[ X zen®+ Y zan@].
aj_1<b<a; b;j_1<a<b;

which implies our claim. O
We finish this section with an observation which we will need later.

LEMMA 7.3

Let £ and y be countable ordinal numbers with y < B = wf. Let By < --- < By
be in MAX(8g,,) such that B = {min(Bj) : 1 < j < d} is a nonmaximal 8g-set
with 11 (B) > 0 (11 (A) for A € [N]<® was defined before Lemma 3.7), and set D =
U?:l Bj € 8g(y+1). Then for every A, B in 8g, with D < A and D < B we have

1
1,8y (A, B) (5.5 LB +1)( ) an (80)

1
d A, B)=—d DUA,DUB). 81
oo,ﬂy( ) é‘(ﬂ,B) oo,ﬂ(y-i—l)( ) ( )

Proof

We will only prove (80), as the proof of (81) uses the same argument. Let C be the
maximal element in &g, such that C < 4 and C < B. Note that C=DUC is
the largest element of g, 1) such that C <DUAand C < DU B. Define B, =
BU{min(A)}and B, = BU{min(B)}, and observe that, since /;(B) > 0, (8, B;) =
(B, Ez) = ¢(B, B). Using (34) in Proposition 3.4 we conclude the following:

Y Z@enpum@ =LB.B) Y zgya@)

ac(DUA\C acA\C

={(B.B) > zpyaa) (82)

acA\C
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and similarly we obtain

> zZpp+n.oun@ =B.B) Y zy.s)(@). (83)

ae(DUB)\C a€B\C

By applying (82) and (83) to the definition of the d ,-metrics, the result easily fol-
lows. O

8. The Szlenk index and embeddings of (8,,d; o) into X
In this section we show Theorems 8.1 and 8.3, which establish a proof of Theorem B.

THEOREM 8.1
Let X be a separable Banach space, and let « be a countable ordinal. Assume that
Sz(X) > w*. Then (84, d1 o) bi-Lipschitzly embeds into X and X *.

Before proving Theorem 8.1 we first cover the case in which £; embeds into X.

Example 8.2

For each o < w; we want to define a bi-Lipschitz embedding of (8y.d;,4) into a
Banach space X and its dual X* under the assumption that £; embeds into X. We
first choose for every A € [N]<® a spread A of A as in Example 5.6. Then we define
for o < wq

D8, —>€19 A Z é‘(a’D)emaX(f))'

D<A
Since for A4, B € §,, it follows that
[o—oB) =| 3 t@Depupy = D L@ Deyys)|
C<D=<A C<D=<B

= Y {@D)+ Y (D)=d (A B),

C=<D=<A C<D=<B

where C € §, is the maximal element for which C < A4 and C < B. It follows that
® is an isometric embedding of (84, d1,4) into £;.

Thus, if £; embeds into X, then (8, d1,4) bi-Lipschitzly embeds into X . Addi-
tionally, £+ is a quotient of X * in that case, and since £, embeds into £, it follows
easily that £; embeds into X™* and, thus, that (84, d; ) also bi-Lipschitzly embeds
into X*.

Proof of Theorem 8.1
For the case in which X contains a copy of £; our claim follows from Example 8.2.
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Thus, we may assume that £; does not embed into X. Thus, we can apply Theo-
rem 5.3, (a) <= (c) and obtain & > 0, a tree (z} : A € 84) C Bx~, and a w-null tree
(z4: A €8y) C By, so that

zg(z4) > ¢ forall A, B € 84\ {0}, with A < B, (84)

|23(za)] 5% for all A, B € 8, \ {0}, with A £ B. (85)
Then we define

d: 854> X, Al—)ZE(a,D)ZD.
D=4

If A, B € 8, and C € §, is the maximal element of §, for which C < A and C < B,
we note that

||<I>(A)—<I>(B)||=H Y t@Dy:p- Y g(a,D)zDH

C<D=<A C<D=<B
< Y @D+ Y a,D)=diq(4,B).
C<D=<A C<D=<B

Moreover, we obtain

oy —em)|=| Y t@D:z— Y ¢ D)

C<D=<A C<D=<B
=zi( Y t@D:p— Y ¢ D))
C<D=<A C<D=<B
&
>e Y, L@D)-5 Y {@D)
C<D=<A C<D=<B

Similarly we can show that

Jey—e®)|ze Y t@D)-3 Y {@D).

C<D=<B C<D=<A

and thus,

[oy—e®|=2( Y t@D)+ Y t@D))=1diu(4.B).

C<D=<A C<D=<B

To define a Lipschitz embedding from (8, d1,4) into X*, we let

.8, — X%, AHZ{‘(O{,D)Z;
D<A
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As in the case of @ it is easy to see that W is a Lipschitz function with constant not
exceeding the value 1. Again if A, B € &, let C € 8, be the maximal element of
8, for which C < A and C < B. In the case in which C < 4, we let CT € 8, be
the minimal element for which C < C < A. We note that C* £ D for any D € 8,
with C < D < B, and it therefore follows that

v -wB|=| ¥ t@bzp- Y t@D):h

C<D=A C<D=<B

=( Y t@Dzp— Y te@D)zp)es)
C<D=4 C<D=<B

=s ) {@D)-3 Y {(@D).
C=<D=A C<D=<B

If C = A, we arrive trivially to the same inequality. Similarly we obtain that

[w)—¥@B)|ze Y t@D)-3 Y l@D).

C=<D<B C<D=<A
This yields
€
[v—vB)|=5( X t@Dd+ Y i@D)
C=<D=<A C<D=<B
€
=7%.(4.B).
which finishes the proof of our claim. O

The following dual result can be deduced from Proposition 5.5 in the same way
as we deduced Theorem 8.1 from Theorem 5.3.

THEOREM 8.3

Assume that X is a Banach space having a separable dual X* with Sz(X™*) > w®.
Then (84, d1,o) can be bi-Lipschitzly embedded into X .

9. Refinement argument

Before providing a proof of Theorem C and, thus, the still missing implication of The-
orem A, we will introduce in this and the next section some more notation and make
some preliminary observations. Then we will consider maps ® : 8, — X satisfying
weaker conditions compared to the ones required by Theorems A and C. On the one
hand it will make an argument using transfinite induction possible; on the other hand
it is sufficient to arrive at the desired conclusions.
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Definition 9.1
Let @ < wy. For r € (0, 1] we define

80 = {A €8 {@D)< r}.

D<A

It is not hard to see that 80([’) is a closed subset of §, and, hence, compact and closed
under restrictions. We also put

MP) = MAX(8) = {4 e 8 : Ais maximal in 8 with respect to <}
and, for A € §,,

M (A) = {B e 8y(A): AUB e M{}.

Definition 9.2

Let X be a Banach space, @ be a countable ordinal number, L be an infinite subset
of N, and Ay be a set in &, that is either empty or a singleton. A map @ : 8, (A4¢) N
[L]=® — X is called a semiembedding of 8, N [L]~% into X starting at Ay if there
is a number ¢ > 0 such that

|@(4) —o(B)]
<dy4(AgU A, AgUB) forall A, B € 84(Ag) N[L]"® and  (86)

forall A € 8,(Ap) N[L]=%®, with I;(Ap U A) > 0, for all r € (0, 1], and for all By, B>
in M7 (49U A) N[L]=® with B; < B,

|®(AU B)) —®(AU By)| = cd1,o(AgUAU B, AgU AU By).  (87)

(Note that /1 (A) for A € [N]=“ was introduced in Definition 3.6.) We call the supre-
mum of all numbers ¢ > 0 such that (87) holds for all 4 € 8,(Ao) N [L]~® and By,
B, € Mé,’) (Ap U A) N [L]=?, with By < B,, the semiembedding constant of ® and
denote it by ¢ (D).

Remark
If ®:8, — X isfor some 0 < ¢ < C a c-lower-do o and C-upper-d; o, embedding,
we can, after rescaling ® if necessary, assume that C = 1, and from the definition of
di o and do o We can easily see that, for every Ay that is either empty or a singleton
and for L in [N]®, the restriction ®|g,4,)n[z]<~ X is a semiembedding.

Assume that @ : 8,(A4g) N [L]=? — X is a semiembedding of 8, N [L]=® into
X starting at Ag. For A € 8,(A4y), with A # @, we put A’ = A\ {max(A4)} and define
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XAguA = (@(A) — ©(4")).

{(a,Ag U A)
If Ap =9, put xg = ®(0), whereas if Ap is a singleton, define xg = 0 and x4, =
(1/¢(ex, Ap))P(D). Note that {xg} U {xgoua : A € 84(4o) N [L]=*} C Bx. Recall
that ¢ (a, @) = 0, and hence, for A € 84(Ag) N [L]=?, we have

(A =xs+ Y & D)xp.

#<D=<AgUA

We say in that case that the family {xg} U {x4,u4 : A € 84(Ao) N [L]=?} generates
®. In that case the map ®@q : 84(Ao) N [L]™Y — X with &g = O — xg, that is, for
Ae Soz(AO) n [L]<w

®o(4)= Y ¢@ D)xp, (88)

P<D=<ApUA

is also a semiembedding of 8, N [L]=“ into X starting at Ag, with ¢(Dg) = c(P).

LEMMA 9.3
Let y,£ < wy, with y < B = ¢, and let By < --- < By be in MAX($g,) such
that B = {min(B;): 1 < j <d} is a nonmaximal 8g-set with [,(B) > 0. Set D =

UYZ, Bj, let r € (0.1], and also let A € M) with D < A. Then, if ro =

Y c<p By +1),C)+ (B, B)r, we have that A € M‘(;(OY)H)(D).

