
A METRIC INTERPRETATION OF REFLEXIVITY FOR
BANACH SPACES

P. MOTAKIS and T. SCHLUMPRECHT

Abstract
We define two metrics d1;˛ and d1;˛ on each Schreier family S˛ , ˛ < !1, with which
we prove the following metric characterization of the reflexivity of a Banach space
X : X is reflexive if and only if there is an ˛ < !1 such that there is no mapping
ˆ W S˛!X for which

cd1;˛.A;B/�
��ˆ.A/�ˆ.B/��� Cd1;˛.A;B/ for all A;B 2 S˛:

Additionally we prove, for separable and reflexive Banach spaces X and certain
countable ordinals ˛, that max.Sz.X/;Sz.X�// � ˛ if and only if .S˛; d1;˛/ does
not bi-Lipschitzly embed into X . Here Sz.Y / denotes the Szlenk index of a Banach
space Y .
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1. Introduction and statement of the main results
In this article we seek a metric characterization of the reflexivity of Banach spaces.
By a metric characterization of a property of a Banach space we mean a characteriza-
tion which refers only to the metric structure of that space but not its linear structure.
In 1976 Ribe [31] showed that two Banach spaces that are uniformly homeomorphic
have uniformly linearly isomorphic finite-dimensional subspaces. In particular, this
means that the finite-dimensional or local properties of a Banach space are deter-
mined by its metric structure. Based on this result Bourgain [10] suggested the “Ribe
program,” which asks to find metric descriptions of finite-dimensional invariants of
Banach spaces. Bourgain [10] proved the following characterization of superreflexiv-
ity: a Banach space X is superreflexive if and only if the binary trees Bn of height
at most n, n 2 N, endowed with their graph metric, are not uniformly bi-Lipschitzly
embedded into X . A binary tree of height at most n is the set Bn D

Sn
kD0¹�1; 1º

k ,
with the graph or shortest path metric d.�; � 0/D i C j � 2max¹t � 0 W �s D � 0s; s D
1; 2; : : : ; tº, for � D .�s/isD1 ¤ �

0 D .� 0s/
j
sD1 in

Sn
kD0¹�1; 1º

k . A new and shorter
proof of this result was recently obtained by Kloeckner [19]. Baudier [6] extended this
result and proved that a Banach space X is superreflexive if and only if the infinite
binary tree B1 D

S1
nD0¹�1; 1º

n (with the graph distance) does not bi-Lipschitzly
embed intoX . Nowadays this result can be deduced from Bourgain’s result and Ostro-
vskii’s [27, Theorem 1.2], which states that a locally finite metric space A embeds bi-
Lipschitzly into a Banach space X if all of its finite subsets uniformly bi-Lipschitzly
embed into X . Johnson and Schechtman [17] characterized superflexivity, using the
diamond graphs, Dn, n 2 N, and proved that a Banach space X is superreflexive if
and only if the Dn, n 2 N do not uniformly bi-Lipschitzly embed into X . There are
several other local properties, that is, properties of the finite-dimensional subspaces
of Banach spaces, for which metric characterizations have been found. The following
are some examples: Bourgain, Milman, and Wolfson [11] characterized having non-
trivial type by using Hamming cubes (the sets ¹�1; 1ºn, together with the `1-norm),
and Mendel and Naor [22], [23] presented metric characterizations of Banach spaces
with type p, 1 < p � 2, and cotype q, 2 � q <1. For a more extensive account
on the Ribe program we refer the reader to the survey articles [5] and [24] and the
book [28].

Instead of only asking for metric characterizations of local properties, one can
also ask for metric characterizations of other properties of Banach spaces, proper-
ties which might not be determined by the finite-dimensional subspaces. A result in
this direction was obtained by Baudier, Kalton, and Lancien [7]. They showed that
a reflexive Banach space X has a renorming which is asymptotically uniformly con-
vex (AUC) and asymptotically uniformly smooth (AUS) if and only if the branch-
ing trees Tn, of length n 2 N, do not uniformly bi-Lipschitzly embed into X . Here
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Tn D
Sn
kD0N

k , together with the graph metric, that is, d.a; b/D i C j �max¹t �
0 W as D bs; s D 1; 2; : : : ; tº, for a D .a1; a2; : : : ; ai / ¤ b D .b1; b2; : : : ; bj / in Tn.
Among the many equivalent conditions for a reflexive Banach space X to be AUC-
and AUS-renormable (see [25]), one of them states that Sz.X/D Sz.X�/D !, where
Sz.Z/ denotes the Szlenk index of a Banach space Z (see Section 5 for the defini-
tion and properties of the Szlenk index). Dilworth, Kutzarova, Lancien, and Randria-
narivony [13, Theorem 6.3] showed that a separable Banach space X is reflexive and
AUC- and AUS-renormable if and only if X admits an equivalent norm for which
X has Rolewicz’s ˇ-property. According to [20] a Banach space X has Rolewicz’s
ˇ-property if and only if

Ň
X .t/D 1� sup

°
inf
°kx � xnk

2
W n� 1

±
W .xn/

1
nD1 �BX ; sep

�
.xn/

�
� t; x 2BX

±
> 0;

for all t > 0, where sepŒ.zn/� D infm¤n kzm � znk, for a sequence .zn/ � X . The
function ŇX is called the ˇ-modulus of X . Using the equivalence between the posi-
tivity of the ˇ-modulus and the property that a separable Banach space is reflexive and
AUC- and AUS-renormable, Baudier and Zhang [8] were able to establish a new and
shorter proof of the above-cited result from [7]. Metric descriptions of other nonlocal
Banach space properties, for example, the Radon–Nikodým property, can be found
in [29].

In our article we concentrate on metric descriptions of the property that a Banach
space is reflexive and subclasses of reflexive Banach spaces. Ostrovskii [29] estab-
lished a submetric characterization of reflexivity. Let T be the set of all pairs .x; y/
in `1 � `1 for which kx � yk1 � 2kx � yks , where k � k1 denotes the usual norm
on `1 and k � ks denotes the summing norm, that is, kzks D supk2N j

Pk
jD1 zj j, for

z D .zj / 2 `1. Theorem 3.1 of [29] states that a Banach space X is not reflex-
ive if and only if there are a map f W `1 ! X and a number 0 < c � 1 such that
ckx � yk1 � kf .x/ � f .y/k � kx � yk1 for all .x; y/ 2 T . In Section 12 we will
formulate a similar result, using a discrete subset of `1 � `1, witnessing the same
phenomena. Recently, Procházka [30, Theorem 3] formulated an interesting metric
description of reflexivity. He constructed a uniformly discrete metric space MR with
the following properties. If MR bi-Lipschitzly embeds into a Banach space X with
distortion less than 2, then X is nonreflexive. The distortion of a bi-Lipschitz embed-
ding f of one metric space into another is the product of the Lipschitz constant of f
and the Lipschitz constant of f �1. Conversely, if X is nonreflexive, then there exists
a renorming j � j of X such that MR embeds into .X; j � j/ isometrically.

Our article has the goal of finding a metric characterization of reflexivity. An opti-
mal result would be a statement, similar to Bourgain’s result, of the form “all mem-
bers of a certain family .Mi /i2I of metric spaces embed uniformly bi-Lipschitzly
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into a space X if and only if X is not reflexive.” In the language introduced by Ostro-
vskii [28], this would mean that .Mi /i2I is a family of test spaces for reflexivity.
Instead, our result will be of the form (see Theorem A below) “there is a family of
sets .Mi /i2I , and for i 2 I , there are metrics d1;i and d1;i on Mi with the property
that a given space X is nonreflexive if and only if there are injections ˆi WMi ! X

and 0 < c � 1 such that cd1;i .x; y/ � kx � yk � d1;i .x; y/, for all x;y 2Mi .” In
Section 12 we will discuss the difficulties in obtaining a characterization of reflex-
ivity of the first form. Nevertheless, if we restrict ourselves to the class of reflexive
spaces, we obtain a metric characterization for the complexity of a given space, which
we measure by the Szlenk index, using test spaces. Roughly speaking, the higher the
Szlenk index is of a given Banach space, the more averages of a given weakly null
sequence that one has to take to obtain a norm null sequence. For a precise formula-
tion of this statement we refer to Theorem 5.3. For the class of separable and reflexive
spaces we will introduce an uncountable family of metric spaces .M˛/˛<!1 for which
we will show that the higher the complexity of a given reflexive and separable space
X or its dual X� is, the more members of .M˛/˛<!1 can be uniformly bi-Lipschitzly
embedded into X .

The definition of the Schreier families S˛ � ŒN�<! , for ˛ < !1, will be recalled in
Section 2, the Szlenk index Sz.X/ for a Banach space X will be defined in Section 5,
and the two metrics d1;˛ and d1;˛ on S˛ will be defined in Section 7. The statements
of our main results are as follows.

THEOREM A
A separable Banach space X is reflexive if and only if there is an ˛ < !1 for which
there does not exist a map ˆ W S˛ ! X , with the property that for some numbers
C � c > 0

cd1;˛.A;B/�
��ˆ.A/�ˆ.B/��� Cd1;˛.A;B/ for all A;B 2 S˛ . (1)

Definition 1.1
Assume thatX is a Banach space, ˛ < !1, and C � c > 0. We call a mapˆ W S˛!X

with the property that, for all A;B 2 S˛ ,

cd1;˛.A;B/�
��ˆ.A/�ˆ.B/��� Cd1;˛.A;B/ (2)

a c-lower-d1;˛ and C -upper-d1;˛ embedding of S˛ intoX . If A is a subset of S˛ and
ˆ WA! X is a map which satisfies (2) for all A;B 2A, we call it a c-lower-d1;˛
and C -upper-d1;˛ embedding of A into X .

Our next result extends one direction (the “easy direction”) of [7, Main Result]
to spaces with higher-order Szlenk indices. As in [7] reflexivity is not needed here.
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THEOREM B
Assume that X is a separable Banach space and that max.Sz.X/;Sz.X�// > !˛ , for
some countable ordinal ˛. Then .S˛; d1;˛/ embeds bi-Lipschitzly into X and X�.

We will deduce one direction of Theorem A from James’s [16] characterization
of reflexive Banach spaces and show that for any nonreflexive Banach space X and
any ˛ < !1 there is a map ˆ˛ W S˛!X which satisfies (1). The converse will follow
from the following result.

THEOREM C
Assume that X is a reflexive and separable Banach space. Let � < !1, and put ˇ D
!!

�
. If for some numbers C > c > 0 there exist a c-lower-d1;ˇ2 and C -upper-d1;ˇ2

embedding of Sˇ2 into X , then Sz.X/ > !ˇ or Sz.X�/� ˇ.

Theorem C and, thus, the missing part of Theorem A will be shown in Section 11
in Theorem 11.6. Combining Theorems B and C, we obtain the following characteri-
zation of certain bounds of the Szlenk index of X and its dual X�. This result extends
[7, Main Result] to separable and reflexive Banach spaces with higher-order Szlenk
indices.

COROLLARY 1.2
Assume that ! < ˛ < !1 is an ordinal for which !˛ D ˛. Then the following state-
ments are equivalent for a separable and reflexive space X .
(a) max.Sz.X/;Sz.X�//� ˛.
(b) .S˛; d1;˛/ is not bi-Lipschitzly embeddable into X .

Corollary 1.2 and a result in [26] yield the following corollary. We thank Christian
Rosendal, who pointed it out to us.

COROLLARY 1.3
If ˛ < !1 with ˛ D !˛ , then the class of separable and reflexive Banach spaces X
for which max.Sz.X/;Sz.X�// � ˛ is Borel in the Effros–Borel structure of closed
subspaces of CŒ0; 1�.

A proof of Corollaries 1.2 and 1.3 will be presented at the end of Section 11.
For the proof of our main results we will need to introduce some notation and to
make several preliminary observations. The reader who is at first only interested in
understanding our main results will only need the definition of the Schreier families
S˛ , ˛ < !1, given in Section 2.2, the definition of repeated averages stated at the
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beginning of Section 3, and the definition of the two metrics d1;˛ and d1;˛ on S˛
introduced in Section 7.

2. Regular families, Schreier families, and fine Schreier families
In this section we first recall the definition of general regular subfamilies of ŒN�<! .
Then we recall the definition of the Schreier families S˛ and the fine Schreier families
Fˇ;˛ , ˛ � ˇ < !1 (see [1]). The recursive definition of both families depends on
choosing for every limit ordinal a sequence .˛n/ which increases to ˛. To ensure that
our proof will work out, we need .˛n/ to satisfy certain conditions.

2.1. Regular families in ŒN�<!

For a set S we denote the subsets, the finite subsets, and the countably infinite subsets
by ŒS�, ŒS�<! , and ŒS�! , respectively. We always write subsets of N in increasing
order. Thus, if we write A D ¹a1; a2; : : : ; anº 2 ŒN�<! or A D ¹a1; a2; : : :º 2 ŒN�! ,
we always assume that a1 < a2 < � � � . Identifying the elements of ŒN� in the usual
way with elements of ¹0; 1º! , we consider on ŒN� the product topology of the discrete
topology on ¹0; 1º. Note that it follows for a sequence .An/� ŒN�<! and A 2 ŒN�<!

that .An/ converges to A if and only if for all k �maxA there is an m so that An \
Œ1; k�DA, for all n�m.

For A 2 ŒN�<! and B 2 ŒN� we write A < B if max.A/ < min.B/. As a matter
of convention we put max.;/ D 0 and min.;/ D 1, and thus, A < ; and A > ;
is true for all A 2 ŒN�<! . For m 2 N we write m � A or m < A if m � min.A/ or
m<min.A/, respectively.

We denote by � the partial order of extension on ŒN�<! ; that is, AD ¹a1; a2; : : : ;
alº �B D ¹b1; b2; : : : ; bmº if l �m and ai D bi , for i D 1; 2; : : : ; l , and we writeA	
B if A�B and A¤B . We say that F � ŒN�<! is closed under taking restrictions if
A 2 F whenever A	B and B 2 F and is hereditary if A 2 F whenever A�B and
B 2 F , and F is called compact if it is compact in the product topology. Note that a
family which is closed under restrictions is compact if and only if it is well founded,
that is, if it does not contain strictly ascending chains with respect to extensions.
Given n;a1 < � � � < an; b1 < � � � < bn in N we say that ¹b1; : : : ; bnº is a spread of
¹a1; : : : ; anº if ai � bi for i D 1; : : : ; n. A family F � ŒN�<! is called spreading
if every spread of every element of F is also in F . We sometimes have to pass
from a family F � ŒN�<! to the subfamily F \ ŒN �<! D ¹A 2 F W A � N º, where
N � N is infinite. A second way to pass to a subfamilies is the following. Assume
that F � ŒN�<! and N D ¹n1; n2; : : :º 2 ŒN�! ; then we call

F N D
®
¹nj W j 2Aº WA 2 F

¯
the spread of F onto N .
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A family F � ŒN�<! is called regular if it is hereditary, compact, and spreading.
Note that if F � ŒN�<! is compact, spreading, and closed under restriction, then it
is also hereditary and thus regular. Indeed, if B D ¹b1; b2; : : : ; blº 2 F and 1� i1 <
i2 < � � �< ik � l , then AD ¹bi1 ; bi2 ; : : : ; bik º is a spread of B 0 D ¹b1; b2; : : : ; bkº, and
since B 0 2 F , it also follows that A 2 F .

If F � ŒN�<! , we denote the maximal elements of F , that is, the elementsA 2 F

for which there is no B 2 F with A 	 B , by MAX.F /. Note that if F is compact,
then every element in F can be extended to a maximal element in F .

For F � ŒN�<! and A 2 ŒN�<! we define

F .A/D
®
B 2 ŒN�<! WA<B;A[B 2 F

¯
:

Note that if F is compact, spreading, closed under restrictions, or hereditary, then so
is F .A/.

If F � ŒN�<! is compact, we denote by CB.F / its Cantor–Bendixson index,
which is defined as follows. We first define the derivative of F by

F 0 D
®
A 2 F W 9.An/� F n ¹Aº;An!n!1 A

¯
DF n ¹A 2 F WA is isolated in F º:

Every maximal element A of F is not in F 0, and if F is spreading, then F 0 D

F nMAX.F /. For A 2 ŒN�<! it easily follows that

F 0.A/D
�
F .A/

�0
: (3)

By transfinite induction we define for each ordinal ˛ the ˛th derivative of F by

F .0/ DF ;

F .˛/ D .F .�//0 if ˛D � C 1; and

F .˛/ D
\
�<˛

F .�/ if ˛ is a limit ordinal.

It follows that F .ˇ/ �F .˛/ if ˛ � ˇ. By transfinite induction, (3) generalizes to

F .˛/.A/D
�
F .A/

�.˛/
; for all A 2 ŒN�<! and ordinal ˛. (4)

Assume that F � ŒN�<! is compact. Since F is countable and since every count-
able and compact metric space has isolated points, it follows that for some ˛ < !1 the
˛th derivative of F is empty, and we define

CB.F /Dmin¹˛ WF .˛/ D;º:

Note that CB.F / is always a successor ordinal. Indeed, if ˛ < !1 is a limit ordinal
and F .�/ ¤; for all � < ˛, then it follows that F .˛/ D

T
F .�/ ¤;.
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Definition 2.1
For F ,G � ŒN� we define

F t< G WD ¹A[B WA 2 F ;B 2 G ; and A<Bº; (5)

F ŒG � WD

´
n[
iD1

Bi W
n 2N;B1 <B2 < � � �<Bn;Bi 2 G ; i D 1; 2; : : : ; n;

and ¹min.Bi / W i D 1; 2; : : : ; nº 2 F

μ
: (6)

It is not hard to see that if F and G are regular families, then so are F t< G and
F ŒG �.

2.2. The Schreier families
We define the Schreier families S˛ � ŒN�<! by transfinite induction for all ˛ < !1 as
follows:

S0 D
®
¹nº W n 2N

¯
[ ¹;ºI (7)

if ˛D � C 1, we let

S˛ D S1ŒS� �

D
° n[
jD1

Ej W n�min.E1/;E1 <E2 < � � �<En;Ej 2 S� ; j D 1; 2; : : : ; n
±
I (8)

and if ˛ is a limit ordinal, we choose a fixed sequence .�.˛;n/ W n 2N/� Œ1; ˛/which
increases to ˛ and put

S˛ D
®
E W 9k �min.E/; with E 2 S�.˛;k/

¯
: (9)

An easy induction shows that S˛ is a hereditary, compact, and spreading family
for all ˛ < !1. It is not very hard to see by transfinite induction that S˛ is in the
following very limited sense backward spreading:

if AD ¹a1; a2; : : : ; anº 2 S˛; then ¹a1; a2; : : : ; an�1; an � 1º 2 S˛: (10)

So, in particular, if A 2 S˛ n ¹;º is not maximal, then .A[ ¹kº/k>max.A/ � S˛ .
Additionally, by transfinite induction we can easily prove that S˛ is “almost”

increasing in ˛ in the following sense.

PROPOSITION 2.2
For all ordinals ˛ < ˇ < !1, there is an n 2N such that

S˛ \ Œn;1/
<! � Sˇ :
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The following formula for CB.S˛/ is well known and can easily be shown by
transfinite induction for all ˛ < !1.

PROPOSITION 2.3
For ˛ < !1 we have CB.S˛/D !˛ C 1.

We now make further assumptions on the approximating sequence .�.˛;n// �
Œ1; ˛/ that we had chosen to define the Schreier family S˛ , for limit ordinals ˛ < !1.
We will choose .�.˛;n// recursively. Assume that ˛ is a countable limit ordinal and
that we have defined .�.�;n//, for all limit ordinals � < ˛, and thus S� for all � < ˛.

Recall that ˛ can be represented uniquely in its Cantor normal form

˛D !�kmk C!
�k�1mk�1C � � � C!

�1m1; (11)

where �k > �k�1 > � � � > �1, mk ;mk�1; : : : ;m1 2 N, and since ˛ is a limit ordinal,
�1 � 1.

We distinguish between three cases.
Case 1: k � 2 or m1 � 2. In this case we put for n 2N

�.˛;n/D !�kmk C!
�k�1mk�1C � � � C!

�1.m1 � 1/C �.!
�1 ; n/: (12)

Before considering the next cases we need to make the following observation.

PROPOSITION 2.4
Assume that for all limit ordinals � � ˛ satisfying Case 1 the approximating
sequences .�.�;n/ W n 2 N/ satisfy the above condition (12). It follows for all � � ˛,
with

� D !�lml C!
�l�1ml�1C � � � C!

�1m1

being the Cantor normal form, that

S� D S�2 ŒS�1 �; where for some j D 1; : : : ; l ;

�1 D !
�lml C!

�l�1ml�1C � � � C!
�jm

.1/
j and

�2 D !
�jm

.2/
j C!

�j�1mj�1C � � � C!
�1m1;

with m.1/j ;m
.2/
j 2N[ ¹0º, mj Dm

.1/
j Cm

.2/
j . (13)

Proof
We will show (13) by transfinite induction for all � � ˛. Assume that (13) holds for all
Q� < � . If � D !� , then (13) is trivially satisfied. Indeed, in that case � D �C0D 0C�
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are the only two choices for writing � as the sum of two ordinals, and we observe that
S0ŒS� �D S� ŒS0�D S� .

It is left to verify (13) in the case in which l � 2 or ml � 2. Let � D �1 C �2 be
a decomposition of � as in the statement of (13). We can without loss of generality
assume that �2 > 0.

If �2 D ˇ C 1 for some ˇ (which implies that � itself is a successor ordinal), it
follows from the induction hypothesis and (8) that S�1CˇC1 D S1ŒSˇ ŒS�1 ��, so we
need to show that

S1
�
Sˇ ŒS�1 �

�
D SˇC1ŒS�1 �:

If A 2 S1ŒSˇ ŒS�1 ��, we can write A as AD
Sm
iD1Ai with m � A1 < A2 < � � � < An

and Ai 2 Sˇ ŒS�1 �, for i D 1; : : : ; n, which in turn means that Ai D
Sli
jD1A.i;j /,

where A.i;1/ � A.i;2/ � � � � � A.i;li /, A.i;j / 2 S�1 , for j D 1; 2; : : : ; li , and
¹minA.i;j / W j D 1; 2; : : : ; liº 2 Sˇ , for i D 1; 2; : : : ;m. This means that ¹minA.i;j / W
j D 1; 2; : : : ; li ; i D 1; 2; : : : ;mº is in SˇC1, and thus, we conclude that A 2
SˇC1ŒS�1 �. Conversely, we can show in a similar way that SˇC1ŒS�1 �� S1ŒSˇ ŒS�1 ��.

If �2 is a limit ordinal, we first observe that

�.�;n/D �.�1C �2; n/D �1C �.�2; n/:

If A 2 S�1C�2 , then it follows that there is an n�minA such that, using the induction
hypothesis, we have

A 2 S�1C�.�2;n/ D S�.�2;n/ŒS�1 �:

This means that AD
Sm
jD1Aj with A1 < A2 < � � � < Am, ¹min.Aj / W j D 1; 2; : : : ;

mº 2 S�.�2;n/, and Aj 2 S�1 , for j D 1; 2; : : : ;m. Since n � min.A/D min.A1/, it
follows that ¹min.Aj / W j D 1; 2; : : : ;mº 2 S�2 and, thus, that A 2 S�2 ŒS�1 �. Con-
versely, we can similarly show that if A 2 S�2 ŒS�1 �, then it follows that A 2 S�1C�2 .

If Case 1 does not hold, ˛ must be of the form ˛D !� .
Case 2: ˛ D !!

�
, for some � < !1. In this case we make the following require-

ment on the sequence .�.˛;n/ W n 2N/:

S�.˛;n/ � S�.˛;nC1/; for all n 2N: (14)

We can ensure that (14) holds as follows: first choose any sequence �0.˛;n/ which
increases to ˛. Then we notice that Proposition 2.2 yields that for a fast enough
increasing sequence .ln/� N, it follows that S�0.˛;n/Cln � S�0.˛;nC1/ClnC1 . Indeed,
we first note that the only set A 2 S� , � < ˛, which contains 1 must be the singleton
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AD ¹1º. This follows easily by induction. Additionally, we note that by (8) it follows
that Œ¹2; 3; : : : ; nº� � S�Cn, for each � < ˛ and n 2 N, which yields our claim. Set
�.˛;n/D �0.˛;n/C ln.

The remaining case is the following.
Case 3: ˛D !!

�C� , where 1� � � !� . We first observe that in this case � and �
are uniquely defined.

LEMMA 2.5
Let ˛ be an ordinal number such that there are ordinal numbers �, � with � � !� and

˛D !!
�C� . Then for every �0, � 0 with � 0 � !�

0

so that ˛D !!
�0C�0 , we have � D �0

and � D � 0.

Proof

Let ˛ D !!
�C� D !!

�0C�0 be as above. By [33, Section 7.2, Theorem 41] !� C � D
!�
0

C � 0. If �0 < �, then !�
0

C � 0 � !�
0

2 < !�
0

! D !�
0C1 � !� � !� C � , which is

a contradiction. We conclude that � � �0, and therefore, by interchanging the roles of
� and �0 we obtain that � D �0. In conclusion, !�C � D !�C � 0, and therefore � D � 0

as well.

We now choose a sequence .�.�; n//n of ordinal numbers increasing to !� so that

S!!� �.�;n/ � S!!� �.�;nC1/; (15)

and we define

�.˛;n/D !!
�

�.�; n/: (16)

We describe how (15) can be obtained. Start with an arbitrary sequence .� 0.�; n//n
increasing to !� . We shall recursively choose natural numbers .kn/n2N, so that by
setting �.�; n/D � 0.�; n/C kn, (15) is satisfied. Assuming that k1; : : : ; kn have been
chosen, choose knC1 as in the argument yielding (14), so that

S!!� �.�;n/ � S!!� � 0.�;nC1/CknC1 :

We will show that this knC1 is the desired natural number, that is, that

S!!� �.�;n/ � S!!� .� 0.�;nC1/CknC1/:

First note that, by using finite induction and Proposition (2.4), it is easy to verify that
for � < ˛, with � D !� , for some � < !1, and for n 2N

S� �n D S�
�
S� � � �S� ŒS� �

�„ ƒ‚ …
n times

; (17)

and thus,
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S!!� .� 0.�;nC1/CknC1/

D S!!�‚0.�;nC1/C!!� knC1 D S!!�
�
� � �
�
S!!�„ ƒ‚ …

knC1 times

ŒS!!� � 0.�;nC1/�
��


 S1
�
� � �
�
S1„ ƒ‚ …

knC1 times

ŒS!!� � 0.�;nC1/�
��
D S!!� � 0.�;nC1/CknC1 
 S!!� �.�;n/:

We point out that the sequence .�.�; n//n also depends on ˛.

