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ABSTRACT. For every well-founded tree T having a unique root
such that every non-maximal node of it has countable infinitely many
immediate successors, we construct a L∞-space XT . We prove that,
for each such tree T , the Calkin algebra of XT is homomorphic to
C(T ), the algebra of continuous functions defined on T , equipped
with the usual topology. We use this fact to conclude that, for every
countable compact metric space K, there exists a L∞-space whose
Calkin algebra is isomorphic, as a Banach algebra, to C(K).

INTRODUCTION

The Calkin algebra of a Banach space X is defined to be the quotient algebra
Cal(X) = L(X)/K(X), where L(X) denotes the algebra of all bounded linear
operators defined on X, and K(X) denotes the ideal of all the compact ones. It is
named after J. W. Calkin, who proved in [3] that the only non-trivial closed ideal
of the bounded linear operators on ℓ2 is the one of the compact operators. It is
an important example of a unital algebra: for example, an operator U ∈ L(X) is
Fredholm if and only if the class [U] of U in the Calkin algebra is invertible. A
question that arises is the following: given A a unital Banach algebra, does there
then exist a Banach space X so that the Calkin algebra of X is isomorphic, as a
Banach algebra, to A?

The very first Banach space for which the Calkin algebra was explicitly de-
scribed is the Argyros-Haydon space XAH [1] whose main feature is that it has
the “scalar plus compact” property; that is, the ideal of the compact operators
is of co-dimension one in the algebra of all bounded operators, and hence its
Calkin algebra is one-dimensional. The aforementioned construction is based on
a combination of the methods used by W. T. Gowers and B. Maurey in [6] and by
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J. Bourgain and F. Delbaen in [2]; hence, the resulting space XAH is hereditarily
indecomposable (HI) as well as a L∞-space. It is worth mentioning that for every
natural number k, by carefully taking X1, . . . , Xk versions of the Argyros-Haydon
space, the Calkin algebra of the direct sum of these spaces is k-dimensional. In
2013, M. Tarbard [11], combining the techniques from [1] and [5], provided
an example of a Banach space X∞, such that its Calkin algebra is isometric, as a
Banach algebra, to the convolution algebra ℓ1(N0).

Since the space ℓ1 occurs as a Calkin algebra, one may ask whether the same
is true for c. To make the question more precise, does there exist a Banach space
such that its Calkin algebra is isomorphic, as a Banach algebra, to C(ω)? Or
more generally, one may ask for what topological spaces K the algebra C(K) is
isomorphic to the Calkin algebra of some Banach space.

The above question is the one under consideration in the present paper. In
particular we prove the following result.

Theorem A. Let T be a well-founded tree with a unique root, such that every
non-maximal node of T has countable infinitely many immediate successors. Then,
there exists a L∞-space XT with the following properties:

(i) The dual of XT is isomorphic to ℓ1.
(ii) There exists a family of norm-one projections (Is)s∈T such that every operator

defined on the space is approximated by a sequence of operators, each one of
which is a linear combination of these projections plus a compact operator.

(iii) There also exists a bounded, one-to-one, and onto algebra homomorphism
Φ : Cal(XT ) → C(T ), where C(T ) denotes the algebra of all continuous
functions defined on the compact topological space T . In other words, the
Calkin Algebra of XT is isomorphic, as a Banach algebra, to C(T ).

As an application, we obtain the following theorem.

Theorem B. For every countable compact metric space K, there exists a L∞-space
X, with X∗ isomorphic to ℓ1, so that its Calkin algebra is isomorphic, as a Banach
algebra, to C(K).

The construction of the spaces is done recursively on the order of the tree T .
On the basic recursive step (i.e., in the case where T is a singleton), the space XT
is in fact the Argyros-Haydon space. In the general case, the space XT is the direct
sum (

∑
⊕XTn)AH, where the trees Tn have order smaller than the one of T , and

the outside norm is the Argyros-Haydon one, as it was defined by the third named
author in [12]. Given the space XAH from [1] and the definition of the direct sum
(
∑
⊕Xn)AH of a sequence of Banach spaces from [12], the definition of the spaces

XT can be formulated quite easily; however, the proofs involve many details from
these constructions, and are in some cases quite technical.