Proof
From Proposition 3.4 and Lemma 3.7(c) we obtain that for C < A we have

((B(y +1).DUC) =¢(B, BU {min(4)}){(By. C) = ¢(B. B)S(By. C),

which implies that DU A € 8}%’) 1)+ If we assume that D U 4 is not in Mf;(oy) 41y then
there is B € § ér(‘;) +1) with D U A < B. Possibly after trimming B, we may assume
that B’ = D U A. Define Bp = B \ D. Evidently, A < By and B, = A. We claim that
By € 8p,,. If we assume that this is not the case, then A is a maximal §g,, -set. This
yields that 3 -, ¢{(By,C) =1, and hence, r = 1 and ro = Y c<p {(B(y + 1)) +
L(B.B) =Y c<puat(B(y +1).C), thatis, DU A e My | which we assumed
to be false. Thus, we conclude that By € §g,,, and thus, by using Proposition 3.4 and

the definition of rg, By € § (ry), which is a contradiction, as A € ,Mg; and A< Bg. O

LEMMA 9.4
Let o < wy, let N € [N]=%, let Ag be a subset of N that is either empty or a singleton,
and let c € (0,1]. Let W : 84(Ao) N[N]=® — X be a semiembedding of 84 N [N]=?
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into X starting at Ao, generated by a family of vectors {zg} U{z4u4, : A € 8a(40) N
[N]=®}, such that c(¥) > c. Let ¢ < c(¥) —c, and let {Zg} U{Z qu4, : A € 8a(40) N
[N]=®} C Bx, with ||Zagua — zaguall <& forall A € 8,(Ag) N[N]=® with Ay U
A # 0. Then the map W : 8,(A¢) N [N]<® — X defined by

V()= Y {(@.D)ip. for Ae 8N [N,
D=<ApUA

is a semiembedding of 8, N [N]<¢ into X starting at Ao with ¢(V) > c.

Proof
For any r € (0, 1], any A € 8,(Ap) N [L]=?, and By, B; € Mg)(Ao UA)N[N]=®
with B; < B,, we obtain

|\ U(AUB) — (AU B,)|

-l XY te@Dpimh- Y @D
AogUA<D=<AoUAUB, ApUA<D=<AoUAUB,
= X ¢(er. D)zp — 3 ¢@.D)zp |
AgUA<D=<AgUAUB AgUA<D=<AgUAUB>
(X Z(@, D) + 3 (@ D))
AgUA<D=<AgUAUB; AgUA<D=<AoUAUB,

> (C(\IJ) —S)dl,a(AQ UAUB1, A0 UAU By),

which implies (87). Then (86) follows from the fact that Z4,ua € Bx for all 4 €
84 (Ap) N[N]=® with Ag U A # @. O

For the rest of the section we will assume that X has a bimonotone FDD (E},).
For finite or cofinite sets A C N, we denote the canonical projections from X onto
span(E; : j € A) by Py, thatis,

(e9) oo
Pi:X—>X, Y x;—> Y x5 forx=) xj€X, withx;€Ej forjeN,
j=1 j€EA Jj=1

and we write P; instead of Py, for j € N. We denote the linear span of the £ ;’s by
coo(E; : j €N), thatis,

oo
coo(E; 1 j eN):{ij:xj € F;, for j eNand #{j : x; 7é0}<oo}.
j=1
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Definition 9.5

Let o be a countable ordinal number, let M € [N]®, and let Ay be a subset of N

that is either empty or a singleton. A semiembedding @ : 8,(A4¢) N [M]=® — X of

8y N[M]= into X starting at Ao is said to be c-refined, for some ¢ < c(®P), if the

following conditions are satisfied:

(a)  the family {xg} U {xq,04 : A € 84(4o) N [M]=?} generating P is contained
in By Ncoo(E; : j €N);

(b) forall A e 84(Ag) N [M]=? with A9 U A # @ we have

max(Ao U A) < maxsupp(x44u4) < min{m €M :m > max(Ag U A)};

(©) forall r € (0,1], A € 84(Ap) N [M]=?, with [;(Ap U A) > 0, and By, B, in
M (49U A) N [M]=®, with By < B,, we have

| Pmax suppe ags.4),00 (P(A U Br) — @(A U By)) |

> Cdl’a(A() UAUB;, AU AU Bz);

d) forallr € (0,1], A € 84(Ao) N [M]=?, and B in M (4o U A) N [M]=® we
have

| Pimax supp(x g 4),00) (P(A U B)) | = % > £(.C).
ApUA<C=<A9gUAUB

Remark 9.6

Leté <wp,lety <f = »®° be a limit ordinal, let 0 < ¢ <1, and let M € [N]®. If
ap € N, we note that 8g,({ao}) N [M]~* = 8gy(y,a0)({a0}) N [M]=“, and {(By,
{ao}U D) = &(Bn(y.a0).{ao}U D) for D € Sg, ({ao}) N[M]=*, where (n(y.n))nen
is the sequence provided by Proposition 2.6. It follows that a semiembedding of
8y, ({ao}) N [M]=® into X, starting at {ao}, that is c-refined is a c-refined semiem-
bedding of Sgyy.n)({ao}) N [M]=? into X .

Additionally, if ® : 8, N [M]~® — X is a semiembedding of 8, N [M]~¢
into X, starting at @, that is c-refined, then for every ap € M and N = M N [ag, 00)
the map W = q>|85n(y.a0)({ao})ﬂ[N]<“’ is a semiembedding of $g;(y,4,) N [N]~ into
X, starting at {ao}, that is c-refined. Furthermore, W is generated by the family
{xa0ua 1 A € 88n(y.a0)({a0}) N[N]=?}, where {x4 : A € 8g, N[M]=*} is the family
generating P.

LEMMA 9.7

Let £,y <wy, withy < B = a)‘“g, let M € [N]?, and let Ag be a subset of N that is
either empty or a singleton. Also let ® : 8g(,+1)(Ao) N [M]~® — X be a semiembed-
ding of 8g(y+1) N [M]=“ into X, starting at Ao, that is c-refined. The family generat-
ing ® is denoted by {xg} U {x4qu4 : A € 84(A0) N[M]=®}. Extend the set Ag to a set
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Ao U A1, Ao < A1, which can be written as Ag U A1 = UI;-ZI B; € 8gp+1yN[AgU
M]=?, where By <--- < By are in MAX(Sg,) and B = {min(B;):1<j <k}isa
nonmaximal 8g-set with I (B) > 0.

Then, for N = M N (max(Aop U A1), 00) and ng = maxsupp(x4,u4,), the map

U85 NINI<® > X. A Png.00) (®(A1 U 4
gy N[N] ;(ﬁB)(’)((lu )

is a semiembedding of 8g, N [N]® into X, starting at @, that is c-refined. Moreover,
W is generated by the family {z4 : A € 8g, N [N]~?}, where

zg=0 and Z4 = P(no,oo)(xA()UAluA) for A e /Sﬂy n [N]<w \{ﬂ} (89)

Proof
By Lemma 7.3 we easily obtain that, for A, B € 8g,, N [N]~*

[w(4)—w(B)| < g(ﬁ 3 digy+1)(AoU A1 UA, Ao U A1 U B)

= d1,8y)(4, B), (90)

that is, (86) from Definition 9.2 is satisfied for ¥. We will show that (86) from Def-
inition 9.2 is satisfied for W as well. Let r € (0, 1], let A be in 8g,, with [;(4) > 0,
and let By < By in Mjj)(A) N [N]=“ (ie., AU By, AU By € Mj)). Note that we
have [1(Ag U A1 U A) > 0. If weset ro = Y co g 04, $(B(y +1),C) +£(B, B)r, by
Lemma 9.3 we deduce that A U By and A U B, are in Mﬂr(‘))+l)(A0 UA;) N[N]=?,

that is, By, By € M) 1) (Ao U (A1 U A)) N [N]=<. Definition 9.5(b) implies ng <

max supp(x4,u4,u4), and thus, by Definition 9.5(c) for ® we deduce

|w(AU By)—¥ (AU B,)|
1

= 6.5 | Pirg,00) (P(A1 U AU By) — @(A1 U AU By))|

1
2155 | Ponaxsupp(eaguis; w000 (P(A1 U AU B1) — ®(41 U AU By)) |

¢
> 7_d1,ﬁ( +1)(A0 UAjUAUB;,AgUA;UAU Bz)
¢(p.B)
=Cd1,ﬁy(AUBl,AUBz), (91)
where the last equality follows from Lemma 7.3. In particular, (90) and (91) yield that

V: 8g, N[N]=® — X is a semiembedding of &g, N [N]= into X starting at ¢ with
c(¥) >c.
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It remains to show that W satisfies Definitions 9.5(a)-9.5(d). Observe that Defi-
nition 9.5(b) implies that, for C <X Ag U Ay, we have P, o) (xc) = 0. We combine
this with (34) of Proposition 3.4 to obtain that, for A € 8g, N [N]~?,

1

=Y (B +1D.C) Pagen(xc)

g(ﬁ7 B) C=<ApUAUA

' S B+ 1),C) Py e ()

Z(ﬁ7 B) AgUA1<C=<AgUAUA

= )" £(BY.C) Piny.00) (X 290, 00)- (92)
C=A

For A € 8g, N [N]~“ define z4 = P(y,,00)(X49u4,u4) and zg = 0. It then easily
follows by (92) that W is generated by the family {z4 : A € 8, N [N]=*}. More-
over, as maxsupp(z4) = maxsupp(x4,u4,u4), it is straightforward to check that
Definitions 9.5(a) and 9.5(b) are satisfied for W. Observing that for all A € §g, N
[N]=®, with A # @ (which is the case when [1(A4) > 0), we have max supp(z4) =
max supp(X 4,u4,u4) > no. An argument similar to the one used to obtain (91) also
yields that W satisfies Definitions 9.5(c) and 9.5(d). O

The main result of this section is the following refinement argument.

LEMMA 9.8

Let @ < w1, M € [N]®, and Ao be a subset of N that is either empty or a single-
ton. Also let @ : 8,(Ag) N [M]=% — X be a semiembedding of 8, N [M]=? into X
starting at Ag. Then, for every ¢ < c¢(®), there exist N € [M]® and a semiembedding
D :8,(Ag) N[N]<® — X of 84 N [N]<? into X, starting at Ay, that is c-refined.

Proof

Put ¢ = (c(®) + ¢)/2. Let {xg} U {x45u4 : A € 84(4p) N [M]™?} be the vectors
generating @, and choose n > 0 with n < ¢(®) — ¢. After shifting we can assume
without loss of generality that xg = 0. Set Xg = 0, and choose for each A € 84(A4p) N
[M]=%, with Ag U A # @, a vector X 4oua € Bx Ncoo(E; : j € N) such that

(@  [[Xapua —xauall <n/2, and max(A4o U A) < maxsupp(X4ou4)-

Moreover, recursively choose 7717 < --- <my <--- in M so that we have

Mp41 > max{maxsupp()?AouA) A e8y(Ap) N [{nﬁl, ... ,I’hk}]} for all k.
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Define M = {iiix 1k € N} and @ : 84,(A¢) N[M]=? — X sothatforall A € 84(A¢)N
[M]<® we have

o(A)= > &(@C)ic.