PROPOSITION 2.6
Assume that the approximating sequences .�.˛;n/ W n 2 N/ satisfy the above condi-
tions for all limit ordinals ˛. It follows for all � < !1, with

� D !�lml C!
�l�1ml�1C � � � C!

�1m1

being the Cantor normal form, that

S�.�;n/ � S�.�;nC1/ for all n 2N if � is a limit ordinalI (18)

S� D S�2 ŒS�1 �; where for some j D 1; 2; : : : ; l ;

�1 D !
�lml C!

�l�1ml�1C � � � C!
�jm

.1/
j and

�2 D !
�jm

.2/
j C!

�j�1mj�1C � � � C!
�1m1;

with m.1/j , m.2/j 2N[ ¹0º, mj Dm
.1/
j Cm

.2/
j ; (19)

and if ˇD !!
�

and � is a limit ordinal with � � ˇ, then

there is a sequence
�
	.�;n/

�
n

increasing to � so that �.ˇ�;n/D ˇ	.�;n/: (20)

(This sequence .	.�; n//n can depend on ˇ.)

Proof
We first prove (18) and (19) simultaneously for all � < !1. Assume that our claim is
true for all Q� < � . Then (19) follows from Proposition 2.4.

If l Dm1 D 1, we deduce (18) from the choice of �.�;n/, n 2N (see (14), (15),
(16)). If l � 2 or m2 � 2, we deduce from (13) and the induction hypothesis that

S�.�;n/ D S!�kmkC���C!�2m2C!�1m1C�.!�1 ;n/

D S�.!�1 ;n/ŒS!�kmkC���C!�2m2C!�1m1 �

� S�.!�1 ;nC1/ŒS!�kmkC���C!�2m2C!�1m1 �D S�.�;nC1/;

which verifies (18) also in that case.
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To verify (20) let � < !1 with ˇD !!
�
� � . Recall that by (16) �.!!

�C�1 ; n/D

!!
�
�.�1; n/. For each n, define 	.�;n/D !�lmlC!�l�1ml�1C� � �C!�1.m1�1/C

�.�1; n/. We will show that .	.�; n//n2N has the desired property. Note that the Cantor
normal form of ˇ� is ˇ� D !!

�C�lml C!
!�C�l�1ml�1C � � � C!

!�C�1m1. Hence,
by (12)

�.ˇ�;n/D !!
�C�lml C!

!�C�l�1ml�1C � � � C!
!�C�1.m1 � 1/C �.!

!�C�1 ; n/

D !!
�C�lml C!

!�C�l�1ml�1C � � � C!
!�C�1.m1 � 1/C!

!��.�1; n/

D !!
� �
!�lml C!

�l�1ml�1C � � � C!
�1.m1 � 1/C �.�1; n/

�
D ˇ	.�;n/:

Remark
The proof of Proposition 2.6 (in particular, the definition of .	.�; n//n) implies the
following. Let � be a countable ordinal number, and let � � ˇ D !!

�
be a limit

ordinal number. If � D !�1 , then

	.�;n/D �.�1; n/; for all n 2N: (21)

Otherwise, if the Cantor normal form of � is

� D !�lml C!
�l�1ml�1C � � � C!

�1m1;

�1 D !
�lml C!

�l�1ml�1C� � �C!
�jm

.1/
j , and �2 D !�jm

.2/
j C!

�j�1mj�1C� � �C

!�1m1, with m.1/j ;m
.2/
j 2N[ ¹0º, mj Dm

.1/
j Cm

.2/
j , then we have

	.�;n/D �1C 	.�2; n/; for all n 2N: (22)

COROLLARY 2.7
If ˛ < !1 is a limit ordinal, then it follows that

S˛ D
®
A 2 ŒN�<! n ¹;º WA 2 S�.˛;min.A//

¯
[ ¹;º: (23)

Remark 2.8
If we had defined S˛ by (23) for limit ordinals ˛ < !1, where .�.˛;n/ W n 2 N/ is
any sequence increasing to ˛, then we would not have ensured that the family S˛ is a
regular family.

2.3. The fine Schreier families
We will now define the fine Schreier sets. For that we will also need to choose appro-
priate approximating sequences for limit ordinals. We will define the fine Schreier
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sets as a doubly indexed family Fˇ;˛ � ŒN�<! , ˛ � ˇ < !1. Later in the proof of
Theorems A and C, we will fix ˇ, depending on the Banach space X that we are
considering.

Definition 2.9
For a countable ordinal number � and ˇ D !!

�
, we recursively define a hierarchy of

families of finite subsets of the natural numbers .Fˇ;� /��ˇ as follows:
(a) Fˇ;0 D ¹;º;
(b) if � < ˇ, then Fˇ;�C1 D ¹¹nº[F W F 2 Fˇ;� ; n 2Nº (i.e., Fˇ;�C1 DFˇ;1t<

Fˇ;� ); and
(c) if � � ˇ is a limit ordinal number, then Fˇ;� D

S
n2N.Fˇ;�.�;n/ \ Œn;1/

<!/,
where .	.�; n//n is the sequence provided by Proposition 2.6 (and it depends
on ˇ).

Remark
It can be easily shown by transfinite induction that each family Fˇ;� is regular. In the
literature, fine Schreier families are usually defined recursively as a singly indexed
family .F˛/˛<!1 of subsets of ŒN�<! . In that case, F0 and F˛ are defined for suc-
cessor ordinals as in Definitions 2.9(a) and 2.9(b). And if ˛ is a limit ordinal F˛ is
defined as in Definition 2.9(c), without assuming that the approximating sequence
.	.˛;n//n2N depends on any ˇ � ˛.

Let � be a countable ordinal number, and let �1 � !� . If ˇ D !!
�

and � D !�1 ,
then it follows by (21) that 	.�;n/D �.�;n/ for n 2 N. The choice of .�.�1; n//n2N
may be done so that, along with (15), we also have

Fˇ;�.�;n/ DFˇ;�.�1;n/ �Fˇ;�.�1;nC1/ D Fˇ;�.�;nC1/: (24)

This can be achieved by possibly adding to � 0.�1; n/ a large enough natural number.
The following observation can be shown in a similar way as Proposition 2.6. We

omit the proof.

PROPOSITION 2.10
Let � be a countable ordinal number and ˇD !!

�
. Assume that for all limit ordinals

� � ˇ the approximating sequence .	.�; n//n satisfies conditions (21) and (22), and
for the case � D !�1 the approximating sequence .�.�1; n//n satisfies condition (24).
Then, for all � � ˇ whose Cantor normal form is

� D !�lml C!
�l�1ml�1C � � � C!

�1m1;

we have that
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Fˇ;�.�;n/ �Fˇ;�.�;nC1/ for all n 2N if � is a limit ordinal, (25)

and if, for some 1 � j � l , �1 D !�lml C !�l�1ml�1 C � � � C !�jm
.1/
j and �2 D

!�jm
.2/
j C!

�j�1mj�1C� � �C!
�1m1 with m.1/j ;m

.2/
j 2N[¹0º, mj Dm

.1/
j Cm

.2/
j ,

then

Fˇ;� DFˇ;�2 t< Fˇ;�1 : (26)

COROLLARY 2.11
Let � be a countable ordinal number, and let � � ˇD !!

�
be a limit ordinal number.

Then

Fˇ;� D
®
F 2 ŒN�<! W F 2 Fˇ;�.�;min.F //

¯
[ ¹;º: (27)

The following formula of the Cantor–Bendixson index of S˛ and Fˇ;˛ can be
easily shown by transfinite induction.

PROPOSITION 2.12
For any ˛; � < !1, with ˛ � ˇD !!

�
,

CB.S˛/D !
˛ C 1 and CB.Fˇ;˛/D ˛C 1:

Moreover, by assuming !˛ � ˇ, for every M 2 ŒN�! , there is an M 2 ŒN �! such that

SN˛ � Fˇ;!˛ and F N
ˇ;!˛ � S˛:

The main result in [14] states that if F and G are two hereditary subsets of ŒN�,
then for anyM 2 ŒN�! there is anN 2 ŒM �! so that F \ ŒN �<! � G or G \ ŒN �<! �

F . Together with Proposition 2.12 this yields the following.

PROPOSITION 2.13
For ˛; �; � < !1, ˇD !!

�
, and any M 2 ŒN �<! , there is an N 2 ŒM �<! so that

SN˛ � S˛ \ ŒN �
<! � Fˇ;� if !˛ < � � ˇ; and

F N
ˇ;� �Fˇ;� \ ŒN �

<! � S˛ if � < !˛ and � � ˇ:

2.4. Families indexed by subsets of ŒN�<!

We consider families of the form .xA W A 2 F / in some set X indexed over F �

ŒN�<! . If F is a tree, that is, closed under restrictions, then such a family is called
an indexed tree. Let us also assume that F is spreading. The passing to a pruning of
such an indexed tree is what corresponds to passing to subsequences for sequences.
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Formally speaking we define a pruning of .xA W A 2 F / as follows. Let 
 W F ! F

be an order isomorphism with the property that if F 2 F is not maximal, then for any
n 2N such that n >max.A/ and A[¹nº 2 F , 
.A[¹nº/ is of the form 
.A/[¹snº,
where .sn/ is a sequence which increases with n. We then call the family .xA W A 2

.F // a pruning of .xA WA 2 F /. Let QxA D x�.A/ for A 2 F . Then . QxA W A 2 F / is
simply a relabeling of the family .xA W A 2 
.F //, and we call it also a pruning of
.xA WA 2 F /. It is important to note that the branches of a pruning of an indexed tree
.xA W A 2 F / are a subset of the branches of the original tree .xA W A 2 F /. Here a
branch of .xA WA 2 F / is a set of the form

xF D .x¹a1º; x¹a1;a2º; : : : ; x¹a1;a2;:::;al º/ for F D ¹a1; a2; : : : ; alº 2 F :

Also the nodes of a pruned tree, namely, the sequences of the form . QxA[¹nº WA[¹nº 2

F /, with A 2 F not maximal, are subsequences of the nodes of the original tree.
Let us finally mention how we usually choose prunings inductively. Let ¹An W n 2

Nº be a consistent enumeration of F . By this we mean that if max.Am/ <max.An/,
then m< n. Thus, we also have that if Am 	An, then m< n, and if Am DA[ ¹sº 2
F and An DA[¹tº 2 F for some (nonmaximal) A 2 F and s < t in N, thenm< n.
Of course, A1 D ; and 
.;/D ;, and assuming now that 
.A1/, 
.A2/; : : : ; 
.Am/
have been chosen, AmC1 must be of the form Am D Al � ¹kº, with l < m D 1.
Moreover, if k > max.Al/C 1 and if Al [ ¹k � 1º 2 F , then Al [ ¹k � 1º D Aj
with l < j < mC 1, and 
.Aj /D 
.Al/[ ¹sº for some s has already been chosen.
Thus, we need to choose 
.AmC1/ to be of the form 
.Al/[ ¹tº, where, in the case
in which Al [ ¹k � 1º 2 F , we need to choose t > s.

The following well-known Ramsey-type result follows from [4, Corollary 2.5,
Proposition 2.6].

PROPOSITION 2.14
Assume that F � ŒN�<! is compact. Let r 2 N and f WMAX.F /! ¹1; 2; : : : ; rº.
Then for every M 2 ŒN�! there exist an N 2 ŒM �! and an i 2 ¹1; 2; : : : ; rº such that

MAX.F /\ ŒN �! �
®
A 2MAX.F / W f .A/D i

¯
:

3. Repeated averages on Schreier sets
We recall repeated averages defined on maximal sets of S˛ , ˛ < !1 (cf. [3]). As in our
previous sections we will assume that S˛ is recursively defined using the conditions
given in Section 2.2. We first need the following characterization of maximal elements
of S˛ , ˛ < !1, which can be easily proven by transfinite induction using Corollary 2.7
for the limit ordinal case.
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PROPOSITION 3.1
Let ˛ < !1.
(a) A 2MAX.S˛C1/ if and only if AD

Sn
jD1Aj , with nD min.A1/ and A1 <

A2 < � � �<An being in MAX.S˛/. In this case the Aj ’s are unique.
(b) If ˛ is a limit ordinal, thenA2MAX.S˛/ if and only ifA2MAX.S�.˛;min.A///.

For each ˛ < !1 and each A 2 MAX.S˛/ we will now introduce an element
z.˛;A/ 2 S`C

1

with supp.z.˛;A//DA, which we will call the repeated average of com-

plexity ˛ on A 2 MAX.S˛/. If ˛ D 0, then MAX.S0/ consists of singletons, and
for A D ¹nº 2MAX.S˛/ we put z.0;¹nº/ D en, the nth element of the unit basis of
`1. Assume that for all � < ˛ and all A 2 MAX.S� / we have already introduced
z.�;A/, which we write as z.�;A/ D

P
a2A z.�;A/.a/ea, with z.�;A/ > 0 for all a 2 A.

If ˛ D � C 1 for some � < !1 and if A 2MAX.S˛/, then by Proposition 3.1(a) we
write A in a unique way as AD

Sn
jD1Aj , with nDminA and A1 <A2 < � � �<An

being maximal in S� . We then define

z.˛;A/ D
1

n

nX
jD1

z.�;Aj / D
1

n

nX
jD1

X
a2Aj

z.�;Aj /.a/ea; (28)

and thus,

z.˛;A/.a/D
1

n
z.�;Aj /.a/ for j D 1; 2; : : : ; n and a 2Aj : (29)

If ˛ is a limit ordinal and A 2MAX.S˛/, then by Corollary 2.7, A 2 S�.˛;min.A//, and
we put

z.˛;A/ D z.�.˛;min.A//;A/ D
X
a2A

z.�.˛;min.A//;A/.a/ea: (30)

The following result was, with slightly different notation, proved in [3].

LEMMA 3.2 ([3, Proposition 2.15])
For all " > 0, all � < ˛, and all M 2 ŒN�! , there is an N D N.�;˛;M; "/ 2 ŒM �!

such that
P
a2A z.˛;B/.a/ < " for all B 2MAX.S˛ \ ŒN �<!/ and A 2 S� .

The following proposition will be proved by transfinite induction.

PROPOSITION 3.3
Assume ˛ < !1 and A 2 S˛ (not necessarily maximal). If B1, B2 are two extensions
of A which are both maximal in S˛ , then it follows that

z.˛;B1/.a/D z.˛;B2/.a/ for all a 2A.
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Remark
Proposition 3.3 says the following: if ˛ < !1 and A D ¹a1; a2; : : : ; anº is in
MAX.S˛/, then z.˛;A/.a1/ only depends on a1, z.˛;A/.a2/ only depends on a1 and
a2, and so on.

Proof of Proposition 3.3
Our claim is trivial for ˛ D 0. Assume that ˛ D � C 1 and that our claim is true for
� , and let A 2 S�C1. Without loss of generality A¤;; otherwise, we would be done.
Using Proposition 3.1, we can find an integer 1� l �minA, sets A1;A2; : : : ;Al�1 2
MAX.S� /, and Al 2 S� (not necessarily maximal in S� ) so that A1 <A2 < � � �<Al
and AD

Sl
jD1Aj . By Proposition 3.1, any extension of A to a maximal element in

S� will then be of the form B D
Sl
jD1Aj [

Smin.A/
jDl

Bj , where Al < Bl < BlC1 <
� � � < Bmin.A/ (Bl may be empty, in which case Al < BlC1 < � � � < Bmin.A/), so that
Al [ Bl and BlC1; : : : ;Bmin.A/ are in MAX.S� /. No matter how we extend A to a
maximal element B in S�C1, the inductive formula (28) yields

z.�C1;B/.a/D
1

min.A/
z.�;Aj /.a/

whenever for some j D 1; 2; : : : ; l � 1 we have a 2Aj :

In the case in which a 2 Al , then, by our induction hypothesis, z�;Al[Bl .a/ does not
depend on the choice of Bl , and

z.�C1;B/.a/D
1

n
z.�;Al[Bl /.a/ whenever a 2Al :

Thus, in both cases, the value of z.�C1;B/.a/ does not depend on how we extend A to
a maximal element B in S�C1.

If ˛ is a limit ordinal and A 2 S˛ is not maximal, then we also can assume that
A¤;, and thus, it follows from (23) in Corollary (2.7) that A 2 S�.˛;min.A//. For any
two extensionB ofA into a maximal set of MAX.S˛/, it follows from Proposition 3.1
that B is maximal in S�.˛;min.A// and that z.˛;B/ D z�.˛;min.A/;B/. Thus, also in this
case our claim follows from the induction hypothesis.

Using Proposition 3.3 we can consistently define z.˛;A/ 2 B`C
1

for any ˛ < !1
and any A 2 S˛ by

z.˛;A/ D
X
a2A

z.˛;B/.a/ea; where B is any maximal extension of A in MAX.S˛/:

In particular, this implies the following recursive definition of z.˛;A/. If A 2 S˛C1 n

¹;º, then we can write A in a unique way as AD
Sn
jD1An, where A1 <A2 < � � �<

An, Aj 2MAX.S˛/, for j D 1; 2; : : : ; n� 1, and An 2 S˛ n ¹;º, and note that
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z.˛C1;A/ D
1

min.A/

dX
jD1

z.˛;Aj /; (31)

and if ˛ is a limit ordinal, then

z.˛;A/ D z.�.˛;min.A//;A/: (32)

For D 2 S˛ define �.˛;D/D z.˛;D/.max.D//. For A 2 S˛ it therefore follows
that

z.˛;A/ D
X
D�A

�.˛;D/emax.D/:

We also put �.˛;;/D 0 and emax.;/ D 0.
By transfinite induction we can easily show the following estimate for 1 � ˛ <

!1:

�.˛;A/�
1

minA
: (33)

From Proposition 2.6 we deduce the following formula for z.˛;A/.

PROPOSITION 3.4
Assume that ˛ < !1 and that its Cantor normal form is

˛D !�lml C!
�l�1ml�1C � � � C!

�1m1:

Let j D 1; 2; : : : ; l and m.1/j ;m
.2/
j 2N[ ¹0º, with m.1/j Cm

.2/
j Dmj . Put

�1 D !
�lml C!

�l�1ml�1C � � � C!
�j�1mj�1C!

�jm
.1/
j ;

�2 D !
�jm

.2/
j C!

�j�1mj�1C � � � C!
�1m1:

For A 2MAX.S˛/ we use Proposition 2.6 and write AD
Sn
jD1Aj , where Aj 2 S�1

for j D 1; 2; : : : ; n, A1 <A2 < � � �<An, and B D ¹min.Aj / W j D 1; 2; : : : ; nº 2 S�2 .
Then it follows that Aj 2MAX.S�1/, for j D 1; 2; : : : ; n, B 2MAX.S�2/, and

z.˛;A/ D

nX
jD1

z.�2;B/
�
min.Aj /

�
z.�1;Aj /: (34)

In other words, if ; 	D �A and, thus,D D
Si�1
jD1Aj [

QAi , for some 0� i < n, and

; 	 QAi �Ai , then

�.˛;D/D �
�
�2;
®
min.Aj / W j D 1; 2; : : : ; i

¯�
� �.�1; QAi /: (35)
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Proof
We prove by transfinite induction for all ˇ < !1, with Cantor normal form

ˇD !�jmj C!
�j�1mj�1C � � � C!

�1m1;

the following.

CLAIM

If � < !1 has Cantor normal form

� D !�l Qml C!
�l�1 Qml�1C � � � C!

�j Qmj ;

where Qmj could possibly be vanishing, and if A D
Sn
iD1Ai 2 MAX.S�Cˇ / D

MAX.Sˇ ŒS� �/, where Ai 2 S� for i D 1; 2; : : : ; n, A1 < A2 < � � � < An, and
B D ¹min.Ai / W i D 1; 2; : : : ; nº 2 Sˇ , then it follows that Ai 2MAX.S� / for i D
1; 2; : : : ; n, B 2MAX.S�1/, and

z.˛;A/ D

nX
iD1

z.ˇ;B/
�
min.Ai /

�
z.�;Ai /: (36)

For ˇ D 0 the claim is trivial, and for ˇ D 1, our claim follows from Proposi-
tion 3.1 and the definition of z.�C1;A/ for A 2MAX.S�C1/.

Assume now that the claim is true for all Q̌ < ˇ and that � < !1 has the above
form. Let A D

Sn
iD1Ai 2 MAX.S�Cˇ /, where Ai 2 S� for i D 1; 2; : : : ; n, A1 <

A2 < � � �<An, and B D ¹min.Ai / W i D 1; 2; : : : ; nº 2 Sˇ .
First we note that (10) implies that the Ai ’s are maximal in S� . Indeed, for some

i0 D 1; 2; : : : ; n, if Ai0 is not maximal in S� , then if i0 D n, it would directly follow
that A cannot be maximal in S�Cˇ , and if i0 < n, we could define QAi D Ai , for
i D 1; 2; : : : ; l�1, QAi0 DAi0[¹min.Ai0C1/º, QAi D .Ai[¹min.AiC1/º/n¹min.Ai /º,
for i D i0; i0 C 1; : : : ; l � 1, and QAl D Al n ¹minAlº. Then, by (10) and the fact that
the Schreier families are spreading,AD

Sn
iD1
QAi is also a decomposition of elements

of S� with QB D ¹min. QAi / W i D 1; 2; : : : ; nº 2 Sˇ . But now QAn is not maximal in S�
and we again get a contradiction.

It is also easy to see that B is maximal in Sˇ . To verify (36) we first assume
that ˇ is a successor ordinal, say, ˇ D ˛C 1. Then we can write B as B D

Sm
iD1Bi ,

where m D min.B/ D min.A/, B1 < B2 < � � � < Bm, and Bi 2MAX.S˛/, for i D
1; 2; : : : ;m. We can write Bi as Bi D ¹min.As/ W s D ki�1 C 1; ki�1 C 2; : : : ; kiº,
with k0 D 0 < k1 < � � � < km D n. We put Ai D

Ski
sDki�1C1

As 2 S�C˛ D S˛ŒS� �,
for i D 1; 2; : : : ;m. From the definition of z.ˇC1;B/ and from the induction hypothesis
we deduce now that
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z.�C˛C1;A/ D
1

m

mX
iD1

z.�C˛;Ai /

D
1

m

mX
iD1

kiX
sDki�1C1

z.˛;Bi /
�
min.As/

�
z.�;As/

D

nX
sD1

z.ˇ;B/
�
min.As/

�
z.�;As/;

which proves the claim if ˇ is a successor ordinal.
If ˇ is a limit ordinal, it follows from Corollary 2.7, our definition of z.ˇ;B/ and

z.�Cˇ;A/, and our choice of the approximating sequence .�.� C ˇ/;n/ that

z.�Cˇ;A/ D z.�.�Cˇ;min.A//;A/

D z.�C�.ˇ;min.B//;A/

D

nX
jD1

z.�.ˇ;min.B//;B/
�
min.Aj /

�
z.�;Aj /

D

nX
jD1

z.ˇ;B/
�
min.Aj /

�
z.�;Aj /;

which also proves our claim in the limit ordinal case.

If ˛ < !1 and A 2 MAX.S˛/, then z.˛;A/ is an element of S`1 \ `
C
1 and can

therefore be seen as a probability on A. We denote the expected value of a function f
defined on A or on all of N as E.˛;A/.f /. As done in [32], we deduce the following
statement from Lemma 3.2.

COROLLARY 3.5 ([32, Corollary 4.10])
For each ˛ < !1 and A 2 MAX.S˛/, let fA W A! Œ�1; 1� have the property that
E˛;A.fA/� � for some fixed number � 2 Œ�1; 1�. For ı > 0 and M 2 ŒN�! put

Aı;M D

²
A 2 S˛ \ ŒM �<! W

9B 2MAX.S˛ \ ŒM �<!/;

A�B; and fB.a/� �� ı for all a 2A

³
:

Then CB.Aı;M /D !
˛ C 1.

We finish this section with an observation, which will be needed later.

Definition 3.6
If A � N n ¹;º is finite, we can write it in a unique way as a union AD

Sd
jD1Aj ,
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where A1 < A2 < � � � < Ad , Aj 2MAX.S1/ if j D 1; 2; : : : ; d � 1, and Ad 2 S1 n

¹;º. We call .Aj /djD1 the optimal S1-decomposition of A, and we define

l1.A/Dmin.Ad /� #Ad :

For AD; we put l1.A/D 0.

The significance of this number and its connection to the repeated averages is
explained in the following lemma.

LEMMA 3.7
Let ˛ 2 Œ1;!1/, A 2 S˛ , and let .Aj /djD1 be its optimal S1-decomposition.
(a) l1.A/D 0 if and only if AD; or Ad 2MAX.S1/.
(b) If A 2MAX.S˛/, then Ad 2MAX.S1/ and, thus, l1.A/D 0.
(c) If l1.A/ > 0, then for all max.A/ < k1 < k2 < � � �< kl1.A/ it follows that A[

¹k1; k2; : : : ; kl1.A/º 2 S˛ and

�
�
˛;A[ ¹k1; k2; : : : ; kiº

�
D �.˛;A/ for all i D 1; 2; : : : ; l1.A/:

(d) If m > l1.A/ and max.A/ < k1 < k2 < � � � < km have the property that A [
¹k1; k2; : : : ; kmº 2 S˛ , then

�
�
˛;A[ ¹k1; k2; : : : ; kiº

�
�

1

kl1.A/C1
:

(e) If A¤;, then X
D�A;l1.D0/D0

�.˛;D/�
1

min.A/
and

X
D�A;l1.D/D0

�.˛;D/�
1

min.A/
:

(Recall that D0 DD n ¹maxDº for D 2 ŒN�<! n ¹;º and ;0 D;.)