The paper is divided into five sections. The preliminary section is the most
lengthy, and mainly discusses the tools from [1] and [12] that are essential to ob-
tain the result in this paper. The basic properties of constructions from these
papers are presented, while we also make some remarks not mentioned there.
Moreover, some basic facts about trees are included. Section 2 is devoted to the
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definition of the spaces XT and the proof of some of their essential properties.
Section 3 focuses on the study of the operators defined on these spaces, and con-
cludes with the fact that, for every such space XT , there exists a set of bounded
norm-one projections {Is | s ∈ T } so that every operator on XT is approximated
by operators, each one of which is a linear combination of these projections plus a
compact operator. In the fourth section, using the aforementioned result, we prove
that the Calkin algebra of XT is homomorphic to C(T ), the algebra of continu-
ous functions on T . In the fifth, and final, section we use the properties of our
construction to deduce the main result: that is, that for every countable compact
metric space K, there exists a Banach space whose Calkin algebra is isomorphic, as
a Banach algebra, to C(K).

1. PRELIMINARIES

We begin with a preliminaries section that includes many facts and estimations
concerning Bourgain-Delbaen spaces, the Argyros-Haydon space, as well as the
Argyros-Haydon sum of a sequence of Banach spaces as it was defined in [12].
The section is unavoidably technical and extensive, as our methods rely on de-
tails concerning the just-mentioned constructions. We also mention some basics
concerning trees.

We start with the definition of a L∞-space, which first appeared in [8]. We
recall that, for Banach spaces Z,W and a constant C > 0, we say that Z is C-
isomorphic to W , denoted as Z ≃C W , if there exists an onto linear isomorphism
T : Z → W such that ‖T‖‖T−1‖ ≤ C.

Definition 1.1. We say that a separable Banach space X is a L∞,C-space where
C > 0 is a constant, if there exists a strictly increasing sequence (Yn)n∈N of sub-
spaces of X such that Yn ≃C ℓ∞(dimYn) for every n ∈ N and X =

⋃
n∈N Yn.

Using the Bourgain-Delbaen method of constructing L∞-spaces X [2], we can
specify the constant C > 0 as well as the sequence (Yn)n∈N that correspond to X
in Definition 1.1. We say that a space X is a BD-L∞-space if it is constructed via
the BD-method. Two fixed parameters 0 < a < 1, 0 < b < 1

2 with a+ b > 1 are
used, and there exist the following:

(i) A sequence (∆n)n∈N of pairwise disjoint subsets of N, where we denote
their union by Γ , and set Γn =

⋃n
i=1∆i for each n ∈ N;

(ii) Linear extension operators in : ℓ∞(Γn) → ℓ∞(Γ ) with ‖in‖‖i−1
n ‖ ≤

1/(1− 2b) for every n ∈ N.

The above assignations are such that X =
⋃
n∈N Yn, where Yn = in(ℓ∞(Γn)) for

every n ∈ N. In particular, the BD-spaceX is a L∞,C-space where C = 1/(1−2b).

1.1. The space XAH. We denote by XAH the Argyros Haydon space con-
structed in [1]. The space XAH is a separable HI L∞,2-space such that X∗AH ≃

2 ℓ1.
The construction is based on two fixed strictly increasing sequences of natural
numbers (mj , nj)j∈N (with m1 ≥ 4), and it is a generalization of the BD method
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for parameters a = 1, using instead of b the sequence (1/mj)j∈N. In particu-
lar, there exists a sequence (∆n)n∈N and linear operators in as above having the
following properties:

(i) To each element γ ∈ Γ are assigned the rank of γ, rank(γ), the weight of
γ, w(γ), and the age of γ, a(γ), so that
(a) rank(γ) = n whenever γ ∈ ∆n;
(b) w(γ) =mj for some j ≤ n whenever rank(γ) = n;
(c) a(γ) = a ≤ nj .