C=<ApUA

By Lemma 9.4, @ is a semiembedding from 8, N [M]=® into X, starting at Ag, for
which c(CiD) > ¢ > ¢ and for which Definitions 9.5(a) and 9.5(b) are satisfied.

The goal is to find N € [M]? so that, by restricting ® to 8 (Ag) N [N]<?, Def-
initions 9.5(c) and 9.5(d) are satisfied as well. Put My = M. Recursively, we will
choose for every k € N an infinite set My C Mj_; so that for each k € N the follow-
ing conditions are met:

(b) min(My_;) < min(My,).

(c)  Putting m; =min(M;) for j =1,...,k — 1, for every A € 8,(4o) N [{m1,
o mg_1}] with [;(Ag U A) > 0, r € (0, 1], and for By, B, € MY (49U A) N
[{myq,...,mp_1} U M;]=® with B; < B,, we have

” P(maxsupp(iAouA),oo) (CTD(A U Bl) - ci)(A U BZ)) ”

> édyq(Ag U AU By, Ag U AU By).

(d) For every A € 8,(Ag) N [{m1,...,mp_1}] with [1(49 U A) >0, r € (0,1],
Be M (AU A) N[{ma,....me—1} U Mg]=?, we have

| P supp (40,000 (P(A U B)) | = % > ¢(e.C).
ApUA<C <AgUAUB

(If k =1, then [{my,...,mr_1}] = {0}.)

If we assume that such a sequence (My); has been chosen, it is straightforward to
check that N = {my : k € N} is the desired set. In the case in which k = 1, for
A € 84(Ag) N{P} we have A = @. Hence, if A9 = @, then for all A € 84(Ao) N {0}
we have A9 U A = @, that is, [1 (A9 U A) = 0, and hence, (c) and (d) are always
satisfied. Choosing M; satisfying (b) completes the first inductive step. If, on the
other hand, Ay is a singleton, then for all A € §,(Ao) N {@} we have Ay U A = Ay,
that is, /1 (Ag U A) > 0. This means that conditions (c) and (d) are reduced to the
case in which A = @. The choice of M; is done in the same manner as in the general
inductive step, and we omit it.

Assume that we have chosen, for some k& > 1, infinite sets My C My_; C--- C
M/ C M, such that (b), (c), and (d) are satisfied for all 1 <k’ < k. Observe that the
inductive assumption implies that it is enough to choose My, € [M]® satisfying (b)
and the conditions (c) and (d) for sets A € 8,(Ag) N [{m1,...,mr_1}] with [1 (Ao U
A) > 0 and max(A) = my = min(My) (or A = @, in the case in which k =1 and A4
is a singleton). We set
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§ =min{(a, Ag U A) : A € 84(Ag) N [{m1,m2,....mi}] and Ag U A # @},
@)
d= max{maxsupp()?AouA) A e8y(Ap) N [{ml, e ,mk}]},

E =

and we choose a finite e-net R of the interval (0, 1], with 1 € R, which also has the
property that, forall A € 8,(Ao) N[{m1,mz,...,mg}andall j =0,1,2,...,11(4pU
A),

jl@ AgUA)+ Y t(@.C)eR. (93)
C=<ApUA

Fix a finite £-net K of the unit ball of the finite-dimensional space span(E; : 1 < j <
d).Foreveryr € Rand A € 8,(Ao) N[{m1,m3,...,my}] we apply Proposition 2.14
to Mg)(AO U A) N [M}]=% and find an infinite subset Mk+1 of M}, such that, for all
A €8y (Ag) N[{my,my,...,mi}] and r € R, there exists yl(‘lr) in K such that

1y - Pua (AU B))| < g for all B in M (4o U A) N [My11]<®.

In particular, note that, for all A € 8,(A¢) N [{m1,m2,...,m}], for all r € R, and
for any Bi, By in MY (Ao U A) N [Mr41]=?, we have

| Pr1,ay(@(A U By) — (AU By))| <e. (94)

Using Lemma 3.7(d) for /;(-), we can pass to an infinite subset ]\//Tkﬂ of Mk+1, SO
that (b) is satisfied, and moreover,

t(@,AgUAUB) <e if A€ 8y(Ao) N[{my,....my}] and
B € 84(Ag U A) N [My41]™® with#B > [;(4g U A) > 0. (95)

We will show that (c) is satisfied. To that end, fix 0 <r <1, 4 € 8,(A4p) N
[{m1,...,mg}] with max(49 U A) = my and [1(A9 U A) > 0, and B1,B; €
M,S,’)(AO UAd)n []\/Zkﬂ]“" with By < B,. If both sets By and B, are empty, then
(c) trivially holds, as the right-hand side of the inequality has to be zero. Otherwise,
Bs # 0, where s = 1 or s = 2. Note that max(A4) = my, that is, A9 U A # @, and
hence, since /1 (Ao U A) > 0, putting C = Ag U AU {min(By)}, by the definition of
§ we obtain ¢(, C) = ¢ (o, Ag U A) > 8. This easily yields

d1.a(AgU AU By, Ay U AU By)

- 3 (e, C) + > t(a.C)
AgUA<C=<AgUAUB, AgUA<C=<AgUAUB,
30e

c—c’

> 5=
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Hence,

85C;)Cdl,a(AouAuBl,AouAuBz). (96)

Arguing similarly, we obtain

r= Y {@C0)= Y t(@.C)+(@.C)=8>min(R). 97)

C=<ApUAUB; C=<A4pUA4

Choose rg to be the maximal element of R with ro < r. Since ro < r, we can find El
and B, in MU (49 N A) N [My41]= so that By < By and B, < B,. We will show
that

dl,a(AQUAUBl,AOUAUE1)<38 and

. (98)
dl,a(A() UAduU Bz, AO UAU Bz) < 3e.

We shall only show that this is the case for By; for B, the proof is identical. If ]§1 =
Bi, then there is nothing to prove, so we may therefore assume that By < B;. Define

C1 = By U{min(B1 \ B1)}, 1t = X c<aguaus, $@ C)s 7t = Yo yuaus, (@
C),andr’ = ZCﬁAouAUCI {(a, C). The maximality of By in SérO)(Ao U A) implies

F1§r0<r’§r1. 99)

We first assume that #Cy < [;(A4¢ U A). In this case, however, by (93), we obtain that
r’ = ZConuA L(a,C)+ (#C1)¢(x, AgU A) isin R. This contradicts the maximality
of ro. We conclude that #C; > [, (Ao U A), which by (95) yields r' — 7, = ¢ (o, Ag U
AU Cy) < ¢&. Hence,

dl,a(A()UAUBl,A()UAUB;l):rl —fl
=(n—r)+ (' =)
<(ry—rg) +¢&<3e. (100)
We now verify (c) as follows:

| Pa.oo) (B4 U B1) — D(AU By)) |
> || Pidoo) (P(AU Br) = D(AU By)) |
— (| Ped,o0) (P(A U By) — D(A U By))|
+ || Pla,0) (B(A U B2) = (AU By))|)
> || Pia,o0) (®(A U Br) — B(AU By)) |
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—(d1,a(AoU AU By, AgU AU By)
+d1,a(Ao UAU By, Ag U AU By))
> || Pd,00) (P(A U By) — D(AU By)) | — 6¢
> | ®(AU By) — ®(AU By)| — || Pi1,ay(P(A U By) — (AU By)) | — 6
> |®(AU By) — ®(AU By)| —7e
> C(&))dl’a(A() UAdu gl,Ao UAduU éz) —Te
> Edl,a(A() UAdu B, A() UAU Bz)
Here the second inequality follows from (86), the third from (98), the fifth from (94),
the sixth from (87), and the last one from (96).
We will need to pass to a further subset of My to obtain (d). An applica-
tion of the triangle inequality and (c) (for k + 1) yield that for every A € 84(A4p) N

[{my,ma, ... mg}] with [;(Ao U A), r € (0,1], and By, B € M (4o U A), By <
B,, it follows that

” P(maxsupp()?AouA),oo)(&)(A ) Bl)) “ = %dl,a(AO UAU Blv AO UAU BZ)
or

~ c
H P(maxsupp(iAouA),oo) (CD(A ) BZ)) || > Edl,ot(AO UAU B], AO UAU BZ)-

We may therefore pass to a further infinite subset My, of ]l/l\k.H such that, for any
A€ 80[(140) N [{ml,WZ2, e ,mk}], with [q (A() @] A) > (0 and max(AO U A) = my, for
any r € R, and for any B in M (49 U A) N [My41]=?, we have

| Pia,o0) (R(AU B))| = > t(a,C). (101)

ApUA<C=<A9UAUB

N ™

Now the verification of (d) can be done along the same lines as the proof of (c), and
we therefore omit it. O

10. Some further observations on the Schreier families
In this section 8 will be a fixed ordinal of the form g = w®®, with 1 < £ <w.

10.1. Analysis of a maximal set B in 8g,,

Recall that by Proposition 2.6 for every y < B there exists a sequence 7(y,n) of
ordinal numbers increasing to y, so that A(By,n) = Bn(y,n). (Recall that n(y,n)
may also depend on §.)



3058 MOTAKIS and SCHLUMPRECHT

For every y < 8 and B € MAX(8g,,) we define a family of subsets of B, which
we shall call the B-analysis of B and denote by g, (B). The definition is done
recursively on y. For y = 1, set

Ag.,(B) = {B}. (102a)

Let y < B, and assume that g, (B) has been defined for all B € MAX(&g,,). For
B € MAX(8g(y+1)) = MAX(85[8g,]) there are (uniquely defined) By < --- < By
in MAX(84,) with {min B; : j = 1,..... £} in MAX(8p) so that B = J’_, B;. Set

V4
Agys1(B) ={B}U (U Aﬂ,y(Bj)). (102b)

j=1

Let y < B be a limit ordinal, and assume that #g ,/(B) has been defined for
all ¥/ <y and B € MAX(8g,). If now B € MAX(8g(,)), then B €
MAX(S’B,,(%mi“(B))). Set

Ag,y(B) = Ag y(y.min(B)) (B). (102¢)

Remark 10.1

Let y < B and B € MAX($8g,). The following properties are straightforward conse-

quences of the definition of g, (B) and a transfinite induction.

(a)  The set Ag , (B) is a tree when endowed with D.

(b)  For C, D in g, (B) that are incomparable with respect to inclusion, we have
either C <Dor D <C.