Proof
We prove (a)–(e) by transfinite induction for all ˛ 2 Œ1;!1/. For ˛ D 1, (a), (b), (c),
and (e) follow from the definition of S1 and the definition of �.˛;A/, for A 2 S1,
while (d) is vacuous in that case. Assume that our claim is true for some ˛ < !1,
and let A 2 S˛C1. Without loss of generality we can assume that A ¤ ;. Indeed,
if A D ;, then (a) is clear, (b), (c), and (e) are vacuous, and (d) follows easily by
induction from the fact that always �.˛;A/� 1

min.A/ if A 2 S˛ n ¹;º. By the definition
of S˛C1, A can be written in a unique way as AD

Sn
jD1Bj , where Bj 2MAX.S˛/,
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for j D 1; 2; : : : ; n� 1, and Bn 2 S˛ . For j D 1; 2; : : : ; n let .Aj;i /
cj
iD1 be the optimal

S1-decomposition of Bj . From the induction hypothesis for (b), it follows that .Aj;i /
are maximal in S1, for j < n or for j D n and i < cn. Therefore, it follows that
.Aj;i W j D 1; 2; : : : ; n; i D 1; 2; : : : ; cj / (appropriately ordered) is the optimal S1-
decomposition of A, and it follows that l1.A/D l1.Bn/ and Ad DAn;cn .

We can deduce (a) from the induction hypothesis. If A 2MAX.S˛C1/, then, in
particular, Bn 2 MAX.S˛/ and, thus, l1.A/ D l1.Bn/ D 0. Conversely, if l1.A/ D
l1.Bn/D 0, then Ad DAn;cn 2MAX.S1/. This proves (b) for ˛C 1.

If l1.A/ > 0 and max.A/ D max.Bn/ < k1 < k2 < � � � < kl1.A/, then it follows
from the fact that l1.A/D l1.Bn/ and our induction hypothesis that Bn[¹k1; k2; : : : ;
kl1.A/º 2 S˛ and

�
�
˛;Bn [ ¹k1; k2; : : : ; kiº

�
D �.˛;Bn/:

Therefore, A [ ¹k1; k2; : : : ; kl1.A/º 2 S˛C1, and using our recursive formula, we
obtain

�
�
˛;A[ ¹k1; k2; : : : ; kiº

�
D

1

min.A/
�
�
˛;Bn [ ¹k1; k2; : : : ; kiº

�
D

1

min.A/
�.˛;Bn/D �.˛;A/;

which verifies (c). To show (d), let m > l1.A/ and max.A/ < k1 < k2 < � � � < km
be such that A [ ¹k1; k2; : : : ; kmº 2 S˛C1. We distinguish between two cases. First
we consider Bn [ ¹k1; k2; : : : ; kmº 2 S˛ . In that case we deduce from the induction
hypothesis that

�
�
˛;A[ ¹k1; k2; : : : ; kmº

�
D

1

min.A/
�
�
˛;Bn [ ¹k1; k2; : : : ; kmº

�
�

1

kl1.A/C1
:

For the second case, we can write A [ ¹k1; k2; : : : ; kmº as A [ ¹k1; k2; : : : ; kmº DSn
jD1Bj [

Sp
jDnB

0
j , where p > n, Bn < B 0n < B 0nC1 < � � � < B 0p , Bn [ B 0n 2

MAX.S˛/, B 0nC1; : : : ;B
0
p�1 2MAX.S˛/, and B 0p 2 S˛ n ¹;º. Let s � m such that

ks Dmin.Bp/. Then s > l1.Bn/, and l1.Bn[B 0n/D 0. It follows therefore from (31)
and the induction hypothesis that

�
�
˛C 1;A[ ¹k1; k2; : : : ; kmº

�
D

1

min.A/
�
�
˛; ¹ks; ksC1; : : : ; kmº

�
�
1

ks
�

1

kl1.A/C1
:
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This proves (d) in both cases.
Finally, to verify (e) we observe by the induction hypothesis and (31) that

X
D�A;l1.D0/D0

�.˛C 1;D/D
1

min.A/

nX
jD1

X
D�Bj ;l1.D

0/D0

�.˛;D/

�
1

minA

nX
jD1

1

min.Bj /

�
n

min.A/

1

min.A/
�

1

min.A/
;

which proves the first part of (e), while the second follows in the same way.
If ˛ < !1 is a limit ordinal and assuming that our claim is true for all � < ˛, we

proceed as follows. For A 2 S˛ , we can again assume that A¤;, and it follows from
Corollary 2.7 that A 2 S�.˛;min.A// and, by Proposition 3.1, A is maximal in S˛ if and
only if it is maximal in S�.˛;min.A//. Therefore, (a)–(e) follow from our claim being
true for �.˛;min.A//.

Remark
Recall that if ˇ D !!

�
is a countable ordinal number and � < ˇ, then by (17) we

have Sˇ.�C1/ D Sˇ ŒSˇ� �. An argument very similar to what was used in the proof
of Lemma 3.7 implies the following: if B1 < � � � < Bd are in MAX.Sˇ� / so that
NB D ¹min.Bj / W 1 � j � dº is a nonmaximal Sˇ -set, D D

Sd
jD1Bj , and C 2 Sˇ�

with D <C , then

l1.C /D l1.D [C/: (37)

COROLLARY 3.8
Let A D ¹a1; a2; : : : ; alº and QA D ¹Qa1; : : : ; QaQlº be two sets in ŒN�<! whose optimal
S1-decompositions .Aj /djD1 and . QAj /djD1, respectively, have the same length and

satisfy min.Aj /Dmin. QAj /, for j D 1; 2; : : : ; d . Then it follows for ˛ < !1 that A 2
S˛ if and only if QA 2 S˛ , and in the case in whichD �A and QD � QA, with #D D # QD,
it follows that �.˛;D/D �.˛; QD/.

Proof
We prove this lemma by transfinite induction on ˛. If ˛ D 1, then A1 D A, QA1 D QA,
and a1 D Qa1, and thus �.1;D/D �.1; QD/ for all D �A and QD 	 QA.

Assume that the conclusion holds for some ˛, and let A 2 S˛C1, QA 2 ŒN�<!

satisfy the assumption. Let AD
Sp
iD1Ci , where C1 < � � �< Cp�1 are in MAX.S˛/,
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whereas Cp 2 S˛ and p �min.A/. Write also QA as QAD
Sp
iD1
QCi , where QC1 < � � �<

QCp , and choose the QCj ’s such that #Cj D # QCj for j D 1; 2; : : : ; p � 1.
From Lemma 3.7(b) it follows that for some sequence 0D d0 < d1 < d2 < � � �<

dp D d the sequence .Aj /
di
jDdi�1C1

is the optimal S1-decomposition of Ci for i D

1; 2; : : : ; p. Now we can first deduce that . QAj /
d1
jD1 is the optimal S1-decomposition

of QC1, then deduce that . QAj /
d2
jDd1C1

is the optimal S1-decomposition of QC2, and so
on. We are therefore in a position to apply the induction hypothesis and deduce that,
for all i D 1; 2; : : : ; p, D � Ci , and QD � QCi , it follows that �.˛;D/D �.˛; QD/. Our
claim follows therefore from our recursive formula (31).

As usual in the case in which ˛ is a limit ordinal, the verification follows easily
from the definition of S˛ .

LEMMA 3.9
Let X be a Banach space, ˛ be a countable ordinal number, B 2 MAX.S˛/, and
.xA/A�B be vectors in BX . Then���X

A�B

�.˛;A/xA �
X
A�B

�.˛;A0/xA

���� 2

min.B/
: (38)

Proof
Using Lemma 3.7(c) and then Lemma 3.7(e) we obtain���X

A�B

�.˛;A/xA �
X
A�B

�.˛;A0/xA

���
�
��� X

A�B
l1.A

0/¤0

�
�.˛;A/� �.˛;A0/

�
xA

���
C
��� X

A�B
l1.A

0/D0

�.˛;A/xA

���C ��� X
A�B

l1.A
0/D0

�.˛;A0/xA

���
�

X
A�B

l1.A
0/D0

�.˛;A/C
X
A�B

l1.A
0/D0

�.˛;A0/

�
2

min.B/
:

4. Trees and their indices
Let X be an arbitrary set. We set X<! D

S1
nD0X

n, the set of all finite sequences in
X , which includes the sequence of length zero denoted by ;. For x 2X we shall write
x instead of .x/; that is, we identifyX with sequences of length 1 inX . A tree onX is
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a nonempty subset F of X<! closed under taking initial segments: if .x1; : : : ; xn/ 2
F and 0 � m � n, then .x1; : : : ; xm/ 2 F . A tree F on X is hereditary if every
subsequence of every member of F is also in F .

Given x D .x1; : : : ; xm/ and y D .y1; : : : ; yn/ in X<! , we write .x; y/ for the
concatenation of x and y:

.x; y/D .x1; : : : ; xm; y1; : : : ; yn/:

Given F �X<! and x 2X<! , we let

F .x/D
®
y 2X<! W .x; y/ 2 F

¯
:

Note that if F is a tree on X , then so is F .x/ (unless it is empty). Moreover, if F is
hereditary, then so is F .x/ and F .x/�F .

Let X! denote the set of all (infinite) sequences in X . Fix S �X! . For a subset
F of X<! the S -derivative F 0S of F consists of all x D .x1; x2; : : : ; xl/ 2 X<! for
which there is a sequence .yi /1iD1 2 S with .x; yi / 2 F for all i 2N.

Note that if F is a hereditary tree, then it follows that F 0S � F and that F 0S is
also a hereditary tree (unless it is empty).

We then define higher-order derivatives F
.˛/
S for ordinals ˛ < !1 by recursion as

follows:

F
.0/
S D F ; cF

.˛C1/
S D .F

.˛/
S /0S for ˛ < !1; and

F
.�/
S D

\
˛<�

F
.˛/
S for limit ordinals � < !1:

It is clear that F
.˛/
S 
 F

.ˇ/
S if ˛ � ˇ and that F

.˛/
S is a hereditary tree (or the

empty set) for all ˛ whenever F is a hereditary tree. An easy induction also shows
that �

F .x/
�.˛/
S
D .F

.˛/
S /.x/ for all x 2X<! ; ˛ < !1:

We now define the S -index IS .F / of F by

IS .F /Dmin¹˛ < !1 W F
.˛/
S D;º

if there exists ˛ < !1 with F
.˛/
S D;, and by IS .F /D !1 otherwise.

Remark
If � is a limit ordinal and F

.˛/
S ¤; for all ˛ < �, then, in particular, ; 2 F

.˛/
S for all

˛ < �, and hence F
.�/
S ¤;. This shows that IS .F / is always a successor ordinal.
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Examples 4.1
(a) A family F � ŒN�<! can be thought of as a tree on N: a set F D ¹m1; : : : ;mkº 2
ŒN�<! is identified with .m1; : : : ;mk/ 2 N<! . (Recall that m1 < � � � < mk by our
convention of always listing the elements of a subset of N in increasing order.)

Let S be the set of all strictly increasing sequences in N. In this case the S -index
of a compact family F � ŒN�<! is nothing else but the Cantor–Bendixson index of
F as a compact topological space, which we will continue to denote by CB.F /. We
will also use the term Cantor–Bendixson derivative instead of S -derivative and use
the notation F 0 and F .˛/.

(b) If X is an arbitrary set and S D X! , then the S -index of a tree F on X is
what is usually called the order of F (or the height of F ) and is denoted by o.F /.
Note that in this case the S -derivative of F consists of all finite sequences x 2X<!

for which there exists y 2 X such that .x; y/ 2 F . The function o.�/ is the largest
index: for any S �X! we have o.F /� IS .F /.

We say that S � X! contains diagonals if every subsequence of every member
of S also belongs to S and if for any sequence .xn/ in S with xn D .xn;i /1iD1 there
exist i1 < i2 < � � � in N so that .xn;in/

1
nD1 belongs to S . If S contains diagonals, then

the S -index of a tree on X may be measured via the Cantor–Bendixson index of the
fine Schreier families .F˛/˛<!1 .

PROPOSITION 4.2 ([26, Proposition 5])
Let X be an arbitrary set, and let S �X! . If S contains diagonals, then for a hered-
itary tree A on X and for a countable ordinal ˛ the following are equivalent.
(a) ˛ < IS .A/.
(b) There is a family .xF /F 2F˛n¹;º �A such that for F D .m1;m2; : : : ;mk/ 2

F˛ the branch xF D .x¹m1º; x¹m1;m2º; : : : ; x¹m1;m2;:::;mkº/ is in A and
.xF[¹nº/n>maxF is in S if F is not maximal in F˛ .

Definition 4.3
Let F � ŒN�<! be regular, let S be a set of sequences in the set X , and let .xA W
A 2 F / be a tree in X indexed by F . We call .xA W A 2 F / an S -tree if for every
nonmaximal A 2 F the sequence .xA[¹nº W n 2 N; with A[ ¹nº 2 F / is a sequence
in S .

If X is a Banach space and S are the w-null sequences, we call .xA W A 2 F / a
w-null tree. Similarly we define w�-null trees in X�.

Remark 4.4
In the case of X D N and S D ŒN�! we deduce from Proposition 4.2 that if A �
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ŒN�<! is hereditary and compact, then CB.A/ > ˛ if and only if there is an order
isomorphism 
 W F˛ ! A, so that for all A 2 F˛ nMAX.F˛/ and n > max.A/ it
follows that 
.A [ ¹nº/ D 
.A/ [ ¹snº, where .sn/ is an increasing sequence in
¹s 2N W s >max
.A/º.

Examples 4.5
(a) The weak index. Let X be a separable Banach space. Let S be the set of all weakly
null sequences in BX , the unit ball of X . We call the S -index of a tree F on X the
weak index of F , and we shall denote it by Iw.F /. We shall use the term weak deriva-
tive instead of S -derivative and use the notation F 0w and F

.˛/
w . When the dual space

X� is separable, the weak topology on the unit ball BX or on any bounded subset of
X is metrizable. Hence, in this case the set S contains diagonals, and Proposition 4.2
applies.

(b) The weak� index. We can define the weak� index similarly to the weak index.
If X is a separable Banach space, then the w�-topology on B�X is metrizable. This
implies that the set S of all w�-null sequences in BX� is diagonalizable. We call the
S -index of a tree F on X� the weak� index of F , and we shall denote it by Iw�.F /.
We shall use the term weak� derivative instead of S -derivative and use the notation
F 0w� and F

.˛/
w� .

5. The Szlenk index
Here we recall the definition and basic properties of the Szlenk index and prove further
properties that are relevant for our purposes.

Let X be a separable Banach space, and let K be a nonempty subset of X�. For
"� 0, set

K 0" D
®
x� 2X� W 9.x�n/�Kw

�- lim
n!1

x�n D x
� and kx�n � x

�k> "
¯
;

and define K.˛/" for each countable ordinal ˛ by recursion as follows:

K.0/" DK; K.˛C1/" D .K.˛/" /0" for ˛ < !1; and

K.�/" D
\
˛<�

K.˛/" for limit ordinals � < !1:

Next, we associate to K the following ordinal indices:

	.K; "/D sup¹˛ < !1 WK
.˛/
" ¤;º and 	.K/D sup

">0

	.K; "/:

Finally, we define the Szlenk index Sz.X/ of X to be 	.BX�/, where BX� is the unit
ball of X�.
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Remark
The original definition of the derived sets K 0" in [34] is slightly different and might
lead to different values of Sz.K; "/. However, if X does not contain `1, then the
two definitions lead to the same Sz.K/ and, thus, to the same Sz.X/. Nowadays the
above definition is the standard one, because the later proven `1-theorem of Rosenthal
guarantees that Sz.X/ < !1 if and only if X� is separable.

Szlenk used his index to show that there is no separable, reflexive space universal
for the class of all separable, reflexive spaces. This result follows immediately from
the following properties of the function Sz.�/.

THEOREM 5.1 ([34])
Let X and Y be separable Banach spaces.
(i) X� is separable if and only if Sz.X/ < !1.
(ii) If X isomorphically embeds into Y , then Sz.X/� Sz.Y /.
(iii) For all ˛ < !1 there exists a separable, reflexive space with Szlenk index at

least ˛.

We also recall the following observation of [21] about the form of the Szlenk
index of a Banach space with separable dual.

PROPOSITION 5.2 ([21, Proposition 5.2])
If X has a separable dual, then there is an ˛ < !1 with Sz.X/D !˛ .

The following theorem combines several equivalent descriptions of the Szlenk
index of a separable space not containing `1.

THEOREM 5.3
Assume that X is a separable space not containing `1 and ˛ < !1. The following
conditions are equivalent.
(a) Sz.X/ > !˛ .
(b) There are an " > 0 and a tree .z�A W A 2 S˛/� BX� so that for any nonmaxi-

mal A 2 S˛

w�- lim
n!1

z�A[¹nº D z
�
A and kz�A � z

�
A[¹nºk > " for n >max.A/.

(39)

(c) There are an " > 0, a tree .z�A W A 2 S˛/ � B
�
X , and a w-null tree .zA W A 2

S˛/�BX , so that
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z�B.zA/ > " for all A;B 2 S˛ n ¹;º, with A�B , (40)ˇ̌
z�B.zA/

ˇ̌
< "=2 for all A;B 2 S˛ n ¹;º, with A�B , (41)

and for all nonmaximal A 2 S˛ we have

w�- lim
n!1

z�A[¹nº D z
�
A: (42)

(d) There are an N 2 ŒN�! , an " > 0, and a w-null tree .xA WA 2 S˛ \ ŒN �
<!/ so

that for every maximal B in S˛ \ ŒN �
<! we have���X

A�B

�.˛;A/xA

���� ":
(e) There is an " > 0 such that Iw.F"/ > !˛ , where

F" D
°
.x1; x2; : : : ; xl/� SX W 8.aj /

l
jD1 � Œ0; 1�

��� lX
jD1

ajxj

���� " lX
jD1

aj

±
:

(f) There is an " > 0 such that Iw�.G"/ > !˛ , where

G" D
°
.x�1 ; x

�
2 ; : : : ; x

�
l /�BX� W kx

�
j k � "

and
��� jX
iD1

x�i

���� 1; for j D 1; 2; : : : ; l
±
:

Proof
To show that (a))(b), we first prove the following.

LEMMA 5.4
Let X be a separable Banach space, let K �X� be w�-compact, let 0 < " < 1, and
let ˇ < !1. Then for every x� 2K.ˇ/" there is a family .z�

.x�;A/
W A 2 Fˇ /�K such

that

z�.x�;A/ 2K and z�.x�;;/ D x
�; (43)

if A is not maximal in Fˇ , then kz�.x�;A/ � z
�
.x�;A[¹nº/k> "

for all n >max.A/, (44)

if A is not maximal in Fˇ , then z�.x�;A/ Dw
�- lim
n!1

z�.x�;A[¹nº/: (45)

Proof
We will prove our claim by transfinite induction for all ˇ < !1. Let us first assume



A METRIC INTERPRETATION OF REFLEXIVITY FOR BANACH SPACES 3031

that ˇ D 1. For x� 2 K 0" choose a sequence .x�n/ which w�-converges to x�, with
kx��x�nk> ", for n 2N. Thus, we can choose z.x�;;/ D x�, and z.x�;¹nº/ D x�n . This
choice satisfies (43), (44), and (45), for ˇD 1. (Recall that F1 D ¹¹nº W n 2Nº[¹;º.)

Now assume that our claim is true for all � < ˇ. First assume that ˇ is a suc-
cessor ordinal, and let � < !1 so that ˇ D � C 1. Let x� 2K.�C1/" . Thus, there is a
sequence .x�n/�K

.�/
" which w�-converges to x�, with kx�n �x

�k> ", for n 2N. By
our induction hypothesis we can choose for each n 2 N a family .z�

.x�n ;A/
W A 2 F� /

satisfying (43), (44), and (45), for � and x�n instead of x�. For every A 2 F�C1 it
follows that A n ¹minAº 2 F� , and we define z�

.x�;;/
WD x� and for A 2 F�C1 n ¹;º

z�.x�;A/ WD z
�
.x�minA;An¹min.A/º/:

It is then easy to see that .z�
.x�;A/

WA 2 F�C1/ satisfies (43), (44), and (45).
Assume that ˇ < !1 is a limit ordinal, and let .
.ˇ;n/ W n 2 N/ � .0;ˇ/ be the

sequence of ordinals increasing to ˇ, used to define Fˇ . We abbreviate ˇn D 
.ˇ;n/,

for n 2N. Let x� 2K.ˇ/" D
T
�<ˇ K

.�/
" . Since ˇnC1 < ˇ, we can use for each n 2N

our induction hypothesis and choose a family

.z�.n;x�;A/ WA 2 FˇnC1/�X
�;

satisfying (43), (44), and (45), for ˇn C 1. In particular, it follows that x� D w�-
limj!1 z

�
.n;x�;¹j º/

, for all n 2 N. Since the w�-topology is metrizable on K we
can find an increasing sequence .jn W n 2 N/ in N, jn > n, for n 2 N, so that x� D
w�- limn!1 z

�
.n;x�;¹jnº/

.
Consider for n 2N the set

FˇnC1.jn/D
®
A 2 ŒN�<! W jn <minA and ¹jnº [A 2 FˇnC1

¯
D ¹A 2 Fˇn W jn <minAº:

Since Fˇn is spreading, for n 2N, we can choose Ln D ¹l
.n/
1 ; l

.n/
2 ; : : :º 2 ŒN�! so that

F Ln
ˇn
D
®
¹l .n/a1 ; l

.n/
a2
; : : : ; l .n/am º W ¹a1; a2; : : : ; amº 2 Fˇn

¯
�FˇnC1.jn/:

We define the map

�n W Fˇn! FˇnC1.jn/; ¹a1; a2; : : : ; amº 7! ¹l
.n/
a1
; l .n/a2 ; : : : ; l

.n/
am
º:

Then we put for A 2 Fˇ

z�.x�;A/ D

8̂̂<̂
:̂
x� if AD;,

z�
.x�;¹jnº/

if AD ¹nº for some n 2N,

z�
.x�;¹jnº[	n.B//

if AD ¹nº [B for some n 2N and B 2 F˛n n ¹;º,

which has the desired property.
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We now continue with our proof of Theorem 5.3(a))Theorem 5.3(b). By assum-
ing that Sz.X/ > ˇ D !˛ , it follows that ŒBX� �

.ˇ/
" ¤ ; for some " > 0. We choose

x� 2 ŒBX� �
.ˇ/
" and apply Lemma 5.4 to obtain a tree in BX� indexed by F!˛ satisfy-

ing the conditions (43), (44), and (45). Now Proposition 2.12 and a relabeling of the
tree yield (b).

(b))(c). For A 2 S˛ n ¹;º we define A0 DAn ¹max.A/º. Now let .Am/m2N be a
consistent ordering of S˛ (see Section 2.4). We write A<lin B or A�lin B if ADAm
and B DAn, for m< n or m� n, respectively.

Let " > 0 and .z�A W A 2 S˛/ � BX� , so that (39) is satisfied. Then choose for
each A 2 S˛ n ¹;º an element xA 2 SX so that .z�A � z

�
A0/.xA/ > ".

Let 0 < 	 < "=8, and let .	.A/ W A 2 S˛/ � .0; 1/ satisfy the following condi-
tions: �

	.A/
�

is decreasing with respect to the linear ordering <lin, (46)X
A2S˛

	.A/ < 	; (47)

X
B2S˛ ;B>linA

	.B/ < 	.A/; for all A 2 S˛; and (48)

	.Am/ <
1

2

	

mC 2
; for all m 2N. (49)

Since X does not contain a copy of `1 we can apply Rosenthal’s `1-theorem
and assume, possibly after passing to a pruning, that for each nonmaximal A 2 S˛
the sequence .xA[¹nº/n>max.A/ is weakly Cauchy. Since .z�

A[¹nº
� z�A/n>max.A/ is

w�-null we can assume, possibly after passing to a further pruning, that .z�
A[¹nº

�

z�A/.xA[¹n�1º/ < 	.A[ ¹nº/, for all nonmaximal A 2 S˛ and n > 1Cmax.A/.
Let z; D 0. For a nonmaximal element A 2 S˛ and n > 1Cmax.A/ let

zA[¹nº D
1

2
.xA[¹nº � xA[¹n�1º/

and

zA[¹max.A/C1º D xA[¹max.A/C1º:

Then the families .zA W A 2 S˛/ and .z�A W A 2 S˛/ are in BX and BX� , respectively,
.zA W A 2 S˛/ is weakly null, and .z�A W A 2 S˛/ satisfies (42). Moreover, it follows
that

.z�A � z
�
A0/.zA/�

"

2
� 	.A/; for all A 2 S˛ n ¹;º. (50)

Since w- limn!1 zB[¹nº D 0 and w�- limn!1 z
�
B[¹nº

D z�B , for every nonmax-
imal B 2 S˛ we can, after passing again to a pruning, assume that
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.z�B � z

�
B0/.zA/

ˇ̌
< 	.B/ andˇ̌

z�A.zB/
ˇ̌
< 	.B/ for all A;B 2 S˛ , with A<lin B .