(ii) ‖in‖‖i−1
n ‖ ≤ 2.

Moreover, the space XAH admits an FDD (Mn)n∈N where Mn = in(ℓ∞(∆n))
is isometric to ℓ∞(∆n). Using the FDD, we define the range of an element x
in XK as the minimum interval I of N such that x ∈

∑
n∈I ⊕Mn. A bounded

sequence (xk)k in XK is called a block sequence if max ranxk < min ranxk+1 for
every k.

1.2. AH-L∞ sums of separable Banach spaces. In this subsection, we recall
the basic components from [12], namely, constructing sums (

∑
n⊕Xn)AH where

(Xn)n is a sequence of separable Banach spaces. We start with the following
notation.

Notation 1.2. Let (En,‖ · ‖En)
∞
n=1 be sequences of separable Banach spaces.

By (
∑
n⊕En)∞, we denote the space of vector elements ~x = (xn)∞n=1 such that

the n-th coordinate of ~x is in En for all n ∈ N, and ‖~x‖∞ = sup‖xn‖En is
finite. By c00(

∑
n⊕En), we denote the subspace of (

∑
n⊕En)∞ consisting of all

~x = (xn)
∞
n=1 for which there exists n0 ∈ N with the property that xn = 0 for

every n ≥ n0. For a vector ~x = (xn)∞n=1 ∈ c00(
∑
n⊕En), we define the support

of x as
suppx = {n ∈ N | xn ≠ 0}.

For every finite interval J ⊂ N, we denote by RJ the natural restriction map

RJ :
(∑

n

⊕En
)
∞
→
( ∑

n∈J

⊕En
)
∞

defined as RJ(~x) = (xn)n∈J for every ~x = (xn)
∞
n=1 ∈ c00(

∑
n⊕En). For I, J

subsets of N we say that I, J are successive (denoted I < J), if max I < minJ. For
~x, ~y, ~z vector elements of c00(

∑
n⊕En) such that supp ~x < supp ~y < supp ~z, we

denote by (~x, ~y, ~z) the vector ~x + ~y + ~z ∈ c00(
∑
n⊕En).

By (
∑∞
n=1⊕En)1, we denote the space of vector elements ~x = (xn)

∞
n=1 such

that the n-th coordinate of ~x is in En and ‖~x‖1 =
∑
n ‖xn‖En is finite. If the ele-

ments of c00(
∑
n⊕En) are considered to be functionals (i.e., En are dual spaces),

we use letters as ~f , ~g, ~h, and so on for their representation. For ~x ∈ (
∑
n⊕En)∞

and ~f ∈ c00(
∑
n⊕E

∗
n), we denote by ~f(~x) the inner product

∑
n fn(xn).

We continue with the definition of spaces (
∑∞
n=1⊕Xn)BD for a sequence

(Xn,‖ · ‖n)n∈N of separable Banach spaces.
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Definition 1.3. Let (Xn,‖·‖n)n∈N be a sequence of separable Banach spaces.
A Banach space Z is called a Bourgain Delbaen(BD)-L∞,C -sum of the sequence
(Xn,‖ · ‖n)n, denoted as Z = (

∑∞
n=1⊕Xn)BD, if there exists a sequence (∆n)n∈N

of finite, pairwise disjoint subsets of N, and the following hold:

(i) The space Z is a subspace of (
∑∞
n=1⊕(Xn ⊕ ℓ∞(∆n))∞)∞ = Z∞.