(c)  The minimal elements (with respect to inclusion) of g, (B) are in 8g.

(d  If D € Ag,(B) is a nonminimal element, then its direct successors (Dj)ﬁ-:l

in #Ag ., (B) can be enumerated so that Dy <--- < Dgand D = U§=1 Dj.

10.2. Components of a set A in 8g,,
We recursively define, for all nonempty sets A € §g, and y < B, a natural num-
ber s(B,y,A) and subsets Cpg ,,(4,1),...,Cpg ., (A4,5(B,y,A4)) of A. We will call
(Cpg,, (4, i))ffl’y’A) the components of A in 8g, with respect to 8g.

If y =1, that is, A is a nonempty set in &g, define

s(B,y.A)=1 and Cpg, (4, 1) = A. (103a)

Let y < B, and assume that (Cpg , (4, i))fg9 l’y’A) has been defined for all nonempty

sets A in &g,,. If now A is a nonempty set in $g(,4+1) = 8g[8p,], then there are
nonempty sets A; < Ay <--- < Az in 8g,, such that

@ A=U%, 4,
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(b) {minA4; :i =1,...,d}isin &g, and

(©) the sets Ay, ..., Ag_; are in MAX(8g,,).

Note that the set A; may or may not be in MAX(&g,,). It may also be the case that
d =1, which in particular happens when A € 8g,,. Set A = Ag, which is always
nonempty, and we define

s(B.y + 1. 4) =5(B.y. A) + 1,

Cppyr(A D ={J 4  and (103b)
i<d
Cpg.y1(A.0) =Cpg (A, i = 1) if2<i=<s(B,y+1.A).
Note that, in the case d = 1, Crg.y+1 (A, 1) is the empty set.

Let y < B be a limit ordinal, and assume that (Cpg (A, i ))ff{y/’A) has been
defined for all y’ < y and nonempty sets A in 8g,. IfA is a nonempty set in 8g,,,
then A € 8y (y,min(4))» and we define

s(B.y, A) = s(B,n(y.min(4)),4)  and
Cpﬂ,y(A’ l) = Cpf},n(y,min(A))(A7 l) fori = 1,2, ey S(IB, Y A)

(103¢)

Remark

Let y < B and A4 € 8g, \ {¥}. The following properties follow easily from the defini-

tion of (Cpg , (A, i ))ffl’y’A) and a transfinite induction on y.

@ A= Cppy(A0).

(b)  For 1 <i<j <s(B,y,A) such that both Cpg,(A4,i) and Cpg (4, )) are
nonempty, we have Cpg ,,(A4,1) <Cpg ., (4, j).

©  Cp(4.5(B.y(A))) # 0.

LEMMA 10.2

Let & and y be countable ordinal numbers with y < B = w®®. Also let B be a set
in MAX(8gy) and & < A <X B. If Ag ,(B) is the B-analysis of B and (Cpg (A,
i ))ffl’y’A) are the components of A in 8g, with respect to g, then there exists a
maximal chain B = D{(A) 2 D2(A) 2 -+ 2 Dgg,y,4)(A) in Ag , (B) satisfying the
following:

(@)  Cpg,(A4,i) 2 Di(A) for 1 <i <s(B.y.A), and

(b) if1<i<s(B,y,A), then Cpg (A i) S D;i(A).

Proof
We prove the statement by transfinite induction on 1 <y < 8. If y = 1, then

A, (B) ={B}and (Cpg (A, i))ffl’y’A) = {A}, and our claim follows trivially.
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Let y < B, and assume that the statement holds for all nonempty A € &g, and
B € MAX(8g,) with A < B. Now let A be a nonempty set in &g, +1), and let
B € MAX(8p(y+1)). If B =|J'_, Bj, where By <--- < B are in MAX(8,) with
{min(B;) : 1 < j < {} € MAX(&g), then by (102b) we obtain g ,11(B) = {B} U
12
(szl g,y (Bj)). Define

d=max{l <j <{:B;jNA#J}
A;=B; forl<i<d, and Ag =ANB,.

Then, by (103b), letting A = A4, we obtain s(8.y + 1,4) = s(B,y.A) + 1,
Cpgy+1(A.1) = Uij<q 4i, and Cpg 1 (4,1) = Cpg o, (4,0 — 1), for 2 <i < s(B,
y 4+ 1, A). Apply the inductive assumption to A; = A < By to find a maximal chain
By =D{(A) DD Dgg.y.4 (A) in Agy (Bg) satisfying (a) and (b) with respect to

(Cpp.y (4, i))f:ﬂfy’g). Define
Dy(A)=B and Di(A)=D;_1(A) for2<i<s(B.y. A). (104)

Clearly, (D; (A))ff;y’f" is a maximal chain in g, 41 (B). It remains to verify that
(a) and (b) are satisfied with respect to (Cpg ,, 41 (4, i))ff 1’y+1’A). Assertions (a) and
(b), in the case in which i = 1, follow trivially from Cpﬂ’yH(A, 1) = Uj<d Aj =
Uj<a Bj <Uj<q Bj < B. Assertions () and (b), in the case in which i # 1, follow
easily from the inductive assumption and Cpg ,;1(4,i) = Cpg ,, (A",i — 1) for 2 <
i<s(B,y+1,A4).

To conclude the proof, if y < f is a limit ordinal number such that the conclusion
is satisfied for all y” < y, we just observe that the result is an immediate consequence

of (102¢) and (103c). O

For the next result recall the definition of the doubly indexed fine Schreier fami-
lies #p , introduced in Section 2.3.

LEMMA 10.3
Let'y < B. Then for all A € 8g, with Cpg, (A,i) # @ for 1 <i <s(B,y, A), we have

{min(Cpg,,(4,i)):1<i <s(B,y, )} € MAX(Fp,,). (105)

Proof
We prove this statement by induction on y. If y = 1 and A € &g satisfy the assump-
tions of this lemma, then 4 = Cpﬂ’1 (A, 1) # @, and hence, the result easily follows
from MAX(¥g,1) = {{n}:n e N}.

Assume that the result holds for some y < §, and let A € 8g(y+1), with Cpg,, (4,
i)#£@forl1<i<s(B,y + 1, A). By the inductive assumption and (103b) we obtain
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that B = {min(Cpg ,(A4,1)): 2 <i <s(B,y + 1,4)} € MAX(Fp,,). We claim that
A ={min(Cpg ,,4(4,1))} U B € MAX(Fp,y+1)- Indeed, if this is not the case, then
by the spreading property of Fg ,; there is C € Fg,1 with A < C. Then, B <
C = C\{min(Cpg (A4, 1))}. It follows by F 41 = Fp,1 U< Fp,,, that C € Fg ,,.
The maximality of B yields a contradiction.

Assume now that y < § is a limit ordinal number so that the conclusion holds
for all y <y. Let A € 8, so that Cpg ,(A4,1) # @ for 1 <i < s(B,y,A). Note
that A € 88y (;,min(4))> and by (103c) and the inductive assumption we have A =
{Enin(CpB,y(A,i)) (1 <i <s(B,y, A)} € MAX(FB n(y,min(4)))- By (27) we obtain
A e MAX(Fg.,y). O

For y < B and a set B in MAX(8g, ) we define
€p,y(B)={0<A=<B:Cpg,(A.i)#0Dforl <i <s(B.y.A)}. (106)

LEMMA 10.4
Let y < B. If B is in MAX(8g(,+1)) = 88[88,] and B = U(j-:l Bj, where By <
-+ < By are in MAX(8p,) and {min(B;) : 1 < j <} € MAX(8g), then

{A cA<Band A ¢ 83(),_,_1)(3)}

L m—1

=a:a= By U (UJ{(U B )ua: A2 By and 4¢84, (Bn)}).

m=2 j=1

Proof

Let@# D < B.Definem =max{l < j <{:DNBj#@}and A = B,, N D.Note
that D = (U, <, Bj) U A, where | J;_,, Bj = 0 if m = 1. By (103b) we obtain
S(ﬁvy + I’D) = S(IB’ )/,A) + 1’ Cpﬁ,}’-ﬁ-l(D’ 1) = Uj<m Bl’ and Cpﬂ,1’+l(D’i) =
Cpg,(A,i —1)for2<i <s(B,y +1,D).

Observe that Cpg ,, (D, 1) = @ if and only if m =1, thatis, A= D < By. On
the other hand, if Cpg ,,, 1 (D, 1) # @, then for some 2 <i <s(B,y + 1, D), we have
Cpg,y+1(D,i) =@ if and only if Cpg (4,7 — 1) = @. These observations yield our
claim. O

Remark
Under the assumptions of Lemma 10.4, if for 1 < j < £ — 1 we define

gé{;+1(3) = {A €&py+1(B):Cppg (A1) = U Bi},

i<j

then, using a similar argument to the one used in the proof of Lemma 10.4, we obtain
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), (B)= {(U B,») UC:Ce sﬁ,y(BjH)} and
i=1

{—1
)
s+ (B) = €455 11
j=1

Remark

By using the fact that &7 C §, for all countable ordinal numbers « and that
MAX($1) ={F C N:min(F) = #F}, it is easy to verify that for all F € MAX(8y)
we have max(F) > 2min(F) — 1. In particular, if B; < B, are both in MAX(8y),
then

2min(B;) < min(B,). 107)

LEMMA 10.5
Let y < B, and let B be a set in MAX(8g,). Then

2
A;? LBy A) < gy (108)
A¢€g.,(B)

Proof
We prove the statement by transfinite induction for all 1 <y < 8. If y = 1, then the
complement of &g 1 (B) only contains the empty set, and the result trivially holds.
Let y < B, and assume that the statement holds for all B € MAX(8g,). Let
B e MAX(8p(y+1))- Let By <--- < By in MAX(8p,,) such that {min(B;):1<j <
{} e MAX(8p) and B = U_e/=1 B;.Form =1,...,{, define Dy, = {min(B;):1 <
Jj < mj}. Proposition 3.4 implies the following: if C < B,m =max{l < j <{:CnN
B; #0},and A=C N By, then {(B(y +1),C) =¢(B, D) (By, A). We combine
this fact with Lemma 10.4, (107), and (33) to obtain that

Y B A=LB. DY) Y L(By.A)
A=<B A<B;
A¢Ep.,(B)

{
+2 56D ) LBrA
= {Aﬁééjﬁ%j)}

l
<¢(B.D)+ Y L. D))

= min(B;)
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12
1 2
<—7+ ,Dj)—/———
~ min(B) ;c(ﬂ J)mln(Bj)

1 ‘ I
= min(B;) + ;é‘(ﬂ, Dj)min(Bl)

2
P
~ min(Bq)
_ 2
" min(B)’

If y < B is a limit ordinal number such that the conclusion is satisfied for all
y’ <y, we just observe that the result is an immediate consequence of (103¢) and
(30). O

LEMMA 10.6 o

Let y < B and B € MAX(8g,). If AV, A® € &4 ,(B), (D (A L7 ana
(Dy (A(Z)))f(fl’y’A(z)) are the maximal chains of g, (B) given by Lemma 10.2, and
we assume that 1 < i < min{s(B,y, AD),s(B,y, A®)} is such that D;(AV) =
D; (A®), then we have D j(AV) = D ;j(A?®), forall 1 < j <i.