(51)

We are left with verifying (40) and (41) for "=4 instead of ". To show (40) let
A;B 2 S˛ n ¹;º, with A�B . We choose l 2N and ADB0 	B1 	B2 	 � � � 	Bl D
B so that B 0j DBj�1, for j D 1; 2; : : : ; l , and deduce from (50) and (51)

z�B.zA/D

lX
jD1

.z�Bj � z
�
B0
j

/.zA/C .z
�
A � z

�
A0/.zA/C z

�
A0.zA/

�
"

2
�

lX
jD1

	.Bj /� 2	.A/ >
"

4
:

To show (41), let A;B 2 S˛ n ¹;º, with A� B . We choose l 2 N and ; D B0 	
B1 	 B2 	 � � � 	 Bl D B so that B 0j D Bj�1, for j D 1; 2; : : : ; l , and since for every
j D 1; 2; : : : ; l either A<lin Bj or Bj <lin A we deduce from (51) and the conditions
(47) and (49) on 	.�/ that

ˇ̌
z�B.zA/

ˇ̌
�
ˇ̌̌ lX
jD1

.z�Bj � z
�
B0
j

/.zA/
ˇ̌̌
C
ˇ̌
z�;.zA/

ˇ̌
�

X
A<linBj

ˇ̌
.z�Bj � z

�
B0
j

/.zA/
ˇ̌

C
X

A>linBj

�ˇ̌
z�Bj .zA/

ˇ̌
C
ˇ̌
z�Bj�1.zA/

ˇ̌�
C 	.A/

�
X

A<linBj

	.Bj /C 2
X

Bj<linA

	.A/C 	.A/

�
�
2#¹j � l WBj <lin Aº C 2

�
	.A/ <

"

4
;

which verifies (41) and finishes the proof of our claims.
(c))(d). Let " > 0, .z�A WA 2 S˛/, and .zA WA 2 S˛/ satisfy the condition in (c).

Then it follows for a maximal B 2 S˛ that���X
A�B

�.˛;A/zA

����X
A�B

�.˛;A/z�B.zA/� "
X
A�B

�.˛;A/D ";

which proves our claim.
(d))(e). Assume thatN 2 ŒN�! , " > 0, and .xA WA 2 S˛\ ŒN �

<!/�BX satisfy
(d). For B 2MAX.S˛ \ ŒN �<!/ put yB D

P
A�B �.˛;A/xA, and choose y�B 2 SX�

so that y�B.yB/D kyBk> ".
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For B 2MAX.S˛/\ ŒN �<! , we define fB WB! Œ�1; 1�, b 7! y�B.x¹a2B;a�bº/.
From Corollary 3.5 it follows now for ıD "=2 that CB.Aı;N /D !

˛ C 1, where

Aı;N D

²
A 2 S˛ \ ŒN �

<! W
9B 2MAX.S˛ \ ŒN �<!/;

A�B; and fB.a/� ı for all a 2A

³
:

But from Proposition 4.2 and the remark thereafter we deduce that there is an order
isomorphism 
 W F!˛ ! Aı;N such that for every nonmaximal A 2 F!˛ and any
n >max.A/ it follows that 
.A[ ¹nº/D 
.A/[ ¹snº, for some increasing sequence
.sn/�N. By putting zA D x�.A/ it follows that .zA/A2F!˛ is a weakly null tree and
for every AD ¹a1; a2; : : : ; alº it follows that .z¹a1;a2;:::;ai º/

l
iD1 2 Fı . Again applying

Proposition 4.2 yields (e).
(e) () (a). This follows from [2, Theorem 4.2], where it was shown that

Sz.X/D sup">0 Iw.F"/ if `1 does not embed into X .
(b)() (f). This follows from Proposition 2.13, an application of Proposition 4.2

to the tree G" on BX� , and S D ¹.x�n/�B
�
X Ww

�- limn!1 D 0º.

Remark
We note that in the implication (a))(b) the assumption that `1 does not embed into
X was not needed. In fact, (a) is equivalent to (b) for all separable Banach spaces.

We will also need the following dual version of Theorem 5.3.

PROPOSITION 5.5
Assume that X is a Banach space whose dual X� is separable, with Sz.X�/ > !˛ .
Then there are an " > 0, a tree .zA W A 2 S˛/ � BX , and a w�-null tree .z�A W A 2
S˛/�B

�
X such that

z�A.zB/ > " for all A;B 2 S˛ n ¹;º, with A�B , (52)ˇ̌
z�A.zB/

ˇ̌
<
"

2
for all A;B 2 S˛ n ¹;º, with A�B . (53)

Proof
Recall that, as stated above, the implication (a))(b) of Theorem 5.3 holds even if the
space to which the theorem is applied contains `1. Applying this implication to X�,
we find " > 0 and ¹z��A W A 2 S˛º � BX�� so that (39) is satisfied. Then choose for
each A 2 S˛ n ¹;º an element x�A 2 SX so that .z��A � z

��
A0 /.x

�
A/ > ". Again let .An/

be a consistent enumeration of S˛ , and write Am <lin An if m < n. We also assume
that .	.A/ WA 2 S˛/� .0; 1/ has the property thatX

A2S˛

	.A/ <
"

32
: (54)
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After passing to a first pruning we can assume that for all nonmaximal A 2 S˛ the
sequence .x�

A[¹nº
/ w�-converges and that for any B 2 S˛ the sequence z��B .x

�
A[¹nº

/

converges to some number rA;B . (For fixed A;B 2 S˛ we only need to pass to a
subsequence of .A [ ¹nº W n 2 N;A [ ¹nº >lin B/.) Since .z��

A[¹nº
� z��A /n>max.A/ is

w�-null, we can assume, after passing to a second pruning, that we haveˇ̌
.z��B � z

��
B0 /.x

�
A/
ˇ̌
< 	.B/ for all A;B 2 S˛ , with A<lin B: (55)

We put z�; D 0 and for any nonmaximal element A 2 S˛

z�A[¹max.A/C1º D x
�
A[¹max.A/C1º and

z�A[¹nº D
1

2
.x�A[¹nº � x

�
A[¹n�1º/ if n >max.A/C 1.

It follows that .z�A WA 2 S˛/ is a w�-null tree in BX� and that for any A 2 S˛

.z��A � z
��
A0 /.z

�
A/ >

"

2
�
	.A/

2
:

Since z��B .x
�
A[¹nº

/ converges to rA;B we can assume, after passing to a third pruning,
that ˇ̌

z��A .z
�
B/
ˇ̌
<
	.B/

2
whenever A<lin B , (56)

and hence,

z��A .z
�
A/ >

"

2
� 	.A/ for all A 2 S˛ : (57)

Since w�-limn z
��
A[¹nº

D z��A we can assume, by passing to a further pruning, thatˇ̌
.z��B � z

��
B0 /.z

�
A/
ˇ̌
< 	.B/ for all A;B 2 S˛ , with A<lin B . (58)

Since BX is w�-dense in BX�� we can choose, for every A 2 S˛ , a vector zA 2
BX so thatˇ̌

z�A.zB/� z
��
B .z

�
A/
ˇ̌
< 	.B/; for all A;B 2 S˛ , with A�lin B . (59)

Combining (58) and (59) we obtain that for all A and B in S˛ with A<lin B we haveˇ̌
z�A.zB/� z

��
B0 .z

�
A/
ˇ̌
�
ˇ̌
z�A.zB/� z

��
B .z

�
A/
ˇ̌
C
ˇ̌
.z��B � z

��
B0 /.z

�
A/
ˇ̌
< 2	.B/: (60)

Using that .z�A W A 2 S˛/ is a w�-null tree, we can pass to a further pruning, so
that ˇ̌

z�B.zA/
ˇ̌
< 	.B/; for all A;B 2 S˛ with A<lin B: (61)
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We deduce from (58) and (59), for A;B 2 S˛ with A�lin B
0 (resp., A<lin B), thatˇ̌

z�A.zB � zB0/
ˇ̌
�
ˇ̌
z�A.zB/� z

��
B .z

�
A/
ˇ̌
C
ˇ̌
z�A.zB0/� z

��
B0 .z

�
A/
ˇ̌

C
ˇ̌
.z��B � z

��
B0 /.z

�
A/
ˇ̌

� 2	.B/C 	.B 0/: (62)

By (60), (56), and (61) for A;B 2 S˛ with B 0 <lin A<B we obtainˇ̌
z�A.zB � zB0/

ˇ̌
�
ˇ̌
z�A.zB/� z

��
B0 .z

�
A/
ˇ̌
C
ˇ̌
z��B0 .z

�
A/
ˇ̌
C
ˇ̌
z�A.zB0/

ˇ̌
� 2	.B/C 2	.A/: (63)

We now claim that the families ¹zA WA 2 S˛º and ¹z�A WA 2 S˛º satisfy (52) and
(53). To verify (52), let A;B 2 S˛ n ¹;º, with A � B . Then let k 2 N and Bj 2 S˛ ,
for j D 0; 1; 2; : : : ; k, be such that ADB0 	B1 	B2 	 � � � 	Bk DB and B 0j DBj ,
for j D 1; 2; : : : ; k. We have that

z�A.zB/D

kX
jD1

z�A.zBj � zB0j
/C z�A.zA/

� z��A .z
�
A/�

ˇ̌
z��A .z

�
A/� z

�
A.zA/

ˇ̌
�
ˇ̌
z�A.zB1 � zA/

ˇ̌
�

kX
jD2

ˇ̌
z�A.zBj � zB0j

/
ˇ̌

>
"

2
� 3	.A/� 2

kX
jD1

	.Bj /�
"

4
.by (57), (59), (62), and (60)/;

which yields (52) if we replace " by "=4.
To verify (53), let A;B 2 S˛ n¹;º, with A�B . If A>lin B , we deduce our claim

from (61). If A �lin B and, thus, A <lin B , we choose k 2 N and B0 	 B1 	 B2 	
� � � 	Bk DB , with B 0j DBj�1, for j D 1; 2; : : : ; k, and B0 <lin A<lin B1. Applying
(63), (61), (62), and finally (54), we obtain

ˇ̌
z�A.zB/

ˇ̌
�
ˇ̌
z�A.zB1 � zB0/

ˇ̌
C
ˇ̌
z�A.zB0/

ˇ̌
C
ˇ̌̌ kX
jD2

z�A.zBj � zB0j
/
ˇ̌̌

� 2	.B1/C 	.B0/C 3	.A/C

kX
jD2

�
2	.Bj /C 	.Bj�1/

�
�
"

8
;

which proves our claim.
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Example 5.6
Let us construct an example of families .zA W A 2 ŒN�<!/ � Bc0 and .z�A W A 2

ŒN�<!/� B`1 satisfying Proposition 5.5. Let <lin again be a linear consistent order-
ing of ŒN�<! . We first choose a family . QA W A 2 ŒN�<!/ � ŒN�<! with the following
properties:

QA is a spread of A, for each A 2 ŒN�<! , (64)

A	B if and only if QA	 QB , (65)

if A;B 2 ŒN�<! ;;¤A<lin B; and

C 2 ŒN�<! is the maximal element in ŒN�<! (66)

such that C �A and C �B , then . QA n QC/\ . QB n QC/D;:

We define for A 2 ŒN�<!

zA D
X
a2 QA

ea and z�A D e
�

max. QA/
;

where .ej / and .e�j / denote the unit vector bases in c0 and `1, respectively. It is now
easy to verify that the tree .z�A/ is w�-null and that (52) is satisfied for any " 2 .0; 1/.
To verify (53), let A;B 2 ŒN�<! with A� B . If A>lin B , then max. QA/ … QB , and our
claim follows. If A <lin B , let C 2 ŒN�<! be the maximal element for which C � A
and C � B . It follows that C 	 A, but also that C 	 B , which implies by (66) that
max. QA/ … QB and, thus, our claim.

6. Estimating certain convex combinations of blocks by using the Szlenk index
In this section we will assume that X has an FDD .Fj /. This means that Fj � X is
a finite-dimensional subspace of X , for j 2 N, and that every x has a unique repre-
sentation as the sum x D

P1
jD1 xj , with xj 2 Fj , for j 2N. For x D

P1
jD1 xj 2X

we call supp.x/D ¹j 2 N W xj ¤ 0º the support of x (with respect to .Fj /), and the
smallest interval in N containing supp.x/ is called the range of x (with respect to
.Fj /) and is denoted by ran.x/. A (finite or infinite) sequence .xn/ � X is called a
block (with respect to .Fj /) if xn ¤ 0, for all n 2N, and supp.xn/ < supp.xnC1/, for
all n 2N for which xnC1 is defined.

We call an FDD shrinking if every bounded block .xn/1nD1 is weakly null. As in
the case of bases, X� is separable, and thus, Sz.X/ < !1 if X has a shrinking FDD.

THEOREM 6.1
Let X be a Banach space with a shrinking FDD, and let ˛ be a countable ordinal
number with Sz.X/� !˛ . Then for every " > 0 andM 2 ŒN�! , there existsN 2 ŒM �!
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satisfying the following: for every B D ¹b1; : : : ; bd º in S˛ \ ŒN �
<! and sequence

.xi /
d
iD1 in BX , with ran.xj / � .bj�1; bjC1/ for j D 1; : : : ; d (where b0 D 0 and

bdC1 D1), we have

��� dX
jD1

�.˛;Bj /xj

���< "; (67)

where Bj D ¹b1; : : : ; bj º for j D 1; : : : ; d .

Proof
It is enough to find N in ŒM �! so that (67) holds whenever B 2MAX.S˛/\ ŒN �<! .
Indeed, if (67) holds for all B in MAX.S˛/\ ŒN �<! , then for any A 2 S˛ \ ŒN �

<!

and .xi /#AiD1 satisfying the assumption of Theorem 6.1, one may extend A to any
maximal set B and extend the sequence .xk/#AkD1 by concatenating the zero vector
#B � #A times. Toward a contradiction, we assume that such a set N does not exist.
Applying Proposition 2.14 to the partition .F ;S˛ nF / of S˛ , where

F D

8<:B D ¹b1; b2; : : : ; bnº 2MAX.S˛/ W
9.xj /�BX ; ran.xj /� .bj�1; bjC1/;

for j D 1; 2; : : : ; n;
k
Pn
jD1 �.˛; ¹b1; b2; : : : ; bj º/xj k> "

9=; ;
yields that there is L in ŒM �! such that, for all B D ¹bB1 ; : : : ; b

B
dB
º in MAX.S˛/ \

ŒL�<! , there exists a sequence .xBi /
dB
iD1 in BX with ran.xj /� .bBj�1; b

B
jC1/ for j D

1; : : : ; dB such that

��� dBX
jD1

�.˛;BBj /x
B
j

���� "; (68)

where BBj D ¹b
B
1 ; : : : ; b

B
j º for j D 1; : : : ; dB . For A � B , if A D BBj , we use the

notation xBj D x
B
A . Note that, under this notation, (68) takes the more convenient

form ���X
A�B

�.˛;A/xBA

���� " (69)

and that

ran.xBA0/�
�
max.A00/;max.A/

�
; for all A�B with A0 ¤∅; (70)

where A00 D .A0/0 and max.;/D 0.
We will now apply several stabilization and perturbation arguments to show that

we may assume that for B 2MAX.S˛/ and A � B the vector xBA0 only depends on
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A and will then be renamed xA. By using a compactness argument, Proposition 2.14
yields the following: if A 2 S˛ \ ŒL�

<! is nonmaximal with A0 ¤ ;, then for ı > 0,
there is L0 2 ŒL�! such that, for all D1, D2 in MAX.S˛.A// \ ŒL0�<! , we have
kx
A[D1
A0 � x

A[D2
A0 k < ı. Combining the above with a standard diagonalization argu-

ment we may pass to a further infinite subset of L and a perturbation of the block vec-
tors xBA0 with B 2MAX.S˛/\ ŒL�<! and ¹min.B/º 	A�B (and perhaps pass to a
smaller " in (69)), so that, for every B1;B2 in MAX.S˛/\ ŒL�<! and A with A0 ¤;
such that A � B1 and A � B2, we have xB1A0 D x

B2
A0 . For every A 2 S˛ \ ŒL�

<! , we
call this common vector xA. Note that xA indeed depends on A and not only on A0.
For A such that A0 D;, that is, for those sets A that are of the form AD ¹nº for some
n 2L, choose any normalized vector xA with supp.xA/D ¹nº. Note that, using (70),
we have

ran.xA/�
�
max.A00/;max.A/

�
for all A 2 S˛ \ ŒL�

<! with A0 ¤∅; (71)

where max.;/D 0, and if A0 D 0, that is, AD ¹nº for some n 2 N, then ran.xA/D
¹nº. Furthermore, by fixing 0 < ı < "=12 and passing to an infinite subset of L,
again denoted by L, satisfying min.L/ � 1=ı, (69) and (38) yield that for all B 2
MAX.S˛/\ ŒL�<!���X

A�B

�.˛;A/xA

��� � ���X
A�B

�.˛;A0/xA

���� 2ı
D
���0x¹min.B/ºC

X
¹min.B/º�A�B

�.˛;A0/xBA0

���� 2ı
D
���X
A�B

�.˛;A/xBA

���� 2ı � "� 3ı: (72)

For B 2MAX.S˛ \ ŒL�<!/ and i D 0; 1; 2 define

B.i/ D ¹A�B W #Amod3D iº:

By the triangle inequality, for some 0 � i.B/ � 2, we have k
P
A2B.i.B// �.˛;

A/xAk � "=3 � ı. By Proposition 2.14, we may pass to some infinite subset of L,
again denoted by L, so that for all B 2MAX.S˛ \ ŒL�<!/ we have i.B/ D i0 for
some common i0 2 ¹0; 1; 2º. We shall assume that i0 D 0, as the other cases are treated
similarly. Therefore, for all B 2MAX.S˛ \ ŒL�<!/ we have��� X

A2B.0/

�.˛;A/xA

���� "
3
� ı: (73)

Lemmas 3.7(c) and 3.7(e) also imply the following. If B 2MAX.S˛ \ ŒL�<!/, then
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A2B.0/W
l1.A

0/D0

�.˛;A/C
X

A2B.0/W
l1.A

00/D0

�.˛;A/C
X

A2B.0/

l1.A
000/D0

�.˛;A/�
3

min.B/
� 3ı: (74)

Hence, if for B 2MAX.S˛ \ ŒL�<!/ we set

OB.0/ DB.0/ n
®
A�B W l1.A

0/D 0; or l1.A
00/D 0; or l1.A

000/D 0
¯
;

then ��� X
A2 OB.0/

�.˛;A/xA

���� "
3
� 4ı: (75)

If L D ¹`1; `2; : : : ; `k; : : :º, define N D ¹`3; `6; : : : ; `3k; `3.kC1/; : : :º. For each
A 2 S˛ \ ŒN �

<! , with .#A/ mod 3D 0, we define QA 2 ŒL�<! as described below.
If A D ¹a1; : : : ; ad º, where aj D `3bj and Aj D ¹a1; : : : ; aj º for 1 � j � d , we
define the elements of a set QAD ¹Qa1; Qa2; : : : ; Qad º in groups of three as follows. If j
mod 3D 0, we put

. Qaj�2; Qaj�1; Qaj /

D

´
.aj�2; aj�1; aj / if l1.A0j /D 0 or l1.A0j�1/D 0 or l1.A0j�2/D 0;

.`3bj�2`3bj�1; aj / if l1.A0j /; l1.A
0
j�1/; l1.A

0
j�2/¤ 0:

It is not hard to see that A and QA satisfy the assumptions of Corollary 3.8; hence,
QA 2 S˛ \ ŒL�

<! and �.˛;A/D �.˛; QA/. Observe the following.
(a) If B 2MAX.S˛ \ ŒN �<!/ and A.1/ 	A.2/ are in OB.0/, then QA.1/ 	 QA.2/.
(b) If B 2MAX.S˛ \ ŒN �<!/ and A 2 OB.0/ and

if max.A/D `3n; then we have max. QA00/D `3n�2: (76)

Statement (a) is clear, while (b) follows from the fact that A 2 OB.0/ implies that d is
divisible by 3 and l1.A00/¤ 0.

We define a weakly null tree .zA/A2S˛\ŒN 
<! such that for all B 2MAX.S˛ \
ŒN �1/ we have ���X

A�B

�.˛;A/zA

���� "
3
� 4ı: (77)

The choice of ı and Theorem 5.3(d) will yield a contradiction.
For A 2 S˛ \ ŒN �

<! define

zA D

´
x QA if #Amod3D 0 and l1.A0/; l1.A00/; l1.A000/¤ 0;

0 else.
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Let C 2MAX.S˛ \ ŒN �<!/, and by (a), we can find B in MAX.S˛ \ ŒL�<!/ such
that QA�B , for all A� C , with #AD 0 mod 3. Then, one can verify that���X

A�C

�.˛;A/zA

���D ���X
A�C

�.˛; QA/x QA

���
D
��� X
A2 OC .0/

�.˛; QA/x QA

���
D
��� X
A2 OB.0/

�.˛;A/xA

���
�
"

3
� 4ı:

Now let A 2 S˛ \ ŒN �<! be nonmaximal. We will show that w-
limn2N zA[¹nº D 0. By the definition of the vectors zA, we need only treat the case
in which .#A C 1/mod3 D 0, that is, when zA[¹nº D xÃ[¹nº for all n 2 N with

n >max.A/. In this case, by (71), we deduce that if `3n 2N , then

min supp.zA[¹`3nº/Dmin supp.x ˜A[¹`3nº
/ >max

�� ˜A[ ¹`3nº
�00�
D `3n�2;

where the last equality follows by (b). Hence, limn2N min supp.zA[¹nº/ D1. The
fact that the FDD of X is shrinking completes the proof.

7. Two metrics on S˛ , ˛ < !1
Since ŒN�<! with 	 is a tree, with a unique root ;, we could consider on ŒN�<!

the usual tree distance which we denote by d . For A D ¹a1; a2; : : : ; alº 2 ŒN�<!

or B D ¹b1; b2; : : : ; bmº, we let n D max¹j � 0 W ai D bi for i D 1; 2; : : : ; j º and
then let d.A;B/D l Cm � 2n. But this distance will not lead to the results we are
seeking. Indeed, it was shown in [7, Theorem 1.2] that for any reflexive space X
the tree ŒN�<! with the graph metric embeds bi-Lipschitzly into X if and only if
max.Sz.X/;Sz.X�// > !. We will need weighted graph metrics on S˛ .
(a) The weighted tree distance on S˛ . For A;B in S˛ let C be the largest element

in S˛ (with respect to 	) such that C �A and C �B (i.e., C is the common
initial segment of A and B), and then let

d1;˛.A;B/D
X
a2AnC

z.˛;A/.a/C
X

b2BnC

z.˛;B/.b/

D
X

C�D�A

�.˛;D/C
X

C�D�B

�.˛;D/:

(b) The weighted interlacing distance on S˛ can be defined as follows. ForA;B 2
S˛ , say, AD ¹a1; a2; : : : ; alº and B D ¹b1; b2; : : : ; bmº, with a1 < a2 < � � �<
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al and b1 < b2 < � � � < bm, we put a0 D b0 D 0 and alC1 D bmC1 D1 and
define

d1;˛.A;B/D max
iD1;:::;mC1

X
a2A;bi�1<a<bi

z.˛;A/.a/

C max
iD1;:::;lC1

X
b2B;ai�1<b<ai

z.˛;B/.b/:

Remark
To explain d1;˛ let us take some sets AD ¹a1; a2; : : : ; amº and B D ¹b1; b2; : : : ; bmº
in S˛ and fix some i 2 ¹0; 1; 2; : : : ;mº. Now we measure how large the part of B is
which lies between ai and aiC1 (as before a0 D 0 and amC1 D1) by putting

mi .B/ WD
X

j;bj2.ai ;aiC1/

�
�
˛; ¹b1; b2; : : : ; bj º

�
:

Then we define mj .A/ for j D 1; 2; : : : ; n similarly and put

d1;˛.A;B/D max
1�i�m

mi .B/C max
1�j�n

mj .A/:

We note that if C is maximal such that C �A and C �B and if A nC <B nC , then
d1;˛.A;B/D d1;˛.A;B/.

The following observations on the stability of the metrics d1;˛ and d1;˛ , ˛ < !1 are
easy to show.

PROPOSITION 7.1
The metric space .S˛; d1;˛;/ is stable, that is, for any sequences .An/ and .Bn/ in S˛
and any ultrafilter U on N it follows that

lim
m2U

lim
n2U

d1;˛.Am;Bn/D lim
n2U

lim
m2U

d1;˛.Am;Bn/;

while .S˛; d1;˛/ is not stable.

We can now conclude one direction of Theorem A from James’s characterization
of reflexive spaces.

PROPOSITION 7.2
If X is a nonreflexive Banach space, then for any 0 < c < 1=4 and every ˛ > 0 there
is a map ˆ˛ W S˛!X such that

cd1;˛.A;B/�
��ˆ.A/�ˆ.B/��� d1;˛.A;B/ for all A;B 2 S˛ . (78)
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Remark
Our argument will show that if X is nonreflexive, then there is a sequence .xn/�BX
such that for all ˛ < !1 the map

ˆ˛ W S˛!X; A 7!
X
D�A

�.˛;D/xmax.D/

satisfies (78). The fact that c > 0 in Proposition 7.2 can be chosen arbitrarily close to
1
4

will be irrelevant for the rest of our arguments; therefore, at the beginning of the
proof, one could also cite [15, Theorem 8] (weakening accordingly the statement of
the proposition).

Proof
Let ‚ be any number in .0; 1/. Then by [16] there is a normalized basic sequence in
X whose basic constant is at most 2

‚
satisfying

��� 1X
jD1

ajxj

����‚ 1X
jD1

aj for all .aj / 2 c00 aj � 0, for all j 2N. (79)

Thus, its bimonotonicity constant is at most 4
‚

, which means that for m� n the pro-
jection

PŒm;n
 W span.xj /! span.xj /;
1X
jD1

ajxj 7!

nX
jDm

ajxj

has norm at most 4
‚

.
We define

ˆ W S˛!X; A 7!
X
D�A

�.˛;D/xmax.D/:

For A;B 2 S˛ we let C be the maximal element in S˛ for which C � A and
C �B . Then��ˆ.A/�ˆ.B/��D ��� X

C�D�A

�.˛;D/xmaxD �
X

C�D�B

�.˛;D/xmax.D/

���
�

X
C�D�A

�.˛;D/C
X

C�D�B

�.˛;D/D d1;˛.A;B/:

On the other hand, if we write A D ¹a1; a2; : : : ; alº and put a0 D 0 and
alC1 D1, it follows for all i D 1; 2; : : : ; l C 1 that
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��ˆ.A/�ˆ.B/��� ‚
4

��P.ai�1;ai /�ˆ.A/�ˆ.B/���� ‚24 X
ai�1<b<ai

z.˛;B/.b/:

Similarly, if we write B D ¹b1; b2; : : : ; bmº and put b0 D 0 and bmC1 D1, then it
follows for all j D 1; 2; : : : ;mC 1 that

��ˆ.A/�ˆ.B/��� ‚2
4

X
bj�1<a<bj

z.˛;B/.a/:

Thus, for any i D 1; 2; : : : ; l and any j D 1; 2; : : : ;m

��ˆ.A/�ˆ.B/��� ‚2
8

h X
ai�1<b<ai

z.˛;B/.b/C
X

bj�1<a<bj

z.˛;B/.a/
i
;

which implies our claim.