(ii) For every n, there exists a linear extension operator

in :
( n∑

k=1

⊕(Xk ⊕ ℓ
∞(∆k))∞

)
∞
→
( ∞∑

n=1

⊕(Xn ⊕ ℓ∞(∆n))∞
)
∞

such that the following hold:
(a) ‖in‖ ≤ C for every n ∈ N;
(b) Each ~x ∈ (

∑n
k=1⊕(Xk ⊕ ℓ∞(∆k))∞)∞ satisfies the following:

(ι) R[1,n](in(~x)) = ~x while R(n,∞)(in(~x)) is an element of

( ∞∑

k=n+1

⊕({0} ⊕ ℓ∞(∆k))∞
)
∞

;

(ιι) il(R[1,l]in(~x)) = in(~x) for every l ≥ n+ 1.
(iii) Setting Yn = in[(

∑n
k=1⊕(Xk ⊕ ℓ

∞(∆k))∞)∞], the union
⋃
n Yn is dense

in Z.

Note that a space Z = (
∑∞
n=1⊕Xn)BD can be obtained by modifying the

original Bourgain-Delbaen L∞ method of construction in [2] as was described
in [12]. In particular, applying this modification to the BD-method of Argyros-
Haydon, we can construct BD-L∞,2 sums (

∑∞
n=1⊕Xn)BD of separable Banach

spaces Xn, denoted as (
∑
⊕Xn)AH. The next result is proved in ([12]).

Proposition 1.4. Let (Xn,‖ · ‖n)n∈N be a sequence of separable Banach spaces.
The space Z = (

∑
⊕Xn)AH has the following properties:

(i) Z = (
∑
⊕Xn)AH admits a shrinking Schauder Decomposition (Zn)n∈N such

that each Zn = in[(Xn ⊕ ℓ∞(∆n))∞].
(ii) Every horizontally block subspace of Z is HI.
(iii) The dual Z∗ is 2-isomorphic to (

∑∞
n=1⊕(X

∗
n ⊕ ℓ1(∆n))1)1.

Definition 1.5. For an element z of Z = (
∑
⊕Xn)AH, we define the range of

z, denoted by ranz, as the minimum interval I ⊂ N such that z ∈
∑
n∈I ⊕Zn.

Because Z is a subspace of Z∞, we can consider the restriction mappings
R[1,n] : Z → (

∑n
k=1⊕(Xk ⊕ ℓ∞(∆k))∞)∞. We denote by P[1,n] : Z → Z the pro-

jections associated with the Schauder Decomposition (Zn)n∈N that are defined as
P[1,n] = in ◦ R[1,n]. We write Pn instead of P{n}, and for every k ≤m, we define
P(k,m] =

∑m
i=k+1 Pi = im ◦R[1,m] − ik ◦ R[1,k].

We also identify (
∑m
n=k⊕(Xn ⊕ {0})∞)∞ with (

∑m
n=k⊕Xn)∞ and similarly

(
∑m
n=k⊕({0} ⊕ ℓ∞(∆n))∞)∞ with (

∑m
n=k⊕ℓ∞(∆n))∞. For γ ∈ ∆n we denote

by e∗γ the usual vector element of ℓ1(∆n). We shall also extend each element
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b∗ =
∑
γ aγe

∗
γ ∈ (

∑m
n=k⊕ℓ1(∆n))1 to a functional ~b∗ : Z → R defined as

~b∗ = b∗ ◦ R[1,n]. Similarly, we extend every ~f ∈ (
∑m
n=k⊕X

∗
n)1 to a functional

~f : Z → R.
The construction of Z = (

∑∞
n=1⊕Xn)AH is based on the same parameters

(mj , nj)
∞
j=1 of XAH. More precisely, for every n ∈ N, each set ∆n+1 is the union

of pairwise disjoint sets ∆n+1 = ∆0
n+1 ∪∆1

n+1 satisfying the following:

(i) For every γ ∈ ∆0
n+1, there is ~f ∈ (

∑n
k=1⊕X

∗
k )1 with ‖ ~f‖ ≤ 1 so that

(1.1) ~e∗γ = ~e
∗
γ ◦ Pn+1 +

1
m1

~f .