Proof

As (Dy, (A(l)));(f’ly’A) and (Dy (A(z)))f(zﬂl’y’A(z)) are both maximal chains of Ag ,, (B)
such that D; (AM) = D; (A@), the result follows from Remark 10.1(a). O
LEMMA 10.7

Let y < B, B € MAX(8g,), AV, A® € &5 ,(B), and 1 <i < min{s(B,y, AD),
s(B.y. A®)}. Then D;(AV) = D;(A®) if and only if min(Cpg,(AD,
i) = min(Cpg., (4@, 1)), where (Dx(AD)SEID and (D (A@))sEFAD) e
the maximal chains of #g ., (B) provided by Lemma 10.2.

Proof

Assume that D; (A1) = D;(A®). Lemma 10.2(a) and the assumptions Cp(4®,
i) # 0 and Cp(A®,i) # 0 yield min(Cpg , (A1, i)) = min(Cpg_,, (A®,1)). For the
converse let AD, A® € &5, (B) with min(Cpg_, (A", i)) = min(Cpg , (A®,1)).
Since all elements of g, (B) either compare with respect to C or are disjoint,
Lemma 10.2(a) and min(Cpﬂ,y(A(l),i)) = min(Cpﬂ’y(A(z),i)) imply that either
D;(AM) c D;(A®) or D;(A®) c D; (AM). We assume the first, and toward a con-
tradiction assume that D; (A®V) C D; (A@). The maximality of (D (4@))5# 4



3064 MOTAKIS and SCHLUMPRECHT

in g, (B) implies that there is 1 < j < i such that D;(4®) = D;(AV). As
A/(gzjl(j) # (J, we obtain by Lemma 10.2(a) min(CpB,y(A(l), i)) = min(D; (A(l))) —
min(D;(A®)) = min(Cpg (4@, j)) < min(Cpg , (4@, i)), which is a contradic-
tion. ([

10.3. Special families of convex combinations

Definition 10.8

Let y < B and B € MAX(8g,). A family of nonnegative numbers {r(A4,k): A €

&g y(B),1 <k <s(B,y,A)}is called a (B, y)-special family of convex combinations

for B if the following are satisfied.

@ YN r(4,k) =1"forall A€ &g, (B). .

()  IfAD, A arebothin &g, (B), (D (AM)) B and (Dy (4@))s 874
are the maximal chains in g, (B) provided by Lemma 10.2, and for some k
we have Dy (AM) = D (A@), then r(AW, k) = r(4@ k).

Remark

Lety < B and B e MAX(8gy), and let {r(A,k): A€ &g, (B), k=1,2,...,5(B,7.
A)} be a family of (8, y)-special convex combinations for B. For A € &g, (B), let
(Dy (A))f(f l’y’A) be the maximal chain in +g , (B) provided by Lemma 10.2, and let
(A (i))f(jl’y’A) be the components of A in 8g,,.

By construction, D1(A) = B for all A € g, (B), and thus, r(A4,1) does not
depend on A. Additionally, D,(A) only depends on A(1); thus, r(A(M,2) = r(4?®,
2) if Cpg (AN, 1) = Cpg , (AP, 1), for any AV, AP € &g, (B). We can con-
tinue, and inductively we observe that for all k < min(s(8,y, AD),s(B,y, A®))
if Cpg (AW, i) = Cpg(AP,i), for all i =1,2,....k — 1, then r(AD k) =
r(A? k).

Let y < B8 and B € MAX(8g,). If y is a limit ordinal number, then B €
MAX(884(y,min(B))) and any (B, y)-special family of convex combinations {r(4,k) :
Ae&g,(B),1 <k =<s(B,y,A)}isalsoa (B, n(y,min(B)))-special family of convex
combinations, as &g, (B) = &g ;(y,min(B)) (B) and for A € Eg ;(ymin(B)) (B) wWe have

s(B.n(y.min(B)), A) = s(B,y, A).

LEMMA 10.9

We are given y < B, B € MAX(8g(,+1)), and a (B, y + 1)-special family of convex
combinations {r(A,k): Ae &p,11(B),1 <k <s(B,y + 1,A)}. Assume that for
some D € &g, 11(B) (and hence for all of them) we have r(D,1) < 1. Let B =
U?:l Bj, where By < --- < By are the immediate predecessors of B in g, (B).
For every 1 < j < d consider the family {r)(C.k): C € &g y(Bjt1)}, with
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S TICYY

i=1

for k =1,....5(8,7.C) = s(B,y,(U/_, Bi) U C) — 1. Then {rU(C,k): C €
€p.y(Bjt1)} is a (B, y)-special family of convex combinations.

Proof

By (103b), if C € 85, (B, +1), then A = (J/_, B/) UC € &g, +1(B) and s(B,y +
1,4) =s(B,y,C) + 1, which implies that Definition 10.8(a) is satisfied. To see that
(b) holds, let C™M,C® be in &g, (B, +1) such that for some k we have Dy (CV) =
Di(C@). Then by Lemma 10.7 we have min(Cpg_,,(CV), k)) = min(Cpg_, (C®,
k)). Setting A® = ((J/_, B,) UCD and A® = ((J/_, B;) UC®, by (103b) we
obtain Cpg ,, 1 (A" k+1) = Cpy ,(CV. k) and Cpg ,(A® k+1) =Cpg ,(C?,
k), that is, min(Cpg_,, (A", k + 1)) = min(Cpg, (A®,k + 1)). By Lemma 10.7
we obtain Dy 41 (AM) = Dy ;(AP) and therefore r (AN k + 1) = r(A@ k + 1),
which yields that r)(C W k) = rD(C P k). O

11. Conclusion of the proofs of Theorems A and C

Again, we fix £ < and put 8 = w®° . We additionally assume that X is a Banach
space X with a bimonotone FDD (F;). By [32, Main Theorem] every reflexive
Banach space X embeds into a reflexive Banach space Z with basis, so that Sz(Z) =
Sz(X) and Sz(Z*) = Sz(X*). The coordinate projections on finitely or cofinitely
many coordinates are denoted by P4 (see Section 9 after Definition 9.5).

Definition 11.1

Let y < B, let M € [N]®, and let Ap be a subset of N that is either empty or a
singleton. Also let & : 8g, (A9) N[M]=* — X be a semiembedding of 85, N [M]=¢
into X, starting after Ao, that is c-refined, for some 0 < ¢ < 1. Let {xg} U {x4,u4 :
A € 8, (Ao) N [M]=“} be the family generating ®. (Recall that notation from the
remark after Definition 9.2.)

Let E € MAX(8g,, (Ag) N [M]=?). For A < E recall the definition of 5(8, y, A)
and of (Cpg., (4,1));%;"" . Recall also from (106) €5 (Ao U E) = { < A < Ag U
E:Cpﬁ,y(A,i) #@, fori =1,2,...,5(8,y,A)}.

Foreach A € &g,,,(Ag U E) we will write x4 as a sum of a block sequence

s(B,y,4) .
X4 = Z xf(b’il, (109)
k=1
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with X% = Prag(xa). for k = 1.2.....5(B.y.4), where I(A.1) = [l,
maxsupp(icp, ,an)l  and  I(AK) = (MaxsuppOY it (4

maxsupp(xuk for 1 < k < s(B,y,4). We call the family

£ Copya)]
((xgcl)skf’ly’A))AegB,y(AOUE) the block step decomposition of E with respect to ®.

Remark

Let M € [N]®, let y < B be a limit ordinal number, and let 1(y,n) be the sequence
provided by Proposition 2.6. Assume that A is a singleton or the empty set and that
®:8g,(Ag) N[M]~® — X is a semiembedding of §g, N [M]=* into X, starting at
Ay, that is c-refined.

If Ag is a singleton, say, Ag = {ao}, let W : 8, (y.40)(A0) N [M]~? — X, with
W(A) = ®(A), be the semiembedding of $gy(y,4,) N [M]™ into X, starting at Ao,
that is c-refined and given by Remark 9.6. Then, for every £ € MAX(8gy(y,a0) (4o) N
[N]=?), we have

((x(k) S(ﬂ,n(y,ao),A)) —((x(k) s(B,y,A) (110)

V,A7k=1 Aesﬁ,n(y,ao)(AUUE) - ®,47k=1 )Aeeﬁ,V(AOUE)'

If Ag =0, let ag € M, set Ag = {ao}, set N = M N [ag,00), and set ¥ =

q)l’sﬂn(y,a())(AO)m[N]<w’ which is, by Remark 9.6, a semiembedding of &g (y.4,) N

[N]=® into X, starting at Ay, that is c-refined. Then, again for every E €
MAX(88y(y.a0) (A0) N [N]=),

(k) \s(B.n(v.a0),4) (k) \s(B.y,A4)
(Cx

v,4) k=1 )Aeé’ﬁvn(y'aO)(AouE) = ((Xpa)k=i )Aesﬁ,y(AouE) (111)

is the step block decomposition of E with respect to W.

Before formulating and proving the missing parts from Theorems A and B (see
upcoming Theorem 11.6) we present the argument which is the main inductive step.

Let y < B. For B € MAX(8g(,+1)) = 83[8py] (see Proposition 2.6), we let
By < By <--- < By be the (unique) elements of MAX(&g,) for which B =
U9, B;. We also define B = {min(B;): j = 1.2.....d} € MAX(84) and for
i=1,...,d Bi={min(B;):j =1,2,...,i}.