We finish this section with an observation which we will need later.

LEMMA 7.3
Let � and � be countable ordinal numbers with � < ˇ D !� . Let B1 < � � � < Bd
be in MAX.Sˇ� / such that NB D ¹min.Bj / W 1 � j � dº is a nonmaximal Sˇ -set
with l1. NB/ > 0 (l1.A/ for A 2 ŒN�<! was defined before Lemma 3.7), and set D DSd
jD1Bj 2 Sˇ.�C1/. Then for every A, B in Sˇ� with D <A and D <B we have

d1;ˇ� .A;B/D
1

�.ˇ; NB/
d1;ˇ.�C1/.D [A;D [B/ and (80)

d1;ˇ� .A;B/D
1

�.ˇ; NB/
d1;ˇ.�C1/.D [A;D [B/: (81)

Proof
We will only prove (80), as the proof of (81) uses the same argument. Let C be the
maximal element in Sˇ� such that C � A and C � B . Note that QC D D [ C is
the largest element of Sˇ.�C1/ such that QC �D [A and QC �D [B . Define QB1 D
NB[¹min.A/º and QB2 D NB[¹min.B/º, and observe that, since l1. NB/ > 0, �.ˇ; QB1/D
�.ˇ; QB2/D �.ˇ; NB/. Using (34) in Proposition 3.4 we conclude the following:X

a2.D[A/n QC

z.ˇ.�C1/;D[A/.a/D �.ˇ; QB1/
X
a2AnC

z.ˇ�;A/.a/

D �.ˇ; NB/
X
a2AnC

z.ˇ�;A/.a/; (82)
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and similarly we obtainX
a2.D[B/n QC

z.ˇ.�C1/;D[B/.a/D �.ˇ; NB/
X

a2BnC

z.ˇ�;B/.a/: (83)

By applying (82) and (83) to the definition of the d1;˛-metrics, the result easily fol-
lows.

8. The Szlenk index and embeddings of .S˛; d1;˛/ into X
In this section we show Theorems 8.1 and 8.3, which establish a proof of Theorem B.

THEOREM 8.1
Let X be a separable Banach space, and let ˛ be a countable ordinal. Assume that
Sz.X/ > !˛ . Then .S˛; d1;˛/ bi-Lipschitzly embeds into X and X�.

Before proving Theorem 8.1 we first cover the case in which `1 embeds into X .

Example 8.2
For each ˛ < !1 we want to define a bi-Lipschitz embedding of .S˛; d1;˛/ into a
Banach space X and its dual X� under the assumption that `1 embeds into X . We
first choose for every A 2 ŒN�<! a spread QA of A as in Example 5.6. Then we define
for ˛ < !1

ˆ W S˛! `1; A 7!
X
D�A

�.˛;D/emax. QD/:

Since for A;B 2 S˛ it follows that��ˆ.A/�ˆ.B/��D ��� X
C�D�A

�.˛;D/emax. QD/ �
X

C�D�B

�.˛;D/emax. QD/

���
D

X
C�D�A

�.˛;D/C
X

C�D�B

�.˛;D/D d1;˛.A;B/;

where C 2 S˛ is the maximal element for which C � A and C � B . It follows that
ˆ is an isometric embedding of .S˛; d1;˛/ into `1.

Thus, if `1 embeds into X , then .S˛; d1;˛/ bi-Lipschitzly embeds into X . Addi-
tionally, `1 is a quotient of X� in that case, and since `1 embeds into `1, it follows
easily that `1 embeds into X� and, thus, that .S˛; d1;˛/ also bi-Lipschitzly embeds
into X�.

Proof of Theorem 8.1
For the case in which X contains a copy of `1 our claim follows from Example 8.2.
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Thus, we may assume that `1 does not embed into X . Thus, we can apply Theo-
rem 5.3, (a)() (c) and obtain " > 0, a tree .z�A WA 2 S˛/�BX� , and a w-null tree
.zA WA 2 S˛/�BX , so that

z�B.zA/ > " for all A;B 2 S˛ n ¹;º, with A�B , (84)ˇ̌
z�B.zA/

ˇ̌
�
"

2
for all A;B 2 S˛ n ¹;º, with A�B . (85)

Then we define

ˆ W SA!X; A 7!
X
D�A

�.˛;D/zD:

If A;B 2 S˛ and C 2 S˛ is the maximal element of S˛ for which C �A and C �B ,
we note that��ˆ.A/�ˆ.B/��D ��� X

C�D�A

�.˛;D/zD �
X

C�D�B

�.˛;D/zD

���
�

X
C�D�A

�.˛;D/C
X

C�D�B

�.˛;D/D d1;˛.A;B/:

Moreover, we obtain��ˆ.A/�ˆ.B/��D ��� X
C�D�A

�.˛;D/zD �
X

C�D�B

�.˛;D/zD

���
� z�A

� X
C�D�A

�.˛;D/zD �
X

C�D�B

�.˛;D/zD

�
� "

X
C�D�A

�.˛;D/�
"

2

X
C�D�B

�.˛;D/:

Similarly we can show that��ˆ.A/�ˆ.B/��� " X
C�D�B

�.˛;D/�
"

2

X
C�D�A

�.˛;D/;

and thus,��ˆ.A/�ˆ.B/��� "
4

� X
C�D�A

�.˛;D/C
X

C�D�B

�.˛;D/
�
D
"

4
d1;˛.A;B/:

To define a Lipschitz embedding from .S˛; d1;˛/ into X�, we let

‰ W S˛!X�; A 7!
X
D�A

�.˛;D/z�D:
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As in the case of ˆ it is easy to see that ‰ is a Lipschitz function with constant not
exceeding the value 1. Again if A;B 2 S˛ , let C 2 S˛ be the maximal element of
S˛ for which C � A and C � B . In the case in which C 	 A, we let CC 2 S˛ be
the minimal element for which C 	 CC �A. We note that CC �D for any D 2 S˛
with C 	D �B , and it therefore follows that��‰.A/�‰.B/��D ��� X

C�D�A

�.˛;D/z�D �
X

C�D�B

�.˛;D/z�D

���
�
� X
C�D�A

�.˛;D/z�D �
X

C�D�B

�.˛;D/z�D

�
.zCC/

� "
X

C�D�A

�.˛;D/�
"

2

X
C�D�B

�.˛;D/:

If C DA, we arrive trivially to the same inequality. Similarly we obtain that��‰.A/�‰.B/��� " X
C�D�B

�.˛;D/�
"

2

X
C�D�A

�.˛;D/:

This yields ��‰.A/�‰.B/��� "
4

� X
C�D�A

�.˛;D/C
X

C�D�B

�.˛;D/
�

D
"

4
d1;˛.A;B/;

which finishes the proof of our claim.

The following dual result can be deduced from Proposition 5.5 in the same way
as we deduced Theorem 8.1 from Theorem 5.3.

THEOREM 8.3
Assume that X is a Banach space having a separable dual X� with Sz.X�/ > !˛ .
Then .S˛; d1;˛/ can be bi-Lipschitzly embedded into X .

9. Refinement argument
Before providing a proof of Theorem C and, thus, the still missing implication of The-
orem A, we will introduce in this and the next section some more notation and make
some preliminary observations. Then we will consider maps ˆ W S˛! X satisfying
weaker conditions compared to the ones required by Theorems A and C. On the one
hand it will make an argument using transfinite induction possible; on the other hand
it is sufficient to arrive at the desired conclusions.
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Definition 9.1
Let ˛ < !1. For r 2 .0; 1� we define

S .r/˛ D
°
A 2 S˛ W

X
D�A

�.˛;D/� r
±
:

It is not hard to see that S
.r/
˛ is a closed subset of S˛ and, hence, compact and closed

under restrictions. We also put

M.r/
˛ DMAX.S .r/˛ /D ¹A 2 S .r/˛ WA is maximal in S .r/˛ with respect to 	º

and, for A 2 S˛ ,

M.r/
˛ .A/D

®
B 2 S˛.A/ WA[B 2M.r/

˛

¯
:

Definition 9.2
Let X be a Banach space, ˛ be a countable ordinal number, L be an infinite subset
of N, and A0 be a set in S˛ that is either empty or a singleton. A map ˆ W S˛.A0/\
ŒL�<! ! X is called a semiembedding of S˛ \ ŒL�

<! into X starting at A0 if there
is a number c > 0 such that��ˆ.A/�ˆ.B/��

� d1;˛.A0 [A;A0 [B/ for all A;B 2 S˛.A0/\ ŒL�
<! and (86)

for all A 2 S˛.A0/\ ŒL�
<! , with l1.A0[A/ > 0, for all r 2 .0; 1�, and for all B1, B2

in M.r/.A0 [A/\ ŒL�
<! with B1 <B2��ˆ.A[B1/�ˆ.A[B2/��� cd1;˛.A0 [A[B1;A0 [A[B2/: (87)

(Note that l1.A/ for A 2 ŒN�<! was introduced in Definition 3.6.) We call the supre-
mum of all numbers c > 0 such that (87) holds for all A 2 S˛.A0/\ ŒL�

<! and B1,
B2 2M

.r/
˛ .A0 [ A/ \ ŒL�

<! , with B1 < B2, the semiembedding constant of ˆ and
denote it by c.ˆ/.

Remark
If ˆ W S˛!X is for some 0 < c < C a c-lower-d1;˛ and C -upper-d1;˛ embedding,
we can, after rescaling ˆ if necessary, assume that C D 1, and from the definition of
d1;˛ and d1;˛ we can easily see that, for every A0 that is either empty or a singleton
and for L in ŒN�! , the restriction ˆjS˛.A0/\ŒL
<!X is a semiembedding.

Assume that ˆ W S˛.A0/\ ŒL�<! ! X is a semiembedding of S˛ \ ŒL�
<! into

X starting at A0. For A 2 S˛.A0/, with A¤;, we put A0 DAn ¹max.A/º and define
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xA0[A D
1

�.˛;A0 [A/

�
ˆ.A/�ˆ.A0/

�
:

If A0 D ;, put x; D ˆ.;/, whereas if A0 is a singleton, define x; D 0 and xA0 D
.1=�.˛;A0//ˆ.;/. Note that ¹x;º [ ¹xA0[A W A 2 S˛.A0/ \ ŒL�

<!º � BX . Recall
that �.˛;;/D 0, and hence, for A 2 S˛.A0/\ ŒL�

<! , we have

ˆ.A/D x;C
X

;�D�A0[A

�.˛;D/xD:

We say in that case that the family ¹x;º [ ¹xA0[A W A 2 S˛.A0/\ ŒL�
<!º generates

ˆ. In that case the map ˆ0 W S˛.A0/ \ ŒL�<! ! X with ˆ0 D ˆ � x;, that is, for
A 2 S˛.A0/\ ŒL�

<!

ˆ0.A/D
X

;�D�A0[A

�.˛;D/xD; (88)

is also a semiembedding of S˛ \ ŒL�
<! into X starting at A0, with c.ˆ0/D c.ˆ/.

LEMMA 9.3
Let �; � < !1, with � < ˇ D !� , and let B1 < � � � < Bd be in MAX.Sˇ� / such
that NB D ¹min.Bj / W 1 � j � dº is a nonmaximal Sˇ -set with l1. NB/ > 0. Set D DSd
jD1Bj , let r 2 .0; 1�, and also let A 2 M

.r/

ˇ�
with D < A. Then, if r0 DP

C�D �.ˇ.� C 1/;C /C �.ˇ;
NB/r , we have that A 2M

.r0/

ˇ.�C1/
.D/.

Proof
From Proposition 3.4 and Lemma 3.7(c) we obtain that for C �A we have

�
�
ˇ.� C 1/;D [C

�
D �

�
ˇ; NB [

®
min.A/

¯�
�.ˇ�;C /D �.ˇ; NB/�.ˇ�;C /;

which implies thatD[A 2 S
.r0/

ˇ.�C1/
. If we assume thatD[A is not in M

.r0/

ˇ.�C1/
, then

there is B 2 S
.r0/

ˇ.�C1/
with D [ A 	 B . Possibly after trimming B , we may assume

that B 0 DD[A. Define B0 DB nD. Evidently, A	B0 and B 00 DA. We claim that
B0 2 Sˇ� . If we assume that this is not the case, then A is a maximal Sˇ� -set. This
yields that

P
C�A �.ˇ�;C /D 1, and hence, r D 1 and r0 D

P
C�D �.ˇ.� C 1//C

�.ˇ; NB/D
P
C�D[A �.ˇ.� C 1/;C /, that is, D [A 2M

.r0/

ˇ.�C1/
, which we assumed

to be false. Thus, we conclude that B0 2 Sˇ� , and thus, by using Proposition 3.4 and

the definition of r0,B0 2 S
.r/

ˇ�
, which is a contradiction, asA 2M

.r/

ˇ�
andA	B0.

LEMMA 9.4
Let ˛ < !1, let N 2 ŒN�<! , let A0 be a subset of N that is either empty or a singleton,
and let c 2 .0; 1�. Let ‰ W S˛.A0/\ ŒN �<!!X be a semiembedding of S˛ \ ŒN �

<!
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into X starting at A0, generated by a family of vectors ¹z;º[¹zA[A0 WA 2 S˛.A0/\

ŒN �<!º, such that c.‰/ > c. Let " < c.‰/� c, and let ¹Qz;º[ ¹QzA[A0 WA 2 S˛.A0/\

ŒN �<!º � BX , with kQzA0[A � zA0[Ak < ", for all A 2 S˛.A0/ \ ŒN �
<! with A0 [

A¤;. Then the map Q‰ W S˛.A0/\ ŒN �<!!X defined by

Q‰.A/D
X

D�A0[A

�.˛;D/ QzD; for A 2 S˛ \ ŒN �
<! ;

is a semiembedding of S˛ \ ŒN �
<! into X starting at A0 with c. Q‰/ > c.

Proof
For any r 2 .0; 1�, any A 2 S˛.A0/ \ ŒL�

<! , and B1, B2 2M
.r/
˛ .A0 [ A/ \ ŒN �

<!

with B1 <B2, we obtain�� Q‰.A[B1/� Q‰.A[B2/��
D
��� X
A0[A�D�A0[A[B1

�.˛;D/ QzD �
X

A0[A�D�A0[A[B2

�.˛;D/ QzD

���
�
��� X
A0[A�D�A0[A[B1

�.˛;D/zD �
X

A0[A�D�A0[A[B2

�.˛;D/zD

���
� "
� X
A0[A�D�A0[A[B1

�.˛;D/C
X

A0[A�D�A0[A[B2

�.˛;D/
�

�
�
c.‰/� "

�
d1;˛.A0 [A[B1;A0 [A[B2/;

which implies (87). Then (86) follows from the fact that QzA0[A 2 BX for all A 2
S˛.A0/\ ŒN �

<! with A0 [A¤;.

For the rest of the section we will assume that X has a bimonotone FDD .En/.
For finite or cofinite sets A � N, we denote the canonical projections from X onto
span.Ej W j 2A/ by PA, that is,

PA WX!X;

1X
jD1

xj 7!
X
j2A

xj ; for x D
1X
jD1

xj 2X , with xj 2Ej , for j 2N,

and we write Pj instead of P¹j º, for j 2N. We denote the linear span of the Ej ’s by
c00.Ej W j 2N/, that is,

c00.Ej W j 2N/D
° 1X
jD1

xj W xj 2 Fj ; for j 2N and #¹j W xj ¤ 0º<1
±
:
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Definition 9.5
Let ˛ be a countable ordinal number, let M 2 ŒN�! , and let A0 be a subset of N
that is either empty or a singleton. A semiembedding ˆ W S˛.A0/ \ ŒM �<! ! X of
S˛ \ ŒM �<! into X starting at A0 is said to be c-refined, for some c � c.ˆ/, if the
following conditions are satisfied:
(a) the family ¹x;º [ ¹xA0[A W A 2 S˛.A0/\ ŒM �<!º generating ˆ is contained

in BX \ c00.Ej W j 2N/;
(b) for all A 2 S˛.A0/\ ŒM �<! with A0 [A¤; we have

max.A0 [A/�max supp.xA0[A/ <min
®
m 2M Wm>max.A0 [A/

¯
I

(c) for all r 2 .0; 1�, A 2 S˛.A0/\ ŒM �<! , with l1.A0 [A/ > 0, and B1, B2 in
M
.r/
˛ .A0 [A/\ ŒM �<! , with B1 <B2, we have��P.max supp.xA0[A/;1/

�
ˆ.A[B1/�ˆ.A[B2/

���
� cd1;˛.A0 [A[B1;A0 [A[B2/I

(d) for all r 2 .0; 1�, A 2 S˛.A0/\ ŒM �<! , and B in M
.r/
˛ .A0 [A/\ ŒM �<! we

have ��P.max supp.xA0[A/;1/

�
ˆ.A[B/

���� c
2

X
A0[A�C�A0[A[B

�.˛;C /:

Remark 9.6
Let � < !1, let � � ˇ D !!

�
be a limit ordinal, let 0 < c � 1, and let M 2 ŒN�! . If

a0 2 N, we note that Sˇ� .¹a0º/ \ ŒM �<! D Sˇ�.�;a0/.¹a0º/ \ ŒM �<! , and �.ˇ�;
¹a0º[D/D �.ˇ	.�; a0/; ¹a0º[D/ forD 2 Sˇ� .¹a0º/\ ŒM �<! , where .	.�; n//n2N
is the sequence provided by Proposition 2.6. It follows that a semiembedding of
Sˇ� .¹a0º/\ ŒM �<! into X , starting at ¹a0º, that is c-refined is a c-refined semiem-
bedding of Sˇ�.�;n/.¹a0º/\ ŒM �<! into X .

Additionally, if ˆ W Sˇ� \ ŒM �<! ! X is a semiembedding of Sˇ� \ ŒM �<!

into X , starting at ;, that is c-refined, then for every a0 2M and N DM \ Œa0;1/
the map ‰ DˆjSˇ�.�;a0/.¹a0º/\ŒN 
<! is a semiembedding of Sˇ�.�;a0/ \ ŒN �

<! into
X , starting at ¹a0º, that is c-refined. Furthermore, ‰ is generated by the family
¹xA0[A WA 2 Sˇ�.�;a0/.¹a0º/\ ŒN �

<!º, where ¹xA WA 2 Sˇ� \ ŒM �<!º is the family
generating ˆ.

LEMMA 9.7
Let �; � < !1, with � < ˇ D !!

�
, let M 2 ŒN�! , and let A0 be a subset of N that is

either empty or a singleton. Also letˆ W Sˇ.�C1/.A0/\ ŒM �<!!X be a semiembed-
ding of Sˇ.�C1/\ ŒM �<! into X , starting at A0, that is c-refined. The family generat-
ingˆ is denoted by ¹x;º[¹xA0[A WA 2 S˛.A0/\ ŒM �<!º. Extend the set A0 to a set
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A0 [A1, A0 <A1, which can be written as A0 [A1 D
Sk
jD1Bj 2 Sˇ.�C1/ \ ŒA0 [

M�<! , where B1 < � � �<Bk are in MAX.Sˇ� / and NB D ¹min.Bj / W 1� j � kº is a
nonmaximal Sˇ -set with l1. NB/ > 0.

Then, for N DM \ .max.A0 [A1/;1/ and n0 Dmax supp.xA0[A1/, the map

‰ W Sˇ� \ ŒN �
<!!X; A 7!

1

�.ˇ; NB/
P.n0;1/

�
ˆ.A1 [A/

�
is a semiembedding of Sˇ� \ ŒN �

! into X , starting at ;, that is c-refined. Moreover,
‰ is generated by the family ¹zA WA 2 Sˇ� \ ŒN �

<!º, where

z; D 0 and zA D P.n0;1/.xA0[A1[A/ for A 2 Sˇ� \ ŒN �
<! n ¹;º: (89)

Proof
By Lemma 7.3 we easily obtain that, for A;B 2 Sˇ� \ ŒN �

<! ,��‰.A/�‰.B/��� 1

�.ˇ; NB/
d1;ˇ.�C1/.A0 [A1 [A;A0 [A1 [B/

D d1;.ˇ�/.A;B/; (90)

that is, (86) from Definition 9.2 is satisfied for ‰. We will show that (86) from Def-
inition 9.2 is satisfied for ‰ as well. Let r 2 .0; 1�, let A be in Sˇ� , with l1.A/ > 0,

and let B1 < B2 in M
.r/

ˇ�
.A/ \ ŒN �<! (i.e., A [ B1;A [ B2 2M

.r/

ˇ�
). Note that we

have l1.A0[A1[A/ > 0. If we set r0 D
P
C�A0[A1

�.ˇ.� C 1/;C /C �.ˇ; NB/r , by

Lemma 9.3 we deduce that A[B1 and A[B2 are in M
.r0/

ˇ.�C1/
.A0 [A1/\ ŒN �

<! ,

that is, B1;B2 2M
.r0/

ˇ.�C1/
.A0 [ .A1 [A//\ ŒN �

<! . Definition 9.5(b) implies n0 �
max supp.xA0[A1[A/, and thus, by Definition 9.5(c) for ˆ we deduce��‰.A[B1/�‰.A[B2/��

D
1

�.ˇ; NB/

��P.n0;1/�ˆ.A1 [A[B1/�ˆ.A1 [A[B2/���
�

1

�.ˇ; NB/

��P.max supp.xA0[A1[A/;1/
�
ˆ.A1 [A[B1/�ˆ.A1 [A[B2/

���
�

c

�.ˇ; NB/
d1;ˇ.�C1/.A0 [A1 [A[B1;A0 [A1 [A[B2/

D cd1;ˇ� .A[B1;A[B2/; (91)

where the last equality follows from Lemma 7.3. In particular, (90) and (91) yield that
‰ W Sˇ� \ ŒN �

<!!X is a semiembedding of Sˇ� \ ŒN �
<! into X starting at ; with

c.‰/� c.



A METRIC INTERPRETATION OF REFLEXIVITY FOR BANACH SPACES 3053

It remains to show that ‰ satisfies Definitions 9.5(a)–9.5(d). Observe that Defi-
nition 9.5(b) implies that, for C �A0 [A1, we have P.n0;1/.xC /D 0. We combine
this with (34) of Proposition 3.4 to obtain that, for A 2 Sˇ� \ ŒN �

<! ,

‰.A/D
1

�.ˇ; NB/
P.n0;1/

�
ˆ.A1 [A/

�
D

1

�.ˇ; NB/

X
C�A0[A1[A

�
�
ˇ.� C 1/;C

�
P.n0;1/.xC /

D
1

�.ˇ; NB/

X
A0[A1�C�A0[A1[A

�
�
ˇ.� C 1/;C

�
P.n0;1/.xC /

D
X
C�A

�.ˇ�;C /P.n0;1/.xA0[A1[C /: (92)

For A 2 Sˇ� \ ŒN �
<! define zA D P.n0;1/.xA0[A1[A/ and z; D 0. It then easily

follows by (92) that ‰ is generated by the family ¹zA W A 2 S˛ \ ŒN �
<!º. More-

over, as max supp.zA/ D max supp.xA0[A1[A/, it is straightforward to check that
Definitions 9.5(a) and 9.5(b) are satisfied for ‰. Observing that for all A 2 Sˇ� \

ŒN �<! , with A ¤ ; (which is the case when l1.A/ > 0), we have max supp.zA/ D
max supp.xA0[A1[A/ � n0. An argument similar to the one used to obtain (91) also
yields that ‰ satisfies Definitions 9.5(c) and 9.5(d).

The main result of this section is the following refinement argument.

LEMMA 9.8
Let ˛ < !1, M 2 ŒN�! , and A0 be a subset of N that is either empty or a single-
ton. Also let ˆ W S˛.A0/\ ŒM �<!!X be a semiembedding of S˛ \ ŒM �<! into X
starting at A0. Then, for every c < c.ˆ/, there exist N 2 ŒM �! and a semiembedding
Q̂ W S˛.A0/\ ŒN �

<!!X of S˛ \ ŒN �
<! into X , starting at A0, that is c-refined.

Proof
Put Qc D .c.ˆ/C c/=2. Let ¹x;º [ ¹xA0[A W A 2 S˛.A0/ \ ŒM �<!º be the vectors
generating ˆ, and choose 	 > 0 with 	 < c.ˆ/ � Qc. After shifting we can assume
without loss of generality that x; D 0. Set Qx; D 0, and choose for each A 2 S˛.A0/\

ŒM �<! , with A0 [A¤;, a vector QxA0[A 2BX \ c00.Ej W j 2N/ such that
(a) k QxA0[A � xA0[Ak< 	=2, and max.A0 [A/�max supp. QxA0[A/.
Moreover, recursively choose Qm1 < � � �< Qmk < � � � in M so that we have

QmkC1 >max
®
max supp. QxA0[A/ WA 2 S˛.A0/\

�
¹ Qm1; : : : ; Qmkº

�¯
for all k.



3054 MOTAKIS and SCHLUMPRECHT

Define QM D ¹ Qmk W k 2Nº and Q̂ W S˛.A0/\ Œ QM�<!!X so that for allA 2 S˛.A0/\

Œ QM�<! we have

Q̂ .A/D
X

C�A0[A

�.˛;C / QxC :

By Lemma 9.4, Q̂ is a semiembedding from S˛ \ Œ QM�<! into X , starting at A0, for
which c. Q̂ / > Qc > c and for which Definitions 9.5(a) and 9.5(b) are satisfied.