(ii) The set ∆1
n+1 is defined similarly as the set ∆n of XAH, and consists of el-

ements with rank, weight, and age depending on (mj , nj)
∞
j=1. Moreover,

as was stated in [12], for every γ ∈ ∆1
n+1 with weight w(γ) =mj , there

exists a family {pi, qi, ξi, ~b∗i }
a
i=1, called the analysis of γ, such that the

following hold:
(a) 0 ≤ p1 < q1 < p2 < q2 < · · · < pa < qa = n.
(b) ξi ∈ ∆1

qi+1 with w(ξi) =mj and b∗i ∈ (
∑qi
k=pi

⊕ℓ1(∆k))1.

(c) ~e∗γ =
∑a
i=1 ~e

∗
ξi
◦ P{qi+1} + (1/mj)

∑a
i=1
~b∗i ◦ P(pi,qi].

Remark 1.6. In [12], (1.1) is actually slightly different. More precisely, in

that case, for every n ∈ N and γ ∈ ∆0
n+1, we have that ~e∗γ = ~e∗γ ◦ Pn+1 + ~f ;

that is, the constant 1/m1 is missing. All results from [12] also hold with this
modification, the only difference being that in various cases some constants have
to be adjusted. This modification is used only to prove Proposition 1.17, which is
essential to obtaining the main result of this paper.

For the rest of this subsection, we fix a sequence of separable Banach spaces
(Xn,‖ · ‖n)n∈N, and we let Z = (

∑∞
n=1⊕Xn)AH with Schauder Decomposition

(Zn)n∈N be as stated in Proposition 1.4.

Lemma 1.7. Let n,q ∈ N with q > n and γ ∈ ∆1
q with w(γ) =mj for some

j ∈ N. Consider the functional g : Z → R with g = ~e∗γ ◦ P[1,n]. Then, one of the
following holds:

(i) g = 0.
(ii) There are p1 ≤ n and ~b∗ ∈ (

∑n
k=1⊕ℓ1(∆k))1 with ‖~b∗‖ ≤ 1 so that

g = (1/mj)~b∗ ◦ P(p1,n].
(iii) There are p0 < p1 ≤ n and γ′ ∈ ∆p0 and ~b∗ as before so that we have

g = ~e∗γ′ + (1/mj)~b∗ ◦ P[p,n].

Proof. Let ~e∗γ =
∑a
i=1 ~e

∗
ξi
◦P{qi+1}+ (1/mj)

∑a
i=1
~b∗i ◦P(pi ,qi] as in (c) above.

Note that, as in [1, Proposition 4.5], we have that for every 1 ≤ i0 < a the
following holds:



A Hierarchy of Banach Spaces with C(K) Calkin Algebras 45

(1.2) ~e∗γ = ~e
∗
ξi0
+

a∑

i=i0+1

~e∗ξi ◦ P{qi+1} +
1
mj

a∑

i=i0+1

~b∗i ◦ P(pi,qi].

Let us first assume that n < q1 + 1. If n ≤ p1, then we easily conclude that
~e∗γ ◦ P[1,n] = 0, and the first assertion holds. Otherwise, we have p1 < n and

~e∗γ ◦ P[1,n] = (1/mj)~b
∗
i ◦ P(p1,n]; that is, the second assertion holds.