If0 <A< B,wecanwrite Aas A = Ulj;ll B; UC,forsome j =1,2,...,d and
some @ < C < Bj, and thus, by Proposition 3.4, {(B(y + 1), A) = {(B, Bj)é(,By, C).
We define

J
Epy+1(B) = {(U Bl) UC €8pyy1(B):1<j<d, li(B))>0,

i=1

andeBjH}. (112)
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Let M € [N]“, let Ay be a subset of N that is either empty or a singleton, and let
®:8p,(A9) N [M]~” — X be a semiembedding of §g,, N [M]=* into X, starting
after Ag, that is c-refined, for some 0 < ¢ < 1. Also let £ € MAX(8g(,+1))(4g) N
[M]=®, and put B = Ag U E. For 1 < j <d, with [1(B;) >0, put M¥) = M n
(max(B;),00) and @) : 85, N [MD]<® - X with

Qg)(C)zmé((( U B,-)\AO)UC). (113)

1<i<j

Recall that by Lemma 9.7, CDg) is a semiembedding of 8, N [M]<® into X,
starting at @, that is c-refined. Recall that for 1 < j <d,

€5}, (AU E) = {4 €8y 11(40 UE): Cpg (4. ) = Bi},

i<j
and moreover, if [; (B 1) >0, define
(B,y+1,4)
: (B +1.4)° k
A€€Y) . (AQUE) T k=2

Bv+1

Remark '

(a) By Lemma 9.7, each @g) is a semiembedding of &g, N [M]<® into X,
starting at @, that is c-refined. -

(b) We note for later use that (y((b]’ )E)f.zl is a sequence in X which satisfies the
conditions of the sequence (x j)?zl in Theorem 6.1 with @ = 8 and thus,
assuming that Sz(X) < w?, also its conclusion.

(©) By the definition of the components of a set A, we conclude that (for j = d,

we have [{(By) = 0)

Epyii(AUE)= ) €f), (4UE) (115)
1<j<d
11(B;)>0
which yields
syrid
Yooty > xE
A€€p 11(AQUE) k=1
= > BB+ Y By +D.ANS,. (16)
1<j<d A€§B'y+1(A()UE)

ll(l;’j)>0
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LEMMA 11.2

Let y < B, let M € [N]?, let Ay be either empty or a singleton in N, and let ® :
8gy+1)(Ao) N[M]=® — X be a semiembedding of 8g(,+1) N [M]~ into X, start-
ing after Ao, that is c-refined, for some 0 < c¢ < 1. Then, for every E €
MAX(8g(y+1)(4o) N [M]™?),

s(B,y+1,4) 3
®(E) — 1). 4 (k) H 2 an
lom) - X oA Y x| < g (1)
A€8g 1 1(AgUE) k=1

Proof
Recall that, for 4 € g,4+1(Ao U E), we have x4 = 2@1"“’“ xg‘il and that

O(E) =" a<aour S(B(y + 1), A)x 4. Hence,
s(B,y,A)

ch(E)— Yo B+ Y xgiil”
k=1

AEélgsy+1 (AgUE)

-] T e

~AjA()UE:
A¢85!y+| (AgUE)

We calculate

S B+ 1).4)

A=AGUE
A¢Ep .y +1(A0VE)

= > By +1).4)
A<AQUE
A¢Ep y4+1(AoUE)

+ > > By +1).4)

1§_j<d Aeg(/) (A()UE)
nBp=o0 P

= > By +1).4)
A<AgUE
A¢8ﬁ,y+l (AgUE)

+ Y BB Y (eran(UB))

1<j<d 4e8Y) | (A4oUE) i=j
1,(B;)=0 B.y+1
2 1 3

(118)

= min(A4o U E) + min(B) " min(Ag UE)’

where the last inequality follows from Lemmas 3.7(e) and 10.5. O



A METRIC INTERPRETATION OF REFLEXIVITY FOR BANACH SPACES 3069

LEMMA 11.3

Let y, M € [N]®, Ao, O, and ¢ be as in the statement of Lemma 11.2. If E €
MAX(8g(y+1)(A0) N[M]=?) and By < --- < By are in MAX(8g,,), with Ag U E =
U9y Bj and B ={minB; : 1 < j <d} € MAX(8p), and if (y{)9_, is defined
asin(114), thenfor j =1,...,d —1 with ll(B ) > 0, where B, ={minB;:1<i <
jY, we have ||y(J) | <1 and ran(y(J) ) C (max(B;),max(B;1,)). Put
max(Bg11) = oo. Then

s(B,y+1,4)

Yoo tBr+n.A) > xP

AEéB(V+1)(A0UE) k=1

= Y Bo+D.AL A+ Y BBy (119

A€p 1 1(AQUE) 11(51_@];50
1(B

Proof

Observe that (119) immediately follows from (116) and the fact that, for 1 < j <d
with [;(B;) > 0, we have {(B8, B;) = S(B, Bji1). For 1 <j <d with [{(Bj) >0
and A € 8(1 y+1(4o U E), note that UL, Bi<A=<J/X! Bi and

s(B,y+1,4)
k
=y )
k=2

= P(max supp(xCpB’y (A.1))smaxsupp(x 4)] (XA)

= P(max supp(x ),max supp(x 4)] X 45 ( 1 20)

Ul_y B,
that is, ||u 4] < 1 and by Definition 9.5(b) we obtain
_ J
max(B;) < max(U B,-) < max supp()cU_i,'=1 Bi) < minsupp(u4) and
i=1
max supp(# 4) < maxsupp(x4) < min{m eM:m> max(A)} < max(éj+2),

which yields

ran(u4) C (max(éj),max(éj+2)). (121)

Furthermore, we have {(B(y + 1), A) = £(B, B;+1){(By, A\ (Ul_1 B;)), and since
¢(B,Bj+1) = (B, B;) (by I1(B}) > 0), we obtain

v+ 1.4) !
sy = (),

i=1
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We deduce

) _ .
Yer= D tBrOwuy gy
Ceépy(Bj+1)

The above in combination with (121), (122), and the fact that |u 4| < 1 yield that
1y§ | <1 and ran(y{y) € (max(B;), max (B, 42)). O

LEMMA 11.4

Let y, M € [N]?®, Ao, ®, and ¢ be as in the statement of Lemma 11.2. Let E €
MAX(8g(y+1)(Ao) N [M]=?), (Bj)?zl, B, and (l;,-)?'=1 be as in the statement of
Lemma 11.3, and let CI>(Ej), j=1,...,d—1, and M) ¢ [M]® be defined as in (113).
Forj=1,...,d —1 with ll(l?j) > () denote by

((Z(k) )S(ﬂy C))

q)(j) CGSB’V/(BJ'+1)

the block step decomposition of Bj 11 with respect to CIDg). Then for C € &g ,(Bj+1)
we have s(B,y + 1 (Ul_1 BHuC)=s(B,y,C)+ 1and

k) _ (k+1) _
e = x<1>,(U{=IB,~)UC’ fork=1,...,5(B,y.C).

Proo

Fix g € &g, (Bj11). By (103b), if we set A = (U{=1 Bi))UC,thens(B,y+1,4) =
sB,y.C) + 1, Cpﬁ,yﬂ(A,i + 1) = Cpg,(4,i) for i = 1,....5(8,y,0),
and Cpg,4,(4.1) = U/_Bi. Fix 1 <k <s5(8,7.C). Let {z¢ : C € 8, N
[M()]<®} be the family generating Y ), and let nyp = max supp(xU i Bi)' Then
by Definition 11.1 and Lemma 9.7 we have

k
xc(qu_ ) = = Prak+1)(xa)

and

fb()]) c = Prcnlzc) = Prc.o (Png.00) (XU, ; B:UC))
with (if k = 1, replace max supp(zU;:ll Cpﬁ,y(c,i)) by ng)

I1(C,k) = (maxsupp(z (-1 ). max supp(z ;¢

1 Cpg .y (C.i) =1Cpg.y (Cz))]
= (maxsupp(Piuo.00)X((47_ gzt g (C0)-

max supp(Pno.c0) X }/_ pru(Uk, Cpﬁ,y(c,i)))]
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= (max SUPP(X(J7_ pyu(UKZ] Cpp, (Ci))”

max supp(X 7 pyuUL, cPﬂ,y<c,i)>)]

= I(Ak +1),

where we used ny < max supp(xU j ), which follows from Definition 9.5(b).
i=17Pi
Hence,

(k)
)
o), C

k
= Preak+1) Png.00)(X4) = Pr(ak+1)(x4) = Xfp,jl)- O

z
PROPOSITION 11.5

Assume that Sz(X) < wP. Then, forevery 1> c > 0and M € [N]?, there exists N €
[M]® with the following property: for every y < B, L € [N]®, Ao C N that is either
empty or a singleton, every semiembedding ® : 8g,(Ag) N [L]~* — X from 8g, N
[L]=® into X, starting at Ay, that is c-refined, every E € MAX(8g,(Ao) N [L]~®),
and every (B,y)-special family of convex combinations {r(A,k) : A € &g, (Ao U
E), 1<k <s(B,y, A)}, we have

s(B,y,A) « c
Yo LB Y r(ARlgl = 5 (123)
AESE,),(A()UE) k=1

where (xc(lﬁc,L)AGSB.y(AO,E) is the block step decomposition of E for ® (Defini-
tion 11.1).

Proof

Fix M € [N]® and 1 > ¢ > 0. Choose ¢ > 0 such that ¢/2 — ¢ > ¢/3, and then apply
Theorem 6.1 to find N € [M]* such that (67) is satisfied for that & and 8 and, more-
over,

(%_8_mintN)) l_!v(l_%)>§' (124)

me

We claim that this is the desired set. We shall prove by transfinite induction on y
the following statement: if y < 8, L € [N]®, Ag C L that is either empty or a sin-
gleton, and & : 8g,,(49) N [L]=* — X is a semiembedding of 8, N [L]~* into X,
starting at Ao, that is c-refined, then for any £ € MAX(8g, (A4o) N [L]=*) and any
(B, y)-special family of convex combinations {r(A4,k): A€ &g (Ao UE), 1 <k <
s(B,v, A)} we have
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s(B,y,A)
LBy A) D (AKXl
> ,
AE@BJ,(A()UE) k=1
c 4 > 1
= (5 e min(L)) n!;[L(l B E) (129)

In conjunction with (124), this will yield the desired result. Let y = 1,let L C N, let
Ao be a subset of L that is either empty or a singleton, and let ® : $g(Ao) N [L]~* —
X be a semiembedding of g N [L]=* into X, starting at Ao, that is c-refined. Let
E e MAX(8p(Ao) N[N]=®).