The goal is to find N 2 Œ QM�! so that, by restricting Q̂ to S˛.A0/\ ŒN �
<! , Def-

initions 9.5(c) and 9.5(d) are satisfied as well. Put M0 D QM . Recursively, we will
choose for every k 2N an infinite set Mk �Mk�1 so that for each k 2N the follow-
ing conditions are met:
(b) min.Mk�1/ <min.Mk/.
(c) Putting mj D min.Mj / for j D 1; : : : ; k � 1, for every A 2 S˛.A0/ \ Œ¹m1;

: : : ;mk�1º� with l1.A0[A/ > 0, r 2 .0; 1�, and for B1;B2 2M
.r/
˛ .A0[A/\

Œ¹m1; : : : ;mk�1º [Mk�
<! with B1 <B2, we have��P.max supp. QxA0[A/;1/

�
Q̂ .A[B1/� Q̂ .A[B2/

���
� Qcd1;˛.A0 [A[B1;A0 [A[B2/:

(d) For every A 2 S˛.A0/ \ Œ¹m1; : : : ;mk�1º� with l1.A0 [ A/ > 0, r 2 .0; 1�,
B 2M

.r/
˛ .A0 [A/\ Œ¹m1; : : : ;mk�1º [Mk�

<! , we have��P.max supp. QxA0[A/;1/

�
Q̂ .A[B/

���� c
2

X
A0[A�C�A0[A[B

�.˛;C /:

(If k D 1, then Œ¹m1; : : : ;mk�1º�D ¹;º.)
If we assume that such a sequence .Mk/k has been chosen, it is straightforward to
check that N D ¹mk W k 2 Nº is the desired set. In the case in which k D 1, for
A 2 S˛.A0/\ ¹;º we have AD ;. Hence, if A0 D ;, then for all A 2 S˛.A0/\ ¹;º

we have A0 [ A D ;, that is, l1.A0 [ A/ D 0, and hence, (c) and (d) are always
satisfied. Choosing M1 satisfying (b) completes the first inductive step. If, on the
other hand, A0 is a singleton, then for all A 2 S˛.A0/\ ¹;º we have A0 [AD A0,
that is, l1.A0 [ A/ > 0. This means that conditions (c) and (d) are reduced to the
case in which AD;. The choice of M1 is done in the same manner as in the general
inductive step, and we omit it.

Assume that we have chosen, for some k � 1, infinite sets Mk �Mk�1 � � � � �

M1 �M0 such that (b), (c), and (d) are satisfied for all 1� k0 � k. Observe that the
inductive assumption implies that it is enough to chooseMkC1 2 ŒMk�

! satisfying (b)
and the conditions (c) and (d) for sets A 2 S˛.A0/\ Œ¹m1; : : : ;mk�1º� with l1.A0 [
A/ > 0 and max.A/Dmk Dmin.Mk/ (or AD;, in the case in which k D 1 and A0
is a singleton). We set
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ıDmin
®
�.˛;A0 [A/ WA 2 S˛.A0/\

�
¹m1;m2; : : : ;mkº

�
and A0 [A¤;

¯
;

"D
ı

30
. Qc � c/;

d Dmax
®
max supp. QxA0[A/ WA 2 S˛.A0/\

�
¹m1; : : : ;mkº

�¯
;

and we choose a finite "-net R of the interval .0; 1�, with 1 2 R, which also has the
property that, for allA 2 S˛.A0/\Œ¹m1;m2; : : : ;mkº� and all j D 0; 1; 2; : : : ; l1.A0[
A/,

j � �.˛;A0 [A/C
X

C�A0[A

�.˛;C / 2R: (93)

Fix a finite "
2

-netK of the unit ball of the finite-dimensional space span.Ej W 1� j �
d/. For every r 2R and A 2 S˛.A0/\ Œ¹m1;m2; : : : ;mkº� we apply Proposition 2.14
to M

.r/
˛ .A0 [A/\ ŒMk�

<! and find an infinite subset QMkC1 of Mk such that, for all
A 2 S˛.A0/\ Œ¹m1;m2; : : : ;mkº� and r 2R, there exists y.r/A in K such that��y.r/A �PŒ1;d
� Q̂ .A[B/���< "

2
; for all B in M.r/

˛ .A0 [A/\ Œ QMkC1�
<! .

In particular, note that, for all A 2 S˛.A0/ \ Œ¹m1;m2; : : : ;mkº�, for all r 2 R, and
for any B1;B2 in M

.r/
˛ .A0 [A/\ Œ QMkC1�

<! , we have��PŒ1;d
� Q̂ .A[B1/� Q̂ .A[B2/���< ": (94)

Using Lemma 3.7(d) for l1.�/, we can pass to an infinite subset cMkC1 of QMkC1, so
that (b) is satisfied, and moreover,

�.˛;A0 [A[B/ < " if A 2 S˛.A0/\
�
¹m1; : : : ;mkº

�
and

B 2 S˛.A0 [A/\ ŒMkC1�
<! with #B > l1.A0 [A/ > 0: (95)

We will show that (c) is satisfied. To that end, fix 0 < r � 1, A 2 S˛.A0/ \

Œ¹m1; : : : ;mkº� with max.A0 [ A/ D mk and l1.A0 [ A/ > 0, and B1;B2 2

M
.r/
˛ .A0 [ A/ \ ŒcMkC1�

<! with B1 < B2. If both sets B1 and B2 are empty, then
(c) trivially holds, as the right-hand side of the inequality has to be zero. Otherwise,
Bs ¤ ;, where s D 1 or s D 2. Note that max.A/ D mk , that is, A0 [ A ¤ ;, and
hence, since l1.A0 [A/ > 0, putting QC D A0 [A[ ¹min.Bs/º, by the definition of
ı we obtain �.˛; QC/D �.˛;A0 [A/� ı. This easily yields

d1;˛.A0 [A[B1;A0 [A[B2/

D
X

A0[A�C�A0[A[B1

�.˛;C /C
X

A0[A�C�A0[A[B2

�.˛;C /

� ıD
30"

Qc � c
:
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Hence,

"�
Qc � c

30
d1;˛.A0 [A[B1;A0 [A[B2/: (96)

Arguing similarly, we obtain

r �
X

C�A0[A[Bs

�.˛;C /�
X

C�A0[A

�.˛;C /C �.˛; QC/� ı >min.R/: (97)

Choose r0 to be the maximal element of R with r0 � r . Since r0 � r , we can find QB1
and QB2 in M

.r0/
˛ .A0 \A/\ ŒcMkC1�

<! so that QB1 �B1 and QB2 �B2. We will show
that

d1;˛.A0 [A[B1;A0 [A[ QB1/ < 3" and

d1;˛.A0 [A[B2;A0 [A[ QB2/ < 3":
(98)

We shall only show that this is the case for B1; for B2 the proof is identical. If QB1 D
B1, then there is nothing to prove, so we may therefore assume that QB1 	B1. Define
C1 D QB1 [ ¹min.B1 n QB1/º, r1 D

P
C�A0[A[B1

�.˛;C /, Qr1 D
P
C�A0[A[ QB1

�.˛;

C /, and r 0 D
P
C�A0[A[C1

�.˛;C /. The maximality of QB1 in S
.r0/
˛ .A0[A/ implies

Qr1 � r0 < r
0 � r1: (99)

We first assume that #C1 � l1.A0 [A/. In this case, however, by (93), we obtain that
r 0 D

P
C�A0[A

�.˛;C /C.#C1/�.˛;A0[A/ is inR. This contradicts the maximality
of r0. We conclude that #C1 > l1.A0 [A/, which by (95) yields r 0 � Qr1 D �.˛;A0 [
A[C1/ < ". Hence,

d1;˛.A0 [A[B1;A0 [A[ QB1/D r1 � Qr1

D .r1 � r
0/C .r 0 � Qr1/

< .r1 � r0/C " < 3": (100)

We now verify (c) as follows:��P.d;1/� Q̂ .A[B1/� Q̂ .A[B2/���
�
��P.d;1/� Q̂ .A[ QB1/� Q̂ .A[ QB2/���
�
���P.d;1/� Q̂ .A[B1/� Q̂ .A[ QB1/���
C
��P.d;1/� Q̂ .A[B2/� Q̂ .A[ QB2/����

�
��P.d;1/� Q̂ .A[ QB1/� Q̂ .A[ QB2/���
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�
�
d1;˛.A0 [A[B1;A0 [A[ QB1/

C d1;˛.A0 [A[B2;A0 [A[ QB2/
�

>
��P.d;1/� Q̂ .A[ QB1/� Q̂ .A[ QB2/���� 6"
�
�� Q̂ .A[ QB1/� Q̂ .A[ QB2/��� ��PŒ1;d
� Q̂ .A[ QB1/� Q̂ .A[ QB2/���� 6"
�
�� Q̂ .A[ QB1/� Q̂ .A[ QB2/��� 7"
� c. Q̂ /d1;˛.A0 [A[ QB1;A0 [A[ QB2/� 7"

> Qcd1;˛.A0 [A[B1;A0 [A[B2/:

Here the second inequality follows from (86), the third from (98), the fifth from (94),
the sixth from (87), and the last one from (96).

We will need to pass to a further subset of cMkC1 to obtain (d). An applica-
tion of the triangle inequality and (c) (for k C 1) yield that for every A 2 S˛.A0/ \

Œ¹m1;m2; : : : ;mkº� with l1.A0 [ A/, r 2 .0; 1�, and B1;B2 2M
.r/
˛ .A0 [ A/, B1 <

B2, it follows that��P.max supp. QxA0[A/;1/

�
Q̂ .A[B1/

���� Qc
2
d1;˛.A0 [A[B1;A0 [A[B2/

or ��P.max supp. QxA0[A/;1/
�
Q̂ .A[B2/

���� Qc
2
d1;˛.A0 [A[B1;A0 [A[B2/:

We may therefore pass to a further infinite subset MkC1 of cMkC1 such that, for any
A 2 S˛.A0/\ Œ¹m1;m2; : : : ;mkº�, with l1.A0 [A/ > 0 and max.A0 [A/Dmk , for
any r 2R, and for any B in M

.r/
˛ .A0 [A/\ ŒMkC1�

<! , we have��P.d;1/� Q̂ .A[B/���� Qc
2

X
A0[A�C�A0[A[B

�.˛;C /: (101)

Now the verification of (d) can be done along the same lines as the proof of (c), and
we therefore omit it.

10. Some further observations on the Schreier families
In this section ˇ will be a fixed ordinal of the form ˇD !!

�
, with 1� � < !1.

10.1. Analysis of a maximal set B in Sˇ�
Recall that by Proposition 2.6 for every � � ˇ there exists a sequence 	.�;n/ of
ordinal numbers increasing to � , so that �.ˇ�;n/ D ˇ	.�;n/. (Recall that 	.�;n/
may also depend on ˇ.)
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For every � � ˇ and B 2MAX.Sˇ� / we define a family of subsets of B , which
we shall call the ˇ-analysis of B and denote by Aˇ;� .B/. The definition is done
recursively on � . For � D 1, set

Aˇ;� .B/D ¹Bº: (102a)

Let � < ˇ, and assume that Aˇ;� .B/ has been defined for all B 2MAX.Sˇ� /. For
B 2MAX.Sˇ.�C1// DMAX.Sˇ ŒSˇ� �/ there are (uniquely defined) B1 < � � � < B`
in MAX.Sˇ� / with ¹minBj W j D 1; : : : ; `º in MAX.Sˇ / so that B D

S`
jD1Bj . Set

Aˇ;�C1.B/D ¹Bº [
�[̀
jD1

Aˇ;� .Bj /
�
: (102b)

Let � � ˇ be a limit ordinal, and assume that Aˇ;� 0.B/ has been defined for
all � 0 < � and B 2 MAX.Sˇ� 0/. If now B 2 MAX.Sˇ.�//, then B 2

MAX.Sˇ�.�;min.B///. Set

Aˇ;� .B/DAˇ;�.�;min.B//.B/: (102c)

Remark 10.1
Let � � ˇ and B 2MAX.Sˇ� /. The following properties are straightforward conse-
quences of the definition of Aˇ;� .B/ and a transfinite induction.
(a) The set Aˇ;� .B/ is a tree when endowed with 
.
(b) For C;D in Aˇ;� .B/ that are incomparable with respect to inclusion, we have

either C <D or D <C .
(c) The minimal elements (with respect to inclusion) of Aˇ;� .B/ are in Sˇ .
(d) If D 2Aˇ;� .B/ is a nonminimal element, then its direct successors .Dj /`jD1

in Aˇ;� .B/ can be enumerated so that D1 < � � �<D` and D D
S`
jD1Dj .

10.2. Components of a set A in Sˇ�
We recursively define, for all nonempty sets A 2 Sˇ� and � � ˇ, a natural num-
ber s.ˇ; �;A/ and subsets Cpˇ;� .A; 1/; : : : ;Cpˇ;� .A; s.ˇ; �;A// of A. We will call

.Cpˇ;� .A; i//
s.ˇ;�;A/
iD1 the components of A in Sˇ� with respect to Sˇ .

If � D 1, that is, A is a nonempty set in Sˇ , define

s.ˇ; �;A/D 1 and Cpˇ;� .A; 1/DA: (103a)

Let � � ˇ, and assume that .Cpˇ;� .A; i//
s.ˇ;�;A/
iD1 has been defined for all nonempty

sets A in Sˇ� . If now A is a nonempty set in Sˇ.�C1/ D Sˇ ŒSˇ� �, then there are
nonempty sets A1 <A2 < � � �<Ad in Sˇ� such that

(a) AD
Sd
iD1Ai ,
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(b) ¹minAi W i D 1; : : : ; dº is in Sˇ , and
(c) the sets A1; : : : ;Ad�1 are in MAX.Sˇ� /.
Note that the set Ad may or may not be in MAX.Sˇ� /. It may also be the case that
d D 1, which in particular happens when A 2 Sˇ� . Set NA D Ad , which is always
nonempty, and we define

s.ˇ; � C 1;A/D s.ˇ; �; NA/C 1;

Cpˇ;�C1.A; 1/D
[
i<d

Ai ; and

Cpˇ;�C1.A; i/D Cpˇ;� . NA; i � 1/ if 2� i � s.ˇ; � C 1;A/:

(103b)

Note that, in the case d D 1, Cpˇ;�C1.A; 1/ is the empty set.

Let � � ˇ be a limit ordinal, and assume that .Cpˇ;� 0.A; i//
s.ˇ;� 0;A/
iD1 has been

defined for all � 0 < � and nonempty sets A in Sˇ� 0 . IfA is a nonempty set in Sˇ� ,
then A 2 Sˇ�.�;min.A//, and we define

s.ˇ; �;A/D s
�
ˇ;	

�
�;min.A/

�
;A
�

and

Cpˇ;� .A; i/D Cpˇ;�.�;min.A//.A; i/ for i D 1; 2; : : : ; s.ˇ; �;A/:
(103c)

Remark
Let � � ˇ and A 2 Sˇ� n ¹;º. The following properties follow easily from the defini-

tion of .Cpˇ;� .A; i//
s.ˇ;�;A/
iD1 and a transfinite induction on � .

(a) AD
Ss.ˇ;�;A/
iD1 Cpˇ;� .A; i/.

(b) For 1 � i < j � s.ˇ; �;A/ such that both Cpˇ;� .A; i/ and Cpˇ;� .A; j / are
nonempty, we have Cpˇ;� .A; i/ < Cpˇ;� .A; j /.

(c) Cp.A; s.ˇ; �.A///¤;.

LEMMA 10.2
Let � and � be countable ordinal numbers with � � ˇ D !!

�
. Also let B be a set

in MAX.Sˇ� / and ; 	 A � B . If Aˇ;� .B/ is the ˇ-analysis of B and .Cpˇ;� .A;

i//
s.ˇ;�;A/
iD1 are the components of A in Sˇ� with respect to Sˇ , then there exists a

maximal chain B DD1.A/�D2.A/� � � ��Ds.ˇ;�;A/.A/ in Aˇ;� .B/ satisfying the
following:
(a) Cpˇ;� .A; i/�Di .A/ for 1� i � s.ˇ; �;A/, and
(b) if 1� i < s.ˇ; �;A/, then Cpˇ;� .A; i/�Di .A/.

Proof
We prove the statement by transfinite induction on 1 � � � ˇ. If � D 1, then
Aˇ;� .B/D ¹Bº and .Cpˇ;� .A; i//

s.ˇ;�;A/
iD1 D ¹Aº, and our claim follows trivially.
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Let � < ˇ, and assume that the statement holds for all nonempty A 2 Sˇ� and
B 2 MAX.Sˇ� / with A � B . Now let A be a nonempty set in Sˇ.�C1/, and let

B 2MAX.Sˇ.�C1//. If B D
S`
iD1Bj , where B1 < � � �<B` are in MAX.Sˇ� / with

¹min.Bj / W 1 � j � `º 2MAX.Sˇ /, then by (102b) we obtain Aˇ;�C1.B/D ¹Bº [

.
S`
jD1Aˇ;� .Bj //. Define

d Dmax¹1� j � ` WBj \A¤;º;

Ai DBi for 1� i < d; and Ad DA\Bd :

Then, by (103b), letting NA D Ad , we obtain s.ˇ; � C 1;A/ D s.ˇ; �; NA/ C 1,
Cpˇ;�C1.A; 1/ D

S
i<d Ai , and Cpˇ;�C1.A; i/ D Cpˇ;� . NA; i � 1/, for 2 � i � s.ˇ;

� C 1;A/. Apply the inductive assumption to Ad D NA� Bd to find a maximal chain
Bd DD1. NA/� � � ��Ds.ˇ;�; NA/. NA/ in Aˇ� .Bd / satisfying (a) and (b) with respect to

.Cpˇ;� . NA; i//
s.ˇ;�; NA/
iD1 . Define

D1.A/DB and Di .A/DDi�1. NA/ for 2� i � s.ˇ; �;A/: (104)

Clearly, .Di .A//
s.ˇ;�; NA/
iD1 is a maximal chain in Aˇ;�C1.B/. It remains to verify that

(a) and (b) are satisfied with respect to .Cpˇ;�C1.A; i//
s.ˇ;�C1;A/
iD1 . Assertions (a) and

(b), in the case in which i D 1, follow trivially from Cpˇ;�C1.A; 1/D
S
j<d Aj DS

j<d Bj 	
S
j<d Bj �B . Assertions (a) and (b), in the case in which i ¤ 1, follow

easily from the inductive assumption and Cpˇ;�C1.A; i/D Cpˇ;� .A
0; i � 1/ for 2 �

i � s.ˇ; � C 1;A/.
To conclude the proof, if � � ˇ is a limit ordinal number such that the conclusion

is satisfied for all � 0 < � , we just observe that the result is an immediate consequence
of (102c) and (103c).

For the next result recall the definition of the doubly indexed fine Schreier fami-
lies Fˇ;� introduced in Section 2.3.

LEMMA 10.3
Let � � ˇ. Then for all A 2 Sˇ� with Cpˇ� .A; i/¤; for 1� i � s.ˇ; �;A/, we have®

min
�
Cpˇ;� .A; i/

�
W 1� i � s.ˇ; �;A/

¯
2MAX.Fˇ;� /: (105)

Proof
We prove this statement by induction on � . If � D 1 and A 2 Sˇ satisfy the assump-
tions of this lemma, then AD Cpˇ;1.A; 1/¤ ;, and hence, the result easily follows
from MAX.Fˇ;1/D ¹¹nº W n 2Nº.

Assume that the result holds for some � < ˇ, and let A 2 Sˇ.�C1/, with Cpˇ� .A;
i/¤; for 1� i � s.ˇ; � C 1;A/. By the inductive assumption and (103b) we obtain
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that B D ¹min.Cpˇ;� .A; i// W 2 � i � s.ˇ; � C 1;A/º 2MAX.Fˇ;� /. We claim that
QAD ¹min.Cpˇ;�C1.A; 1//º[B 2MAX.Fˇ;�C1/. Indeed, if this is not the case, then

by the spreading property of Fˇ;�C1 there is C 2 Fˇ;�C1 with QA 	 C . Then, B 	
QC D C n¹min.Cpˇ;�C1.A; 1//º. It follows by Fˇ;�C1 DFˇ;1t<Fˇ;� that QC 2 Fˇ;� .

The maximality of B yields a contradiction.
Assume now that � � ˇ is a limit ordinal number so that the conclusion holds

for all Q� < � . Let A 2 Sˇ� so that Cpˇ;� .A; i/ ¤ ; for 1 � i � s.ˇ; �;A/. Note
that A 2 Sˇ�.�;min.A//, and by (103c) and the inductive assumption we have QA D
¹min.Cpˇ;� .A; i// W 1 � i � s.ˇ; �;A/º 2 MAX.Fˇ;�.�;min.A///. By (27) we obtain
QA 2MAX.Fˇ;� /.

For � � ˇ and a set B in MAX.Sˇ� / we define

Eˇ;� .B/D
®
; 	A�B W Cpˇ;� .A; i/¤; for 1� i � s.ˇ; �;A/

¯
: (106)

LEMMA 10.4
Let � < ˇ. If B is in MAX.Sˇ.�C1// D Sˇ ŒSˇ� � and B D

S`
jD1Bj , where B1 <

� � �<B` are in MAX.Sˇ� / and ¹min.Bj / W 1� j � `º 2MAX.Sˇ /, then®
A WA�B and A … Eˇ.�C1/.B/

¯
D ¹A WA�B1º [

� [̀
mD2

°�m�1[
jD1

Bj

�
[A WA�Bm and A … Eˇ;� .Bm/

±�
:

Proof
Let ; ¤D � B . Define mDmax¹1� j � ` WD \Bj ¤ ;º and AD Bm \D. Note
that D D .

S
j<mBj / [ A, where

S
j<mBj D ; if m D 1. By (103b) we obtain

s.ˇ; � C 1;D/D s.ˇ; �;A/C 1, Cpˇ;�C1.D;1/D
S
j<mBj , and Cpˇ;�C1.D; i/D

Cpˇ;� .A; i � 1/ for 2� i � s.ˇ; � C 1;D/.
Observe that Cpˇ;�C1.D;1/D ; if and only if mD 1, that is, ADD � B1. On

the other hand, if Cpˇ;�C1.D;1/¤;, then for some 2� i � s.ˇ; � C 1;D/, we have
Cpˇ;�C1.D; i/D ; if and only if Cpˇ;� .A; i � 1/D ;. These observations yield our
claim.

Remark
Under the assumptions of Lemma 10.4, if for 1� j � `� 1 we define

E
.j /

ˇ;�C1
.B/D

°
A 2 Eˇ;�C1.B/ W Cpˇ;� .A; 1/D

[
i�j

Bi

±
;

then, using a similar argument to the one used in the proof of Lemma 10.4, we obtain
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E
.j /

ˇ;�C1
.B/D

°� j[
iD1

Bi

�
[C W C 2 Eˇ;� .BjC1/

±
and

Eˇ.�C1/.B/D

`�1[
jD1

E
.j /

ˇ;�C1
:

Remark
By using the fact that S1 � S˛ for all countable ordinal numbers ˛ and that
MAX.S1/D ¹F �N Wmin.F /D #F º, it is easy to verify that for all F 2MAX.S˛/
we have max.F / � 2min.F / � 1. In particular, if B1 < B2 are both in MAX.S˛/,
then

2min.B1/�min.B2/: (107)

LEMMA 10.5
Let � � ˇ, and let B be a set in MAX.Sˇ� /. ThenX

A�B
A…Eˇ;� .B/

�.ˇ�;A/ <
2

min.B/
: (108)

Proof
We prove the statement by transfinite induction for all 1 � � � ˇ. If � D 1, then the
complement of Eˇ;1.B/ only contains the empty set, and the result trivially holds.

Let � < ˇ, and assume that the statement holds for all B 2 MAX.Sˇ� /. Let
B 2MAX.Sˇ.�C1//. Let B1 < � � �<B` in MAX.Sˇ� / such that ¹min.Bj / W 1� j �

`º 2MAX.Sˇ / and B D
S`
jD1Bj . For mD 1; : : : ; `, define Dm D ¹min.Bj / W 1 �

j �mº. Proposition 3.4 implies the following: if C � B , mDmax¹1� j � ` W C \
Bj ¤ ;º, and AD C \Bm, then �.ˇ.� C 1/;C /D �.ˇ;Dm/�.ˇ�;A/. We combine
this fact with Lemma 10.4, (107), and (33) to obtain thatX

A�B
A…Eˇ;� .B/

�.ˇ�;A/D �.ˇ;D1/
X
A�B1

�.ˇ�;A/

C
X̀
jD2

�.ˇ;Dj /
X

²
A�Bj

A…Eˇ� .Bj /

³ �.ˇ�;A/

< �.ˇ;D1/C
X̀
jD2

�.ˇ;Dj /
2

min.Bj /



A METRIC INTERPRETATION OF REFLEXIVITY FOR BANACH SPACES 3063

�
1

min.B1/
C
X̀
jD2

�.ˇ;Dj /
2

min.Bj /

�
1

min.B1/
C
X̀
jD2

�.ˇ;Dj /
1

min.B1/

�
2

min.B1/

D
2

min.B/
:

If � � ˇ is a limit ordinal number such that the conclusion is satisfied for all
� 0 < � , we just observe that the result is an immediate consequence of (103c) and
(30).

LEMMA 10.6
Let � � ˇ and B 2MAX.Sˇ� /. If A.1/;A.2/ 2 Eˇ;� .B/, .Dk.A.1///

s.ˇ;�;A.1//

kD1
, and

.Dk.A
.2///

s.ˇ;�;A.2//
iD1 are the maximal chains of Aˇ;� .B/ given by Lemma 10.2, and

we assume that 1 � i � min¹s.ˇ; �;A.1//; s.ˇ; �;A.2//º is such that Di .A.1// D
Di .A

.2//, then we have Dj .A.1//DDj .A.2//, for all 1� j < i .

Proof

As .Dk.A.1///
s.ˇ;�;A/

kD1
and .Dk.A.2///

s.ˇ;�;A.2//
iD1 are both maximal chains of Aˇ;� .B/

such that Di .A.1//DDi .A.2//, the result follows from Remark 10.1(a).

LEMMA 10.7
Let � � ˇ, B 2 MAX.Sˇ� /, A.1/;A.2/ 2 Eˇ;� .B/, and 1 � i � min¹s.ˇ; �;A.1//;
s.ˇ; �;A.2//º. Then Di .A

.1// D Di .A
.2// if and only if min.Cpˇ;� .A

.1/;

i // D min.Cpˇ;� .A
.2/; i //, where .Dk.A.1///

s.ˇ;�;A/

kD1
and .Dk.A.2///

s.ˇ;�;A.2//
iD1 are

the maximal chains of Aˇ;� .B/ provided by Lemma 10.2.

Proof
Assume that Di .A.1// D Di .A.2//. Lemma 10.2(a) and the assumptions Cp.A.1/;
i /¤; and Cp.A.2/; i /¤; yield min.Cpˇ;� .A

.1/; i //Dmin.Cpˇ;� .A
.2/; i //. For the

converse let A.1/;A.2/ 2 Eˇ;� .B/ with min.Cpˇ;� .A
.1/; i // D min.Cpˇ;� .A

.2/; i //.
Since all elements of Aˇ;� .B/ either compare with respect to � or are disjoint,
Lemma 10.2(a) and min.Cpˇ;� .A

.1/; i // D min.Cpˇ;� .A
.2/; i // imply that either

Di .A
.1//�Di .A

.2// orDi .A.2//�Di .A.1//. We assume the first, and toward a con-

tradiction assume thatDi .A.1//�Di .A.2//. The maximality of .Dj .A.2///
s.ˇ;�;A.2//
jD1
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in Aˇ;� .B/ implies that there is 1 � j < i such that Dj .A.2// D Di .A
.1//. As

A
.2/

ˇ;�
.j /¤ ;, we obtain by Lemma 10.2(a) min.Cpˇ;� .A

.1/; i //Dmin.Di .A.1///D

min.Dj .A.2///Dmin.Cpˇ;� .A
.2/; j // <min.Cpˇ;� .A

.2/; i //, which is a contradic-
tion.

10.3. Special families of convex combinations

Definition 10.8
Let � � ˇ and B 2 MAX.Sˇ� /. A family of nonnegative numbers ¹r.A;k/ W A 2
Eˇ;� .B/; 1� k � s.ˇ; �;A/º is called a .ˇ; �/-special family of convex combinations
for B if the following are satisfied.
(a)

Ps.ˇ;�;A/

kD1
r.A;k/D 1 for all A 2 Eˇ;� .B/.

(b) IfA.1/;A.2/ are both in Eˇ;� .B/, .Dk.A.1///
s.ˇ;�;A/

kD1
and .Dk.A.2///

s.ˇ;�;A.2//
iD1

are the maximal chains in Aˇ;� .B/ provided by Lemma 10.2, and for some k
we have Dk.A.1//DDk.A.2//, then r.A.1/; k/D r.A.2/; k/.

Remark
Let � � ˇ and B 2MAX.Sˇ� /, and let ¹r.A;k/ WA 2 Eˇ;� .B/; k D 1; 2; : : : ; s.ˇ; �;

A/º be a family of .ˇ; �/-special convex combinations for B . For A 2 Eˇ;� .B/, let

.Dk.A//
s.ˇ;�;A/
iD1 be the maximal chain in Aˇ;� .B/ provided by Lemma 10.2, and let

.A.i//
s.ˇ;�;A/
iD1 be the components of A in Sˇ� .

By construction, D1.A/ D B for all A 2 Eˇ;� .B/, and thus, r.A; 1/ does not
depend on A. Additionally, D2.A/ only depends on A.1/; thus, r.A.1/; 2/D r.A.2/;
2/ if Cpˇ;� .A

.1/; 1/ D Cpˇ;� .A
.2/; 1/, for any A.1/;A.2/ 2 Eˇ;� .B/. We can con-

tinue, and inductively we observe that for all k � min.s.ˇ; �;A.1//; s.ˇ; �;A.2///
if Cpˇ;� .A

.1/; i / D Cpˇ;� .A
.2/; i /, for all i D 1; 2; : : : ; k � 1, then r.A.1/; k/ D

r.A.2/; k/.
Let � � ˇ and B 2 MAX.Sˇ� /. If � is a limit ordinal number, then B 2

MAX.Sˇ�.�;min.B/// and any .ˇ; �/-special family of convex combinations ¹r.A;k/ W
A 2 Eˇ;� .B/; 1� k � s.ˇ; �;A/º is also a .ˇ; 	.�;min.B///-special family of convex
combinations, as Eˇ;� .B/D Eˇ;�.�;min.B//.B/ and for A 2 Eˇ;�.�;min.B//.B/ we have
s.ˇ; 	.�;min.B//;A/D s.ˇ; �;A/.

LEMMA 10.9
We are given � < ˇ, B 2MAX.Sˇ.�C1//, and a .ˇ; � C 1/-special family of convex
combinations ¹r.A;k/ W A 2 Eˇ;�C1.B/; 1 � k � s.ˇ; � C 1;A/º. Assume that for
some D 2 Eˇ;�C1.B/ (and hence for all of them) we have r.D;1/ < 1. Let B DSd
jD1Bj , where B1 < � � � < Bd are the immediate predecessors of B in Aˇ� .B/.

For every 1� j < d consider the family ¹r .j /.C;k/ W C 2 Eˇ;� .BjC1/º, with
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r .j /.C;k/D
1

1� r.D;1/
r
�� j[
iD1

Bi

�
[C;kC 1

�
for k D 1; : : : ; s.ˇ; �;C / D s.ˇ; �; .

Sj
iD1Bi / [ C/ � 1. Then ¹r .j /.C;k/ W C 2

Eˇ;� .BjC1/º is a .ˇ; �/-special family of convex combinations.

Proof
By (103b), if C 2 Eˇ;� .BjC1/, then AD .

Sj
iD1Bi /[C 2 Eˇ;�C1.B/ and s.ˇ; � C

1;A/D s.ˇ; �;C /C 1, which implies that Definition 10.8(a) is satisfied. To see that
(b) holds, let C .1/;C .2/ be in Eˇ;� .BjC1/ such that for some k we have Dk.C .1//D
Dk.C

.2//. Then by Lemma 10.7 we have min.Cpˇ;� .C
.1/; k// D min.Cpˇ;� .C

.2/;

k//. Setting A.1/ D .
Sj
iD1Bt / [ C

.1/ and A.2/ D .
Sj
iD1Bt / [ C

.2/, by (103b) we
obtain Cpˇ;�C1.A

.1/; kC1/D Cpˇ;� .C
.1/; k/ and Cpˇ;� .A

.2/; kC1/D Cpˇ;� .C
.2/;

k/, that is, min.Cpˇ;� .A
.1/; k C 1// D min.Cpˇ;� .A

.2/; k C 1//. By Lemma 10.7
we obtain DkC1.A.1//DDkC1.A.2// and therefore r.A.1/; kC 1/D r.A.2/; kC 1/,
which yields that r .j /.C .1/; k/D r .j /.C .2/; k/.

11. Conclusion of the proofs of Theorems A and C
Again, we fix � < !1 and put ˇ D !!

�
. We additionally assume that X is a Banach

space X with a bimonotone FDD .Fj /. By [32, Main Theorem] every reflexive
Banach space X embeds into a reflexive Banach space Z with basis, so that Sz.Z/D
Sz.X/ and Sz.Z�/ D Sz.X�/. The coordinate projections on finitely or cofinitely
many coordinates are denoted by PA (see Section 9 after Definition 9.5).

Definition 11.1
Let � � ˇ, let M 2 ŒN �! , and let A0 be a subset of N that is either empty or a
singleton. Also let ˆ W Sˇ� .A0/\ ŒM �<!!X be a semiembedding of Sˇ� \ ŒM �<!

into X , starting after A0, that is c-refined, for some 0 < c � 1. Let ¹x;º [ ¹xA0[A W
A 2 Sˇ� .A0/ \ ŒM �<!º be the family generating ˆ. (Recall that notation from the
remark after Definition 9.2.)

Let E 2MAX.Sˇ� .A0/\ ŒM �<!/. For A�E recall the definition of s.ˇ; �;A/

and of .Cpˇ;� .A; i//
s.ˇ;�;A/
iD1 . Recall also from (106) Eˇ;� .A0 [E/D ¹; 	A�A0 [

E W Cpˇ;� .A; i/¤;; for i D 1; 2; : : : ; s.ˇ; �;A/º.
For each A 2 Eˇ;� .A0 [E/ we will write xA as a sum of a block sequence

xA D

s.ˇ;�;A/X
kD1

x
.k/
ˆ;A; (109)
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with x
.k/
ˆ;A D PI.A;k/.xA/, for k D 1; 2; : : : ; s.ˇ; �;A/, where I.A; 1/ D Œ1;

max supp.xCpˇ;� .A;1//� and I.A;k/ D .max supp.xSk�1
iD1 Cpˇ;� .A;i/

/;

max supp.xSk
iD1 Cpˇ;� .A;i/

/� for 1 < k < s.ˇ; �;A/. We call the family

..x
.k/
ˆ;A/

s.ˇ;�;A/

kD1
/A2Eˇ;� .A0[E/ the block step decomposition of E with respect to ˆ.

Remark
Let M 2 ŒN�! , let � � ˇ be a limit ordinal number, and let 	.�;n/ be the sequence
provided by Proposition 2.6. Assume that A0 is a singleton or the empty set and that
ˆ W Sˇ� .A0/\ ŒM �<!!X is a semiembedding of Sˇ� \ ŒM �<! into X , starting at
A0, that is c-refined.

If A0 is a singleton, say, A0 D ¹a0º, let ‰ W Sˇ�.�;a0/.A0/ \ ŒM �<! ! X , with
‰.A/D ˆ.A/, be the semiembedding of Sˇ�.�;a0/ \ ŒM �<! into X , starting at A0,
that is c-refined and given by Remark 9.6. Then, for everyE 2MAX.Sˇ�.�;a0/.A0/\
ŒN �<!/, we have�

.x
.k/
‰;A/

s.ˇ;�.�;a0/;A/

kD1

�
A2Eˇ;�.�;a0/.A0[E/

D
�
.x
.k/
ˆ;A/

s.ˇ;�;A/

kD1

�
A2Eˇ;� .A0[E/

: (110)

If A0 D ;, let a0 2 M , set A0 D ¹a0º, set N D M \ Œa0;1/, and set ‰ D
ˆjSˇ�.�;a0/.A0/\ŒN 


<! , which is, by Remark 9.6, a semiembedding of Sˇ�.�;a0/ \

ŒN �<! into X , starting at A0, that is c-refined. Then, again for every E 2

MAX.Sˇ�.�;a0/.A0/\ ŒN �
<!/,�

.x
.k/
‰;A/

s.ˇ;�.�;a0/;A/

kD1

�
A2Eˇ;�.�;a0/.A0[E/

D
�
.x
.k/
ˆ;A/

s.ˇ;�;A/

kD1

�
A2Eˇ;� .A0[E/

(111)

is the step block decomposition of E with respect to ‰.

Before formulating and proving the missing parts from Theorems A and B (see
upcoming Theorem 11.6) we present the argument which is the main inductive step.

Let � < ˇ. For B 2 MAX.Sˇ.�C1// D Sˇ ŒSˇ� � (see Proposition 2.6), we let
B1 < B2 < � � � < Bd be the (unique) elements of MAX.Sˇ� / for which B DSd
jD1Bj . We also define NB D ¹min.Bj / W j D 1; 2; : : : ; dº 2 MAX.Sˇ / and for

i D 1; : : : ; d NBi D ¹min.Bj / W j D 1; 2; : : : ; iº.
If ; 	A�B , we can writeA asAD

Sj�1
iD1 Bi [C , for some j D 1; 2; : : : ; d and

some ; 	 C �Bj , and thus, by Proposition 3.4, �.ˇ.�C1/;A/D �.ˇ; NBj /�.ˇ�;C /.
We define

QEˇ;�C1.B/D
°� j[
iD1

Bj

�
[C 2 Eˇ;�C1.B/ W 1� j < d; l1. NBj / > 0;

and C �BjC1
±
: (112)
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Let M 2 ŒN �! , let A0 be a subset of N that is either empty or a singleton, and let
ˆ W Sˇ� .A0/ \ ŒM �<! ! X be a semiembedding of Sˇ� \ ŒM �<! into X , starting
after A0, that is c-refined, for some 0 < c � 1. Also let E 2MAX.Sˇ.�C1//.A0/ \
ŒM �<! , and put B D A0 [ E . For 1 � j < d , with l1. NBj / > 0, put M .j / DM \

.max.Bj /;1/ and ˆ.j /E W Sˇ� \ ŒM
.j /�<!!X with

ˆ
.j /
E .C /D

1

�.ˇ; NBjC1/
ˆ
��� [

1�i�j

Bi

�
nA0

�
[C

�
: (113)

Recall that by Lemma 9.7, ˆ.j /E is a semiembedding of Sˇ� \ ŒM
.j /�<! into X ,

starting at ;, that is c-refined. Recall that for 1� j < d ,

E
.j /

ˇ;�C1
.A0 [E/D

°
A 2 Eˇ;�C1.A0 [E/ W Cpˇ;� .A; 1/D

[
i�j

Bi

±
;

and moreover, if l1. NBj / > 0, define

y
.j /
ˆ;E D

X
A2E

.j /

ˇ;�C1
.A0[E/

�.ˇ.� C 1/;A/

�.ˇ; NBj /

s.ˇ;�C1;A/X
kD2

x
.k/
ˆ;A: (114)

Remark
(a) By Lemma 9.7, each ˆ.j /E is a semiembedding of Sˇ� \ ŒM

.j /�<! into X ,
starting at ;, that is c-refined.

(b) We note for later use that .y.j /ˆ;E /
d
jD1 is a sequence in X which satisfies the

conditions of the sequence .xj /djD1 in Theorem 6.1 with ˛ D ˇ and thus,

assuming that Sz.X/� !ˇ , also its conclusion.
(c) By the definition of the components of a set A, we conclude that (for j D d ,

we have l1. NBd /D 0)

QEˇ;�C1.A0 [E/D
[

1�j<d

l1. NBj />0

E
.j /

ˇ;�C1
.A0 [E/; (115)

which yields

X
A2 QEˇ;�C1.A0[E/

�
�
ˇ.� C 1/;A

� s.ˇ;�C1;A/X
kD1

x
.k/
ˆ;A

D
X

1�j<d

l1. NBj />0

�.ˇ; NBj /y
.j /
ˆ;E C

X
A2 QEˇ;�C1.A0[E/

�
�
ˇ.� C 1/;A

�
x
.1/
ˆ;A: (116)
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LEMMA 11.2
Let � < ˇ, let M 2 ŒN �! , let A0 be either empty or a singleton in N, and let ˆ W
Sˇ.�C1/.A0/\ ŒM �<!!X be a semiembedding of Sˇ.�C1/ \ ŒM �<! into X , start-
ing after A0, that is c-refined, for some 0 < c � 1. Then, for every E 2

MAX.Sˇ.�C1/.A0/\ ŒM �<!/,���ˆ.E/� X
A2 QEˇ;�C1.A0[E/

�
�
ˇ.� C 1/;A

� s.ˇ;�C1;A/X
kD1

x
.k/
ˆ;A

���< 3

min.A0 [E/
: (117)

Proof
Recall that, for A 2 Eˇ;�C1.A0 [ E/, we have xA D

Ps.ˇ;�C1;A/

kD1
x
.k/
ˆ;A and that

ˆ.E/D
P
A�A0[E

�.ˇ.� C 1/;A/xA. Hence,

���ˆ.E/� X
A2 QEˇ;�C1.A0[E/

�
�
ˇ.� C 1/;A

� s.ˇ;�;A/X
kD1

x
.k/
ˆ;A

���
D
��� X

A�A0[E W

A… QEˇ;�C1.A0[E/

�
�
ˇ.� C 1/;A

�
xA

���:
We calculate X

A�A0[E

A… QEˇ;�C1.A0[E/

�
�
ˇ.� C 1/;A

�

D
X

A�A0[E
A…Eˇ;�C1.A0[E/

�
�
ˇ.� C 1/;A

�

C
X

1�j<d

l1. NBj /D0

X
A2E

.j /

ˇ;�C1
.A0[E/

�
�
ˇ.� C 1/;A

�

D
X

A�A0[E
A…Eˇ;�C1.A0[E/

�
�
ˇ.� C 1/;A

�

C
X

1�j<d

l1. NBj /D0

�.ˇ; NBjC1/
X

A2E
.j /

ˇ;�C1
.A0[E/

�
�
ˇ�;A n

�[
i�j

Bj

��

<
2

min.A0 [E/
C

1

min. NB/
D

3

min.A0 [E/
; (118)

where the last inequality follows from Lemmas 3.7(e) and 10.5.
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LEMMA 11.3
Let � , M 2 ŒN �! , A0, ˆ, and c be as in the statement of Lemma 11.2. If E 2
MAX.Sˇ.�C1/.A0/\ ŒM �<!/ and B1 < � � �<Bd are in MAX.Sˇ� /, with A0[E DSd
jD1Bj and NB D ¹minBj W 1 � j � dº 2MAX.Sˇ /, and if .y.j /E;ˆ/

d
jD1 is defined

as in (114), then for j D 1; : : : ; d � 1 with l1. NBj / > 0, where NBj D ¹minBi W 1� i �
j º, we have ky.j /ˆ;Ek � 1 and ran.y.j /ˆ;E / � .max. NBj /;max. NBjC2//. Put
max. NBdC1/D1. Then

X
A2 QEˇ.�C1/.A0[E/

�
�
ˇ.� C 1/;A

� s.ˇ;�C1;A/X
kD1

x
.k/
ˆ;A

D
X

A2 QEˇ;�C1.A0[E/

�
�
ˇ.� C 1/;A

�
x
.1/
ˆ;AC

X
1�j<d

l1. NBj />0

�.ˇ; NBjC1/y
.j /
ˆ;E : (119)

Proof
Observe that (119) immediately follows from (116) and the fact that, for 1 � j < d
with l1. NBj / > 0, we have �.ˇ; NBj / D �.ˇ; NBjC1/. For 1 � j < d with l1. NBj / > 0
and A 2 E

.j /

ˇ;�C1
.A0 [E/, note that

Sj
iD1Bi 	A�

SjC1
iD1 Bi and

uA D

s.ˇ;�C1;A/X
kD2

x
.k/
ˆ;A

D P.max supp.xCpˇ;� .A;1/
/;max supp.xA/
.xA/

D P.max supp.xSj
iD1

Bj

/;max supp.xA/
xAI (120)

that is, kuAk � 1 and by Definition 9.5(b) we obtain

max. NBj /�max
� j[
iD1

Bi

�
�max supp.xSj

iD1
Bi
/ <min supp.uA/ and

max supp.uA/�max supp.xA/ <min
®
m 2M Wm>max.A/

¯
�max. NBjC2/;

which yields

ran.uA/�
�
max. NBj /;max. NBjC2/

�
: (121)

Furthermore, we have �.ˇ.� C 1/;A/D �.ˇ; NBjC1/�.ˇ�;A n .
Sj
iD1Bi //, and since

�.ˇ; NBjC1/D �.ˇ; NBj / (by l1. NBj / > 0), we obtain

�.ˇ.� C 1/;A/

�.ˇ; NBj /
D �

�
ˇ�;A n

� j[
iD1

Bi

��
: (122)
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We deduce

y
.j /
ˆ;E D

X
C2Eˇ;� .BjC1/

�.ˇ�;C /u
.
Sj
iD1

Bi /[C
:

The above in combination with (121), (122), and the fact that kuAk � 1 yield that
ky
.j /
ˆ;Ek � 1 and ran.y.j /ˆ;E /� .max. NBj /;max. NBjC2//.

LEMMA 11.4
Let � , M 2 ŒN �! , A0, ˆ, and c be as in the statement of Lemma 11.2. Let E 2
MAX.Sˇ.�C1/.A0/ \ ŒM �<!/, .Bj /djD1, NB , and . NBj /djD1 be as in the statement of

Lemma 11.3, and letˆ.j /E , j D 1; : : : ; d �1, andM .j / 2 ŒM �! be defined as in (113).
For j D 1; : : : ; d � 1 with l1. NBj / > ; denote by�

.z
.k/

ˆ
.j /
E
;C
/
s.ˇ;� 0;C /

kD1

�
C2Eˇ;�0 .BjC1/

the block step decomposition of BjC1 with respect toˆ.j /E . Then for C 2 Eˇ;� .BjC1/

we have s.ˇ; � C 1; .
Sj
iD1Bi /[C/D s.ˇ; �;C /C 1 and

z
.k/

ˆ
.j /
E
;C
D x

.kC1/

ˆ;.
Sj
iD1

Bi /[C
; for k D 1; : : : ; s.ˇ; �;C /:

Proof
Fix C 2 Eˇ;� .BjC1/. By (103b), if we set AD .

Sj
iD1Bi /[C , then s.ˇ; �C1;A/D

s.ˇ; �;C / C 1, Cpˇ;�C1.A; i C 1/ D Cpˇ;� .A; i/ for i D 1; : : : ; s.ˇ; �;C /,

and Cpˇ;�C1.A; 1/ D
Sj
iD1Bi . Fix 1 � k � s.ˇ; �;C /. Let ¹zC W C 2 Sˇ� \

ŒM .j /�<!º be the family generating ˆ.j /E , and let n0 D max supp.xSj
iD1

Bi
/. Then

by Definition 11.1 and Lemma 9.7 we have

x
.kC1/
ˆ;A D PI.A;kC1/.xA/

and

z
.k/

ˆ
.j /
E
;C
D PI.C;k/.zC /D PI.C;k/

�
P.n0;1/.x

S
i�j Bi[C

/
�
;

with (if k D 1, replace max supp.zSk�1
iD1 Cpˇ;� .C;i/

/ by n0)

I.C;k/D
�

max supp.zSk�1
iD1 Cpˇ;� .C;i/

/;max supp.zSk
iD1 Cpˇ;� .C;i/

/
�

D
�

max supp.P.n0;1/x.Sj
iD1

Bi /[.
Sk�1
iD1 Cpˇ;� .C;i//

/;

max supp.P.n0;1/x.Sj
iD1

Bi /[.
Sk
iD1 Cpˇ;� .C;i//

/
�
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D
�

max supp.x
.
Sj
iD1

Bi /[.
Sk�1
iD1 Cpˇ;� .C;i//

/;

max supp.x
.
Sj
iD1

Bi /[.
Sk
iD1 Cpˇ;� .C;i//

/
�

D I.A;kC 1/;

where we used n0 � max supp.xSj
iD1

Bi
/, which follows from Definition 9.5(b).

Hence,

z
.k/

ˆ
.j /
E
;C
D PI.A;kC1/P.n0;1/.xA/D PI.A;kC1/.xA/D x

.kC1/
ˆ;A :

PROPOSITION 11.5
Assume that Sz.X/� !ˇ . Then, for every 1� c > 0 and M 2 ŒN�! , there exists N 2
ŒM �! with the following property: for every � � ˇ, L 2 ŒN �! , A0 �N that is either
empty or a singleton, every semiembedding ˆ W Sˇ� .A0/ \ ŒL�<! ! X from Sˇ� \

ŒL�<! into X , starting at A0, that is c-refined, every E 2MAX.Sˇ� .A0/\ ŒL�<!/,
and every .ˇ; �/-special family of convex combinations ¹r.A;k/ W A 2 Eˇ;� .A0 [

E/; 1� k � s.ˇ; �;A/º, we have

X
A2Eˇ;� .A0[E/

�.ˇ�;A/

s.ˇ;�;A/X
kD1

r.A;k/kx
.k/
ˆ;Ak �

c

3
; (123)

where .x
.k/
ˆ;A/A2Eˇ;�.A0;E/

is the block step decomposition of E for ˆ (Defini-
tion 11.1).

Proof
Fix M 2 ŒN�! and 1� c > 0. Choose " > 0 such that c=2� " > c=3, and then apply
Theorem 6.1 to find N 2 ŒM �1 such that (67) is satisfied for that " and ˇ and, more-
over, �c

2
� "�

4

min.N /

� Y
m2N

�
1�

1

m

�
>
c

3
: (124)

We claim that this is the desired set. We shall prove by transfinite induction on �
the following statement: if � � ˇ, L 2 ŒN �! , A0 � L that is either empty or a sin-
gleton, and ˆ W Sˇ� .A0/\ ŒL�<!!X is a semiembedding of Sˇ� \ ŒL�

<! into X ,
starting at A0, that is c-refined, then for any E 2MAX.Sˇ� .A0/ \ ŒL�<!/ and any
.ˇ; �/-special family of convex combinations ¹r.A;k/ W A 2 Eˇ;� .A0 [E/; 1 � k �

s.ˇ; �;A/º we have
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X
A2Eˇ;� .A0[E/

�.ˇ�;A/

s.ˇ;�;A/X
kD1

r.A;k/kx
.k/
ˆ;Ak

�
�c
2
� "�

4

min.L/

� 1Y
m2L

�
1�

1

m

�
: (125)

In conjunction with (124), this will yield the desired result. Let � D 1, let L�N , let
A0 be a subset of L that is either empty or a singleton, and let ˆ W Sˇ .A0/\ ŒL�<!!
X be a semiembedding of Sˇ \ ŒL�

<! into X , starting at A0, that is c-refined. Let
E 2MAX.Sˇ .A0/\ ŒN �<!/.