By (103a), for each A € Eg,1(Ao U E) we obtain that the block step decompo-
sition of x4 is just (xfpl,)A) = (x4), and hence, if {r(4,k): A€ &p1(AoUE),1 =<
k <s(B,1,A)}is a (B, 1)-special family of convex combinations, then r(A4,1) = 1.
Hence,

s(B,1,4)
St Y AR
A€&p.1(49UE) k=1
= > LB.Alxal

A€&g 1(AgUE)

= X wax|- Y s
A=AoVE A<AQUE
A¢83 1(AoUE)

\Y

2
B - s © 108

— 5(B. 40)

=

(by Definition 9.5(d))

NS

" min(4o U B)

2 min(L)

(by (33)).

To verify the induction step, first let y < 8 be an ordinal number for which the
conclusion holds. Let L C N, let Ao be a subset of L that is either empty or a single-
ton, and let @ : 8(,,41)(Ao) N [L]=® — X be a semiembedding of 8g(,+1) N [L]~*
into X, starting at Ao, that is c-refined. Let £ € MAX(8g(,+1)(4o) N [L]=?), and
let {r(A,k): A€ &g pr1(AgUE), 1<k <s(B,y+1,4)} bea (B,y + 1)-special
family of convex combinations. Let Ao U £ = U?:l Bj,where By <--- < By arein
MAX(8g, N[L]=®)and B =min{B; : 1 < j <d}isin MAX(8g). By Lemma 11.3
and the choice of the set N, we obtain
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| > BBy < (126)

15_]<d
11(Bj)>0

Combining first Lemmas 11.2 and 11.3, then applying Definition 9.5(d) and (33), and
finally by using (126), we deduce

Yoo LB+ DA xS

Ae€g 1 1(A9UE)

S D SRS RSN
A€€p 11(AQUE)
3
zle@®] =] X BB -
1<j<d
ll(Bj)>0
=S A e = e
=2 v .o min(4o UE) — 2 min(L)"

We distinguish two cases. If r(4,1) =1 forall A€ &g, 1(Ao U E), then

s(B,y+1,4) .
Yoo By AD.A) D AR
A€&g 1 1(AgUE) k=1

= Y B+ DA

Aeé’ﬁ!y_,_, (AgUE)

> Y B+ D.A)xG

Aeéﬁ.y+1 (AgUE)

By (127), the result follows in that case.

Otherwise we have r{ =r(A4,1) <1forall A€ &g, 1(AgUE). Forl <j <d,
with [;(B;) > 0, define L) = L N (max(4o U (Ui<i<j Bi)),o0) and @g) 1 8py N
[L)]<® — X asin (113). By Lemma 9.7, each dD(Ej) is a semiembedding of §g, N
[L(j )]<“’ into X, starting at @, that is c-refined.

By Lemma 10.9, the family {r/)(C,k): C € &3, (B;+1)}, with

rO(C.k) = 7r(A(1) 5 ((UB)UC k+1)

fork=1,....5(8.y,C) =s(B.y. (Ul_1 B;)UC)—1andsome AV € 85,11 (4gU
E), is a (B,y)-special family of convex combinations. Hence, by the inductive
assumption applied to the map CD(J ) and Lemma 11 4, we deduce that
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s(B,y+1,4)
Yoo B D.A) D AR

) k=2
Aeg) . | (A49UE)

s(B,y,C)

=B B)(1—r(Aa® D) Y Br.0) Y rOChIE,

Ce€g (Bjt1) k=1 E

=06 B (1 —rAV D) (5o - o) ] (1-2) a2

melL ()
We combine (127) with (128) to obtain

s(B,y+1,4)

Yoo B DA D> Al xEY

Aeeﬁ,y+l(A0UE) k=1

s(B,y+1,4)
> Y B+ Y AR

A€g 11(AQUE) k=1
= > B+ DA A xS
AEé[i,y—}-l (AoUE)

s(B,y+1,4)

> > LB +1.4) D rAk)|x@,

1§_j<d Aeg(j) (A()UE) k=2
nBH=o0  Pr

2 r(a®, 1)(% T mi:(L))

+ D é(ﬂ,Bj)(l—r(A(l)’l))(%_g_mnf(L)) [1 (l_nlc)

1<j<d
ll(B_/')>0

=( X Z(ﬁ’éf))(%_g_mif@)) I (1_%)

1<j<d meL
I (Bj)>0

(1 - mml(é))(% e %(L)) I (1 _ %) (by Lemma 3.7(¢))

meLM

(%_8_ mi:(L)) I1 (1_ %)

meL

A%

%
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Assume now that y < B is a limit ordinal number and that the claim holds for all
y' <y.Let L €[N]?,let Ag be a subset of L that is either empty or a singleton, and
let ®: 8g,(Ag) N [L]™® — X be a semiembedding of 8, N [L]~* into X, starting
at Ag, that is c-refined. We distinguish between two cases, namely, whether A is a
singleton or whether it is empty. In the first case, A9 = {ao} for some ag € L. By
Remark 9.6, the map W with W = ® can be seen as a semiembedding of 8g5(y,40) N
[L]=“ into X, starting at Ao, that is c-refined. If £ € MAX(8g,(A49) N [L]=?), then
E € MAX (881 (y,a0)(A0) N [L]=*) and by (110) we have
((X&L);gin(y’a()),A))AEE,’B’,](V.QO)(A()UE) = ((x‘(lill)z(f,ly,A))AGSB.V(AQUE)’

whereas if {r(4,k): A€ &g, (Ao UE),1 <k <s(B.,y,A)} is a (B, y)-special fam-
ily of convex combinations, then by the remark following Definition 10.7, it is a
(B, n(y,ao))-special family of convex combinations as well. Applying the inductive
assumption for 1(y,ap) < y yields

s(B,y,4) .
o tBra Y rABIxE
A€&p ., (AQUE) k=1

s(B,n(y,a0),A4)

= 2 dBeand) 30 rABI

Aesﬁ,n(y,ao)(AOUE) k=1

= (% e mij(L)) HL(l - %) (129)

me

In the second case, Ag is empty. Let B € MAX(8g, N [L]=?), and set ag =
min(B). By Remark 9.6, if L’ = L N [ag,00), then the map W : 8g,(y.40)(A0) N
[L'] = X with W(A4) = ®(Ag U A) is a semiembedding of 8, (y,4,) N [L']~“ into
X, starting at Ay, that is c-refined. By (111) we obtain

(k) \s(B.n(v.a0),4) — ((+®) \s(B.v,A)

(Cegemy )Aesg_n(y,am(g) = ((Xpa)i=i )AesB,V(AouE)’
whereas if {r(4,k): A e &g,(B),1 <k <s(B,y,A)} is a (B, y)-special family of
convex combinations, then by the remark following Definition 10.8, it is a (8, n(y,
ag))-special family of convex combinations as well. The result follows in the same
manner as in (129). O

THEOREM 11.6

Assume that X is a reflexive and separable Banach space, with the property that
Sz(X) < wP and Sz(X*) < B. Then for no L € [N]® does there exist a semiembed-
ding of 8g2> N [L]~* into X, starting at 0.
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Proof

By [32, Main Theorem] we can embed X into a reflexive space Z with basis such
that Sz(Z) = Sz(X) and Sz(Z*) = Sz(X*). Thus, we may assume that X has a
basis, which must be shrinking and boundedly complete, since X is reflexive. By
renorming X, we may assume that the bases of X and X* are bimonotone. Choose
oo with Sz(X*) < w*® < B. (This is possible due to the form of 8.) Note that

CB(84y) = @ + 1 <+ 1 =CB(Fp,). (130)

Toward a contradiction, assume that there exists L € [N]® and a semiembedding W of
852 N[L]~ into X, starting at @. By Lemma 9.8 there exist 1 > ¢ > 0, M € [L]“, and
a semiembedding ® of 852> N [M]~*
Proposition 11.5, we may pass to a further subset of M, again denoted by M, so that
(123) holds. Fix 0 < ¢ < ¢/3, and apply Theorem 6.1 to the space X* and the ordinal
number ag to find a further subset of M, which we again denote by M, so that (67)

into X, starting at @, that is c-refined. Applying

is satisfied.

By Propositions 2.2 and 2.13 we may pass to a subset of M, again denoted
by M, so that 84, N [M]=® C ¥ . By Lemma 10.2 we obtain that, for any B €
MAX (85> N [M]=®) and A € &g g(B), there exists A € MAX(8y,) with

A= {min(Cpg 4(A.k)): 1 <k <s(B.B. A)}. (131)

Choose B € MAX(8g2 N [M]=?). We will define a (B, B)-special family of con-
vex combinations {r(A4,k): A€ &g g(B),1 <k <s(B.B,A)}. For A € &g g(B) let
A={af,....a] } € MAX(Sy,) be as in (131). For 1 <k <s(f, B, 4) set

r(A,k) = (132)

C(oo. A) if k <#A,

0 otherwise,
where /fk = {a‘l‘l, .. ,a,f} for 1 <k < #A. We will show that this family satisfies Def-
initions 10.8(a) and 10.8(b). The first assertion is straightforward; to see the second
one, let AV, 4® € &g 4(B) such that if (D (A(l)))fc(fiﬁ’A) and (D (A(z)))s(ﬁ 8,47
are the maximal chains of #g g(B) provided by Lemma 10.2, then for some k we
have Dy (A1) = Di(A®). By Lemmas 10.6 and 10.7 we obtain min(Cpg (A",
m)) = min(Cpﬁ,ﬁ(A(Z),m)) for m = 1,...,k, which implies AD = /Ifn for m =
1,...,min{k, #4(M}. By (132) it easily follows that r(AM k) = r(A@ k). Since
(123) is satisfied, we obtain

Yoo A>Zc(ao,Ak)||x<k) E (133)

Aegﬂﬂ(B) k=1

UJI(":
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— &) - . k) (k)y _
Foreach A € Eg g(B)andk =1,...,d 4 choose f " in Sx«, with f,"(x,”) =
(k)
[lx, || and

ran(f/gk)) - ran()cgfl1

C (maxsupp(x k=) ). max supp (x| j¢

CPB B(A l) leB B(A l))]
C (min(Cpg 4(A.k — 1)), min(Cpg g(A.k + 1)))
= (max(Ax_1). max(Ag11)).

where the third inclusion follows from Definition 9.5(b). As (67) is satisfied, we
obtain that for all A € Eg g(B)

da
HZ E(to. Ar) f P H <e. (134)
k=1

We finally calculate

da
S Y wBA D Lo ADIE, N by (133)

Aeé’ﬁ!ﬁ(B) k=1

w

dy
= Z Q(,BZ,A)Zﬁ(aO,fIk)f k)(x(k)) (by the choice offék))

AESBJg(B) k=1

dy _ . B.B,A
= Y BN Lo A S ”(Z ")
Ae&g g(B) k=1 m=1

(since ran(f )) C ran(x(k)

dg
= Y A Lo A £ (xa) by (109)

Ac€g 5(B) k=1

< ¥ z(ﬁz,A)HdZAé(ao,fIk)fj"’H<e (by (134)).
k=1

AG&B_B(B)

This contradiction completes the proof. O
Before proving Corollary 1.2 we will need the following observation.