By (103a), for each A 2 Eˇ;1.A0 [ E/ we obtain that the block step decompo-

sition of xA is just .x.1/ˆ;A/ D .xA/, and hence, if ¹r.A;k/ W A 2 Eˇ;1.A0 [ E/; 1 �

k � s.ˇ; 1;A/º is a .ˇ; 1/-special family of convex combinations, then r.A; 1/D 1.
Hence,

X
A2Eˇ;1.A0[E/

�.ˇ;A/

s.ˇ;1;A/X
kD1

r.A;k/kx
.k/
ˆ;Ak

D
X

A2Eˇ;1.A0[E/

�.ˇ;A/kxAk

�
��� X
A�A0[E

�.ˇ;A/xA

���� X
A�A0[E

A…Eˇ;1.A0[E/

�.ˇ;A/

�
��ˆ.E/��� 2

min.A0 [E/
(by (108))

�
c

2
�
c

2
�.ˇ;A0/�

2

min.A0 [B/
(by Definition 9.5(d))

>
c

2
�

3

min.L/
(by (33)):

To verify the induction step, first let � < ˇ be an ordinal number for which the
conclusion holds. Let L�N , let A0 be a subset of L that is either empty or a single-
ton, and let ˆ W Sˇ.�C1/.A0/\ ŒL�<!!X be a semiembedding of Sˇ.�C1/ \ ŒL�

<!

into X , starting at A0, that is c-refined. Let E 2MAX.Sˇ.�C1/.A0/ \ ŒL�<!/, and
let ¹r.A;k/ W A 2 Eˇ;�C1.A0 [ E/; 1 � k � s.ˇ; � C 1;A/º be a .ˇ; � C 1/-special

family of convex combinations. Let A0[E D
Sd
jD1Bj , where B1 < � � �<Bd are in

MAX.Sˇ� \ ŒL�<!/ and NB Dmin¹Bj W 1� j � dº is in MAX.Sˇ /. By Lemma 11.3
and the choice of the set N , we obtain
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1�j<d

l1. NBj />0

�.ˇ; NBjC1/y
.j /
ˆ;E

���< ": (126)

Combining first Lemmas 11.2 and 11.3, then applying Definition 9.5(d) and (33), and
finally by using (126), we deduceX

A2 QEˇ;�C1.A0[E/

�
�
ˇ.� C 1/;A

�
kx
.1/
ˆ;Ak

�
��� X
A2 QEˇ;�C1.A0[E/

�
�
ˇ.� C 1/;A

�
x
.1/
ˆ;A

���
�
��ˆ.E/��� ��� X

1�j<d

l1. NBj />0

�.ˇ; NBjC1/y
.j /
ˆ;E

���� 3

min.A0 [E/

�
c

2
�
c

2
�
�
ˇ.� C 1/;A0

�
� "�

3

min.A0 [E/
�
c

2
� "�

4

min.L/
: (127)

We distinguish two cases. If r.A; 1/D 1 for all A 2 Eˇ;�C1.A0 [E/, then

X
A2Eˇ;�C1.A0[E/

�
�
ˇ.� C 1/;A

� s.ˇ;�C1;A/X
kD1

r.A;k/kx
.k/
ˆ;Ak

D
X

A2Eˇ;�C1.A0[E/

�
�
ˇ.� C 1/;A

�
kx
.1/
ˆ;Ak

�
X

A2 QEˇ;�C1.A0[E/

�
�
ˇ.� C 1/;A

�
kx
.1/
ˆ;Ak:

By (127), the result follows in that case.
Otherwise we have r1 D r.A; 1/ < 1 for all A 2 Eˇ;�C1.A0[E/. For 1� j < d ,

with l1. NBj / > 0, define L.j / DL\ .max.A0 [ .
S
1�i�j Bi //;1/ and ˆ.j /E W Sˇ� \

ŒL.j /�<! ! X as in (113). By Lemma 9.7, each ˆ.j /E is a semiembedding of Sˇ� \

ŒL.j /�<! into X , starting at ;, that is c-refined.
By Lemma 10.9, the family ¹r .j /.C;k/ W C 2 Eˇ;� .BjC1/º, with

r .j /.C;k/D
1

1� r.A.1/; 1/
r
�� j[
iD1

Bi

�
[C;kC 1

�
for k D 1; : : : ; s.ˇ; �;C /D s.ˇ; �; .

Sj
iD1Bi /[C/�1 and someA.1/ 2 Eˇ;�C1.A0[

E/, is a .ˇ; �/-special family of convex combinations. Hence, by the inductive
assumption applied to the map ˆ.j /E and Lemma 11.4, we deduce that
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X
A2E

.j /

ˇ;�C1
.A0[E/

�
�
ˇ.� C 1/;A

� s.ˇ;�C1;A/X
kD2

r.A;k/kx
.k/
ˆ;Ak

D �.ˇ; NBj /
�
1� r.A.1/; 1/

� X
C2Eˇ;� .BjC1/

�.ˇ�;C /

s.ˇ;�;C/X
kD1

r .j /.C;k/kz
.k/

ˆ
.j /
E
;C
k

� �.ˇ; NBj /
�
1� r.A.1/; 1/

��c
2
� "�

4

min.L.j //

� Y
m2L.j /

�
1�

3

m

�
: (128)

We combine (127) with (128) to obtain

X
A2Eˇ;�C1.A0[E/

�
�
ˇ.� C 1/;A

� s.ˇ;�C1;A/X
kD1

r.A;k/kx
.k/
ˆ;Ak

�
X

A2 QEˇ;�C1.A0[E/

�
�
ˇ.� C 1/;A

� s.ˇ;�C1;A/X
kD1

r.A;k/kx
.k/
ˆ;Ak

D
X

A2 QEˇ;�C1.A0[E/

�
�
ˇ.� C 1/;A

�
r.A; 1/kx

.1/
ˆ;Ak

C
X

1�j<d

l1. NBj />0

X
A2E

.j /

ˇ;�C1
.A0[E/

�
�
ˇ.� C 1/;A

� s.ˇ;�C1;A/X
kD2

r.A;k/kx
.k/
ˆ;Ak

� r.A.1/; 1/
�c
2
� "�

4

min.L/

�
C

X
1�j<d

l1. NBj />0

�.ˇ; NBj /
�
1� r.A.1/; 1/

��c
2
� "�

4

min.L/

� Y
m2L.j /

�
1�

1

m

�

�
� X
1�j<d

l1. NBj />0

�.ˇ; NBj /
��c
2
� "�

4

min.L/

� Y
m2L.1/

�
1�

1

m

�

�
�
1�

1

min. NB/

��c
2
� "�

4

min.L/

� Y
m2L.1/

�
1�

1

m

�
(by Lemma 3.7(e))

�
�c
2
� "�

4

min.L/

� Y
m2L

�
1�

1

m

�
:



A METRIC INTERPRETATION OF REFLEXIVITY FOR BANACH SPACES 3075

Assume now that � � ˇ is a limit ordinal number and that the claim holds for all
� 0 < � . Let L 2 ŒN �! , let A0 be a subset of L that is either empty or a singleton, and
let ˆ W Sˇ� .A0/\ ŒL�<!!X be a semiembedding of Sˇ� \ ŒL�

<! into X , starting
at A0, that is c-refined. We distinguish between two cases, namely, whether A0 is a
singleton or whether it is empty. In the first case, A0 D ¹a0º for some a0 2 L. By
Remark 9.6, the map ‰ with ‰ Dˆ can be seen as a semiembedding of Sˇ�.�;a0/ \

ŒL�<! into X , starting at A0, that is c-refined. If E 2MAX.Sˇ� .A0/\ ŒL�<!/, then
E 2MAX.Sˇ�.�;a0/.A0/\ ŒL�

<!/ and by (110) we have�
.x
.k/
‰;A/

s.ˇ;�.�;a0/;A/

kD1

�
A2Eˇ;�.�;a0/.A0[E/

D
�
.x
.k/
ˆ;A/

s.ˇ;�;A/

kD1

�
A2Eˇ;� .A0[E/

;

whereas if ¹r.A;k/ W A 2 Eˇ;� .A0 [E/; 1� k � s.ˇ; �;A/º is a .ˇ; �/-special fam-
ily of convex combinations, then by the remark following Definition 10.7, it is a
.ˇ; 	.�; a0//-special family of convex combinations as well. Applying the inductive
assumption for 	.�; a0/ < � yields

X
A2Eˇ;� .A0[E/

�.ˇ�;A/

s.ˇ;�;A/X
kD1

r.A;k/kx
.k/
ˆ;Ak

D
X

A2Eˇ;�.�;a0/.A0[E/

�
�
ˇ	.�; a0/;A

� s.ˇ;�.�;a0/;A/X
kD1

r.A;k/kx
.k/
‰;Ak

�
�c
2
� "�

4

min.L/

� 1Y
m2L

�
1�

1

m

�
: (129)

In the second case, A0 is empty. Let B 2 MAX.Sˇ� \ ŒL�<!/, and set a0 D
min.B/. By Remark 9.6, if L0 D L \ Œa0;1/, then the map ‰ W Sˇ�.�;a0/.A0/ \
ŒL0�! X with ‰.A/D ˆ.A0 [ A/ is a semiembedding of Sˇ�.�;a0/ \ ŒL

0�<! into
X , starting at A0, that is c-refined. By (111) we obtain�

.x
.k/
‰;A/

s.ˇ;�.�;a0/;A/

kD1

�
A2Eˇ;�.�;a0/.B/

D
�
.x
.k/
ˆ;A/

s.ˇ;�;A/

kD1

�
A2Eˇ;� .A0[E/

;

whereas if ¹r.A;k/ W A 2 Eˇ;� .B/; 1 � k � s.ˇ; �;A/º is a .ˇ; �/-special family of
convex combinations, then by the remark following Definition 10.8, it is a .ˇ; 	.�;
a0//-special family of convex combinations as well. The result follows in the same
manner as in (129).

THEOREM 11.6
Assume that X is a reflexive and separable Banach space, with the property that
Sz.X/ � !ˇ and Sz.X�/ < ˇ. Then for no L 2 ŒN�! does there exist a semiembed-
ding of Sˇ2 \ ŒL�

<! into X , starting at ;.
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Proof
By [32, Main Theorem] we can embed X into a reflexive space Z with basis such
that Sz.Z/ D Sz.X/ and Sz.Z�/ D Sz.X�/. Thus, we may assume that X has a
basis, which must be shrinking and boundedly complete, since X is reflexive. By
renorming X , we may assume that the bases of X and X� are bimonotone. Choose
˛0 with Sz.X�/� !˛0 < ˇ. (This is possible due to the form of ˇ.) Note that

CB.S˛0/D !
˛0 C 1 < ˇC 1D CB.Fˇ;ˇ /: (130)

Toward a contradiction, assume that there exists L 2 ŒN�! and a semiembedding ‰ of
Sˇ2\ ŒL�

<! intoX , starting at ;. By Lemma 9.8 there exist 1� c > 0,M 2 ŒL�! , and
a semiembedding ˆ of Sˇ2 \ ŒM �<! into X , starting at ;, that is c-refined. Applying
Proposition 11.5, we may pass to a further subset of M , again denoted by M , so that
(123) holds. Fix 0 < " < c=3, and apply Theorem 6.1 to the space X� and the ordinal
number a0 to find a further subset of M , which we again denote by M , so that (67)
is satisfied.

By Propositions 2.2 and 2.13 we may pass to a subset of M , again denoted
by M , so that S˛0 \ ŒM �<! � Fˇ;ˇ . By Lemma 10.2 we obtain that, for any B 2
MAX.Sˇ2 \ ŒM �<!/ and A 2 Eˇ;ˇ .B/, there exists QA 2MAX.S˛0/ with

QA�
®
min

�
Cpˇ;ˇ .A;k/

�
W 1� k � s.ˇ;ˇ;A/

¯
: (131)

Choose B 2MAX.Sˇ2 \ ŒM �<!/. We will define a .ˇ;ˇ/-special family of con-
vex combinations ¹r.A;k/ W A 2 Eˇ;ˇ .B/; 1 � k � s.ˇ;ˇ;A/º. For A 2 Eˇ;ˇ .B/ let
QAD ¹aA1 ; : : : ; a

A
dA
º 2MAX.S˛0/ be as in (131). For 1� k � s.ˇ;ˇ;A/ set

r.A;k/D

´
�.˛0; QAk/ if k � # QA;

0 otherwise,
(132)

where QAk D ¹aA1 ; : : : ; a
A
k
º for 1� k � # QA. We will show that this family satisfies Def-

initions 10.8(a) and 10.8(b). The first assertion is straightforward; to see the second
one, let A.1/;A.2/ 2 Eˇ;ˇ .B/ such that if .Dk.A.1///

s.ˇ;ˇ;A/

kD1
and .Dk.A.2///

s.ˇ;ˇ;A0/
iD1

are the maximal chains of Aˇ;ˇ .B/ provided by Lemma 10.2, then for some k we
have Dk.A.1//DDk.A.2//. By Lemmas 10.6 and 10.7 we obtain min.Cpˇ;ˇ .A

.1/;

m// D min.Cpˇ;ˇ .A
.2/;m// for m D 1; : : : ; k, which implies QA.1/m D QA2m for m D

1; : : : ;min¹k;# QA.1/º. By (132) it easily follows that r.A.1/; k/ D r.A.2/; k/. Since
(123) is satisfied, we obtain

X
A2Eˇ;ˇ.B/

�.ˇ2;A/

dAX
kD1

�.˛0; QAk/kx
.k/
ˆ;Ak �

c

3
: (133)
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For each A 2 Eˇ;ˇ .B/ and k D 1; : : : ; dA choose f .k/A in SX� , with f .k/A .x
.k/
A /D

kx
.k/
A k and

ran.f .k/A /� ran.x.k/ˆ;A/

�
�
max supp.xSk�1

iD1 Cpˇ;ˇ.A;i/
/;max supp.xSk

iD1 Cpˇ;ˇ.A;i/
/
�

�
�
min

�
Cpˇ;ˇ .A;k � 1/

�
;min

�
Cpˇ;ˇ .A;kC 1/

��
D
�
max. QAk�1/;max. QAkC1/

�
;

where the third inclusion follows from Definition 9.5(b). As (67) is satisfied, we
obtain that for all A 2 Eˇ;ˇ .B/��� dAX

kD1

�.˛0; QAk/f
.k/
A

���< ": (134)

We finally calculate

c

3
�

X
A2Eˇ;ˇ.B/

�.ˇ2;A/

dAX
kD1

�.˛0; QAk/kx
.k/
ˆ;Ak (by (133))

D
X

A2Eˇ;ˇ.B/

�.ˇ2;A/

dAX
kD1

�.˛0; QAk/f
.k/
A .x

.k/
ˆ;A/ (by the choice of f .k/A )

D
X

A2Eˇ;ˇ.B/

�.ˇ2;A/

dAX
kD1

�.˛0; QAk/f
.k/
A

�s.ˇ;ˇ;A/X
mD1

x
.m/
ˆ;A

�
(since ran.f .k/A /� ran.x.k/ˆ;A))

D
X

A2Eˇ;ˇ.B/

�.ˇ2;A/

dAX
kD1

�.˛0; QAk/f
.k/
A .xA/ (by (109))

�
X

A2Eˇ;ˇ.B/

�.ˇ2;A/
��� dAX
kD1

�.˛0; QAk/f
.k/
A

���< " (by (134)):

This contradiction completes the proof.

Before proving Corollary 1.2 we will need the following observation.

PROPOSITION 11.7
Let X be a Banach space, let ˛ < !1, and let L be an infinite subset of the natural
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numbers so that there exist numbers 0 < c < C and a map ˆ W S˛ \ ŒL�<! ! X

that is a c-lower-d1;˛ and C -upper-d1;˛ embedding. Then for every ˇ < ˛ there
exist n 2 N and a map ˆˇ W Sˇ \ ŒL \ .n;1/�<! ! X that is a c-lower-d1;ˇ and
C -upper-d1;ˇ embedding.

Before proving Proposition 11.7 we need some preliminary observations. The
first one can be easily shown, and we omit a proof.

LEMMA 11.8
Let ˛ be an ordinal number with A� Œ0; ˛� satisfying:
(a) ˛ 2A and
(b) if ˇ 2A and � < ˇ, then there is � � 	 < ˇ with 	 2A.
Then AD Œ0; ˛�.

LEMMA 11.9
Let ˛ < !1 be a limit ordinal number. Then there exists a sequence of successor
ordinal numbers .
.˛;n//n satisfying the following statements.
(a) 
.˛;n/ < ˛ for all n 2N and limn
.˛;n/D ˛.
(b) S˛ D ¹A 2 ŒN�<! WA 2 S�.˛;min.A//º[¹;º and S�.˛;n/\ ŒŒn;1/�

<! � S˛ for
all n 2N.

(c) For A 2 S˛ n ¹;º, z.˛;A/ D z.�.˛;min.A//;A/.

Proof
We define .
.˛;n//n by transfinite recursion on the set of countable limit ordinal
numbers. For ˛D ! we set .
.!;n//n D .�.!;n//n. If ˛ is a limit ordinal such that
for all ˛0 < ˛ the corresponding sequence has been defined, set for each n 2N


.˛;n/D

´
�.˛;n/ if �.˛;n/ is a successor ordinal number,


.�.˛;n/; n/ otherwise.

The fact that (b), (c), and the first part of (a) hold is proved easily by transfinite induc-
tion using (23) in Corollary 2.7 and the definition of repeated averages. To show that
limn
.˛;n/D ˛, we will show that for arbitraryL 2 ŒN�! we have supn2L
.˛;n/D
˛. FixL 2 ŒN�! and ˇ < ˛. Then, since CB.S˛\ ŒL�<!/D !˛C1 > !ˇC1, we have
; 2 .S˛ \ ŒL�

<!/.!
ˇC1/, and hence, there exists n 2L with ¹nº 2 .S˛ \ ŒL�<!/.!

ˇ/.
Using (4) we obtain

; 2
�
S˛ \ ŒL�

<!
�.!ˇ/�

¹nº
�
� S .!

ˇ/
˛

�
¹nº
�
D
�
S˛
�
¹nº
��.!ˇ/

D
�
S�.˛;n/

�
¹nº
��.!ˇ/

D S
.!ˇ/

�.˛;n/

�
¹nº
�
;
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which implies ¹nº 2 S
.!ˇ/

�.˛;n/
, that is, CB.S�.˛;n// � !ˇ C 1, which yields 
.˛;

n/� ˇ.

Proof of Proposition 11.7
We shall first treat two very specific cases. In the first case, ˛D ˇC1. Fix n0 � 2with
n0 2 L, and fix B0 2MAX.Sˇ \ ŒL�<!/ with min.B0/D n0. Define nD max.B0/
and ˆˇ W Sˇ \ ŒL \ .n;1/�<! ! X with ˆˇ .A/D n0ˆ.B0 [ A/. Then ˆˇ is the
desired embedding.

In the second case, ˛ is a limit ordinal, and for some n0 � 2 with n0 2 L we
have ˇC 1D 
.˛;n0/. Fix B0 2MAX.Sˇ \ ŒL�<!/ with min.B0/D n0, define nD
max.B0/, and define ˆˇ W Sˇ \ ŒL\ .n;1/�<!!X with ˆˇ .A/D n0ˆ.B0 [A/.
Then, by using the properties of .
.˛; k//k , it can be seen thatˆˇ is well defined and
is the desired embedding.

In the general case, define A to be the set of all ˇ � ˛ for which such an n and
ˆˇ exist. Since ˛ 2A, it remains to show that A satisfies Lemma 11.8(b). Indeed, fix
ˇ 2 A and � < ˇ. If ˇ D 	C 1, then by the first case we can deduce that 	 2 A and
� � 	 < ˇ. Otherwise, ˇ is a limit ordinal. Letˆˇ and nˇ witness the fact that ˇ 2A,
and by Lemma 11.9(a) we may choose n 2L with n > nˇ such that 
.ˇ;n/ > � C 1.
If 	 is the predecessor of 
.ˇ;n/, then by the second case we deduce that 	 2 A and
� � 	 < ˇ.

Proof of Corollary 1.2
We first recall a result by Causey [12, Theorem 6.2], which says that for a countable
ordinal � it follows that � D !� is the Szlenk index of some separable Banach space
X if and only if � is not of the form � D !� , with 	 being a limit ordinal. Since

˛D !!
!˛

, ˛ cannot be the Szlenk index of some separable Banach space.
(a))(b). From (a) and Causey’s result we have Sz.X/ < !˛ and Sz.X�/ < !˛ ,

and thus, there exists a � < !1 with ˇ D !!
�
� !!

�C1
< ˛ such that Sz.X/ < !ˇ

and Sz.X/ < ˇ. Thus, it follows from Theorem 11.6 that for no L 2 ŒN�! are there
numbers 0 < c < C and a map ˆ W Sˇ2 \ ŒL�

<! ! X that is a c-lower-d1;ˇ2 and

C -upper-d1;ˇ2 embedding. Since ˇ2 � !!
�C1

< ˛ Proposition 11.7 yields our claim.
(b))(a). This follows from Theorems 8.1 and 8.3.

To prove Corollary 1.3 recall that every separable Banach space is isometrically
equivalent to a subspace of CŒ0; 1�, the space of continuous functions on Œ0; 1�. The
set SB of all closed subspaces of CŒ0; 1� is given the Effros–Borel structure, which
is the � -algebra generated by the sets ¹F 2 SB W F \U ¤ ;º, where U ranges over
all open subsets of CŒ0; 1�.
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Proof of Corollary 1.3
By [26, Theorem D] the set

C˛ D
®
X 2 SB WX reflexive and max

�
Sz.X/;Sz.X�/

�
� ˛

¯
is analytic. So, by Souslin’s separation theorem (cf. [18, Theorem 14.11]) it is left to
show that its complement is also analytic. Since by Corollary 1.2

SB nC˛ D ¹X 2 SB WX not reflexiveº

[
®
X 2 SB WX reflexive and max

�
Sz.X/;Sz.X�/

�
> ˛

¯
D ¹X 2 SB WX not reflexiveº

[
®
X 2 SB W .S˛; d1;˛/ bi-Lipschitzly embeds into X

¯
and since by [9, Corollary 3.3] the set of reflexive spaces in SB is coanalytic, we
deduce our claim from the well-known and easy-to-show observation that the set of
X 2 SB in which a fixed .M;d/ separable metric space embeds is analytic.

12. Final comments and open questions
The proof of Theorem A yields the following equivalences. The statement that
(a))(b) follows from Proposition 7.2, (d))(a) follows from Theorem 11.6, and
(b))(c))(d) is trivial.

COROLLARY 12.1
For a separable Banach space X the following statements are equivalent.
(a) X is not reflexive.
(b) For all ˛ < !1 there exists for some numbers 0 < c < C a c-lower d1;˛ ,

C -upper d1;˛ embedding of S˛ into X .
(c) For all ˛ < !1 there exist a map ‰˛ W S˛!X and some 0 < c � 1 such that,

for allA;B;C 2 S˛ with the property thatA� C ,B � C , andAnC <B nC ,

cd1;˛.A;B/�
��‰.A/�‰.B/��� d1;˛.A;B/:

(d) For all ˛ < !1, there exist an L 2 ŒN�<! and a semiembedding ‰˛ W S˛ \
ŒL�<!!X .

As mentioned before we can consider for ˛ < !1 and A 2 S˛ the vector zA to be
an element in `C1 , with kxk`1 � 1. We define

T˛ D
®
.A;B/ 2 S˛ � S˛ W 9C �A and C �A; with A nC <B nC

¯
:

We note that d1;˛.A;B/ D kzA � zBk1 for .A;B/ 2 T˛ . Using this notation we
deduce the following sharpening of [29, Theorem 3.1] from Corollary 12.1.
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COROLLARY 12.2
Let X be a separable Banach space. Then the following are equivalent.
(a) X is not reflexive.
(b) For all ˛ < !1 there exist a map ‰˛ W S˛!X and some 0 < c � 1 such that

cd1;˛.A;B/�
��‰˛.A/�‰˛.B/��� d1;˛.A;B/ whenever .A;B/ 2 T˛ .

We note that James’s space J is a nonreflexive space for which it is not hard to
see that Sz.J /D Sz.J �/D !. Theorem C and Corollary 1.2 are therefore not true if
we omit the requirement that X is reflexive. Nevertheless, the following variation of
Corollary 1.2 holds.

COROLLARY 12.3
Assume that ˛ < !1 is an ordinal for which ˛ D !˛ . Then the following statements
are equivalent for a separable Banach space X .
(a) X is reflexive and max.Sz.X/;Sz.X�//� ˛.
(b) There is no map ‰ W S˛ ! X with 0 < c � 1 such that, for all A;B;C 2 S˛

with the property that C �A, C �B , and A nC <B nC , we have

cd1;˛.A;B/�
��‰.A/�‰.B/��� d1;˛.A;B/:

Proof
Let ‰ W S˛! X satisfy the condition stated in (b) for some c > 0. Then Q‰ D .‰ �
‰.;//=2 also has this property for c=2 and maps S˛ into BX with Q‰.;/D 0.

(a))(b). This follows from Theorem 11.6, [12, Theorem 6.2], and the same argu-
ment involving Proposition 11.7 in the proof of Corollary 1.2.

(b)) (a). This follows from Proposition 7.2 and Theorems 8.1 and 8.3.

Remark
The statement of Corollary 12.3 also holds for ˛D !. This can be seen from the proof
of [7, Main Result].

We finish by stating three open problems.

PROBLEMS 12.4
(a) Does there exists a family of metric spaces .Mi ; di / which is a family of test

spaces for reflexivity in the sense of [27], that is, for which it is true that
a separable Banach space X is reflexive if and only if not all of the Mi ’s
uniformly bi-Lipschitzly embed into X?

(b) Does there exist a countable family of metric spaces .Mi ; di / which is a family
of test spaces for reflexivity?
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(c) It follows from Theorem B that if X is a separable Banach space with non-
separable bidual, then .S˛; d1;˛/ bi-Lipschitzly embeds into X for all ˛ < !1.
Is the converse true, or in Ostrovskii’s language, are the spaces .S˛; d1;˛/,
˛ < !1, test spaces for spaces with separable biduals?
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