PROPOSITION 11.7
Let X be a Banach space, let @ < w1, and let L be an infinite subset of the natural



3078 MOTAKIS and SCHLUMPRECHT

numbers so that there exist numbers 0 < ¢ < C and a map ® : 8, N [L]=° — X
that is a c-lower-dso o and C-upper-dy o embedding. Then for every B < « there
exist n € N and a map ®g : 8g N[L N (n,00)]~° — X that is a c-lower-dw g and
C-upper-dy g embedding.

Before proving Proposition 11.7 we need some preliminary observations. The
first one can be easily shown, and we omit a proof.

LEMMA 11.8

Let a be an ordinal number with A C [0, ] satisfying:

(a) o € Aand

(b) ifBeAandy < B, then thereis y <n < f withn € A.
Then A = [0, «].

LEMMA 11.9

Let a < wy be a limit ordinal number. Then there exists a sequence of successor

ordinal numbers (u(a,n)), satisfying the following statements.

(a) u(o,n) <o foralln €N andlim, u(o,n) = a.

(b) 8, ={AeN]"®: A€ 8u(a,min(A))} U{@} and Ep(am N [, 00)]=® C 8 for
alln e N.

(©  For A€ 8y \ {0}, Z(a,4) = Z((amin(4)), 4)-

Proof

We define ((o,n)), by transfinite recursion on the set of countable limit ordinal
numbers. For « = w we set (uw(w,n)), = (A(w,n)),. If @ is a limit ordinal such that
for all &’ < « the corresponding sequence has been defined, set for each n € N

Ao, n) if A(a, n) is a successor ordinal number,

w(A(a,n),n) otherwise.

pla,n) = {

The fact that (b), (c), and the first part of (a) hold is proved easily by transfinite induc-
tion using (23) in Corollary 2.7 and the definition of repeated averages. To show that
lim, p(or, n) = o, we will show that for arbitrary L € [N]* we have sup,,o; u(a,n) =
. Fix L € [N]? and B < a. Then, since CB(8, N[L]=?) = 0® 4+ 1 > wP + 1, we have
Be (8N [L]<“’)(“’B+1), and hence, there exists n € L with {n} € (8, N [L]<“’)(“’B).
Using (4) we obtain

B (8 NILI) " ((n}) € 87 ({n}) = (Sa((n})”

= (Sutam (1) = 890 (1n}),



A METRIC INTERPRETATION OF REFLEXIVITY FOR BANACH SPACES 3079

. . . B . . .
which implies {n} € 8;"(’0[’),!), that is, CB(&,(a,n)) = P + 1, which yields u(a,

n)=p. O

Proof of Proposition 11.7

We shall first treat two very specific cases. In the first case, « = B + 1. Fix ng > 2 with
no € L, and fix Bo € MAX(8g N [L]™*) with min(By) = no. Define n = max(By)
and ®g : 8g N[L N (n,00)]~° — X with ®g(A4) =noP(By U A). Then Py is the
desired embedding.

In the second case, « is a limit ordinal, and for some nog > 2 with ng € L we
have B + 1 = u(a, no). Fix By € MAX(8g N[L]=*) with min(By) = ng, define n =
max(By), and define g : 85 N [L N (1n,00)]? — X with Pg(A) =noP(Bo U A).
Then, by using the properties of (1 (o, k))k, it can be seen that ®g is well defined and
is the desired embedding.

In the general case, define A to be the set of all 8 < « for which such an n and
®g exist. Since a € A, it remains to show that A satisfies Lemma 11.8(b). Indeed, fix
BeAand y < B.1If B =n+ 1, then by the first case we can deduce that n € A and
y <n < . Otherwise,  is a limit ordinal. Let ®g and ng witness the fact that 8 € A,
and by Lemma 11.9(a) we may choose n € L with n > ng such that u(8,n) >y + 1.
If 5 is the predecessor of w(B,n), then by the second case we deduce that € A and

Yy <n<B§. O

Proof of Corollary 1.2

We first recall a result by Causey [12, Theorem 6.2], which says that for a countable
ordinal £ it follows that y = ¢ is the Szlenk index of some separable Banach space
X if and only if & is not of the form & = w", with n being a limit ordinal. Since
@ =" , a cannot be the Szlenk index of some separable Banach space.

(a)=(b). From (a) and Causey’s result we have Sz(X) < w* and Sz(X*) < w®,
and thus, there exists a § < w; with § = w®* < w® " < & such that Sz(X) < wP
and Sz(X) < B. Thus, it follows from Theorem 11.6 that for no L € [N]® are there
numbers 0 < ¢ < C and a map ®: 852> N [L]™ — X that is a c-lower-d, g2 and
C-upper-d; > embedding. Since B? < 0 <a Proposition 11.7 yields our claim.

(b)=>(a). This follows from Theorems 8.1 and 8.3. O

To prove Corollary 1.3 recall that every separable Banach space is isometrically
equivalent to a subspace of C|[0, 1], the space of continuous functions on [0, 1]. The
set 8B of all closed subspaces of C[0, 1] is given the Effros—Borel structure, which
is the o -algebra generated by the sets {F € §8 : F N U # 0}, where U ranges over
all open subsets of C[0, 1].
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Proof of Corollary 1.3
By [26, Theorem D] the set

€y ={X € 88 : X reflexive and max(Sz(X),Sz(X*)) <«}

is analytic. So, by Souslin’s separation theorem (cf. [18, Theorem 14.11]) it is left to
show that its complement is also analytic. Since by Corollary 1.2

B\ €, ={X € 8B : X not reflexive}
U{X € 88 : Xreflexive and max (Sz(X), Sz(X ™)) > «}
={X € 88 : X not reflexive}
U{X € 88 : (84.d1,¢) bi-Lipschitzly embeds into X }

and since by [9, Corollary 3.3] the set of reflexive spaces in 88 is coanalytic, we
deduce our claim from the well-known and easy-to-show observation that the set of
X € 88 in which a fixed (M, d) separable metric space embeds is analytic. O

12. Final comments and open questions

The proof of Theorem A yields the following equivalences. The statement that
(a)=(b) follows from Proposition 7.2, (d)=-(a) follows from Theorem 11.6, and
(b)=(c)=(d) is trivial.

COROLLARY 12.1

For a separable Banach space X the following statements are equivalent.

(a) X is not reflexive.

(b) For all a < w there exists for some numbers 0 < ¢ < C a c-lower de g,
C -upper dy o embedding of 8, into X.

(c) For all o < w there exist a map Yy, : 84 — X and some 0 < ¢ <1 such that,
forall A, B, C € 84 with the property that A> C, B> C,and A\C < B\C,

cdio(A, B) < |W(A) — U(B)| < d1o(A, B).
(d)  For all @ < wy, there exist an L € [N]=? and a semiembedding Wy : 84 N
[L]"® — X.
As mentioned before we can consider for @ < w; and A € 8, the vector z4 to be
an element in éf, with [|x[l¢, < 1. We define
Ty ={(A,B) €8, x8,:3C < Aand C <A, with A\ C < B\ C}.

We note that dy (A, B) = ||za — zg|1 for (A, B) € T,. Using this notation we
deduce the following sharpening of [29, Theorem 3.1] from Corollary 12.1.
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COROLLARY 12.2

Let X be a separable Banach space. Then the following are equivalent.

(a) X is not reflexive.

(b) For all o < wq there exist a map Yy, : 84 — X and some 0 < ¢ <1 such that

cdi,«(A, B) < ||V (A) — Wo(B)| < dia(A. B) whenever (A, B) € Tg,.

We note that James’s space J is a nonreflexive space for which it is not hard to
see that Sz(J) = Sz(J*) = w. Theorem C and Corollary 1.2 are therefore not true if
we omit the requirement that X is reflexive. Nevertheless, the following variation of
Corollary 1.2 holds.

COROLLARY 12.3

Assume that @ < wy is an ordinal for which @ = w®. Then the following statements

are equivalent for a separable Banach space X .

(a) X is reflexive and max(Sz(X), Sz(X*)) < a.

(b) There is no map V : 8, — X with 0 < ¢ <1 such that, for all A,B,C € 8,
with the property that C < A, C < B, and A\ C < B\ C, we have

cdia(A, B) < | ¥(4) —W(B)| < dia(A. B).

Proof
Let W : 8, — X satisfy the condition stated in (b) for some ¢ > 0. Then U= (v —
W(%))/2 also has this property for ¢/2 and maps 8, into Bx with ¥(%) = 0.
(a)=>(b). This follows from Theorem 11.6, [12, Theorem 6.2], and the same argu-
ment involving Proposition 11.7 in the proof of Corollary 1.2.
(b)= (a). This follows from Proposition 7.2 and Theorems 8.1 and 8.3. O

Remark
The statement of Corollary 12.3 also holds for &« = w. This can be seen from the proof
of [7, Main Result].

We finish by stating three open problems.

PROBLEMS 12.4

(a) Does there exists a family of metric spaces (M;,d;) which is a family of test
spaces for reflexivity in the sense of [27], that is, for which it is true that
a separable Banach space X is reflexive if and only if not all of the M;’s
uniformly bi-Lipschitzly embed into X ?

(b)  Does there exist a countable family of metric spaces (M;, d;) which is a family
of test spaces for reflexivity?
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It follows from Theorem B that if X is a separable Banach space with non-
separable bidual, then (84, d1,4) bi-Lipschitzly embeds into X for all o < w;.
Is the converse true, or in Ostrovskii’s language, are the spaces (84, d1,q),
a < wy, test spaces for spaces with separable biduals?
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