Let us now assume that q1 + 1 ≤ n, and set i0 = max{i | qi + 1 ≤ n}. Since
q > a, by property (a) it follows that i0 < a, and so, using (1.2), we obtain

~e∗γ ◦ P[1,n] = ~e
∗
ξi0
◦ P[0,n] +

1
mj

~b∗i0+1 ◦ P(pi0+1,n]

(where if pi0+1 > n, then the last part of the right-hand side in the above inequal-
ity is zero). Since ξi0 ∈ ∆1

qi0+1 and i0+1 ≤ n, we conclude that ~e∗ξi0
◦P[0,n] = ~e

∗
ξi0

,

and hence g = ~e∗ξi0
+ (1/mj)~b

∗
i0+1 ◦ P(pi0+1,n]. ❐

Lemma 1.8. The space Zn is isometric to (Xn ⊕ ℓ∞(∆n))∞ for every n ∈ N.
More precisely, the operator in restricted onto (Xn ⊕ ℓ∞(∆n))∞, viewed as a subspace
of (
∑n
k=1⊕(Xk ⊕ ℓ∞(∆k))∞)∞, is an isometry.

Proof. Let z = in(~x) ∈ Zn where ~x ∈ (Xn ⊕ ℓ∞(∆n))∞. We will prove that
‖z‖ = ‖x‖∞. Observe that, by Definition 1.3, R(n,∞)(z) ∈ (

∑
k>n⊕ℓ∞(∆n))∞.

Let k > n and γ ∈ ∆1
k, with w(γ) = mj , and analyze {pi, qi, ξi, ~b∗i }

a
i=1. Note

that there exists at most one 1 ≤ i ≤ a such that either n = qi+1 or n ∈ (pi, qi].
In the first case, we have that ~e∗γ (z) = ~e∗ξi(P{qi+1}z) = e∗ξi(x) ≤ ‖x‖∞, and

similarly in the second case ~e∗γ (z) = (1/mj)~b
∗
i (P(pi ,qi]z) = (1/mj)b

∗
i (x) ≤

‖x‖∞. Hence, ‖R(n,∞)z‖ ≤ ‖x‖∞, and since ‖x‖∞ = ‖R[1,n]z‖, it follows that
‖z‖ = ‖x‖∞ as promised. ❐

If by jn : Xn → (
∑n
k=1⊕(Xn ⊕ ℓ∞(∆k))∞)∞, we denote the natural embed-

ding, we immediately obtain the following result.

Corollary 1.9. The map in◦jn : Xn → Z is an isometric embedding, and hence
the space in ◦ jn[Xn] is isometric to Xn for every n ∈ N.

Let πn : (
∑n
k=1⊕(Xn ⊕ ℓ∞(∆n))∞)∞ → Xn denote the natural restriction

onto the coordinate Xn.

Lemma 1.10. For every n ∈ N, the map In : Z → Z with In = in ◦ jn ◦πn ◦
R[1,n] is a norm-one projection onto in ◦ jn[Xn] with

ker In = in[ℓ∞(∆n)]⊕
∑

k≠n

⊕Zk,

where ℓ∞(∆n) is viewed as a subspace of (
∑n
k=1⊕(Xk⊕ℓ∞(∆k))∞)∞ in the canonical

way.
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Proof. The fact that In is a projection, with the image and kernel mentioned
above, follows from its definition. To see that ‖In‖ = 1, let z ∈ Z, and let
~x = R[1,n](z). Note that In(z) = in ◦ jn ◦πn(~x), and by Corollary 1.9, we have
that ‖In(z)‖ ≤ ‖jn ◦πn(~x)‖ ≤ ‖~x‖ ≤ ‖z‖, and hence ‖In‖ = 1. ❐

Remark 1.11. Note that, for every n ∈ N, the difference Pn − In is a finite
rank operator. More precisely, (Pn − In)(Z) = in[ℓ∞(∆n)] (where ℓ∞(∆n) is
viewed as a subspace of (

∑n
k=1⊕(Xk ⊕ ℓ∞(∆k))∞)∞ in the canonical way).

Remark 1.12. For n ∈ N and a bounded linear Tn : Xn → Xn, we may
identify Tn with the map T̃n = in ◦ jn ◦ Tn ◦ πn ◦ R[1,n] that is defined on Z.
It follows that ‖Tn‖ = ‖T̃n‖. Also, for n ∈ N and bounded linear operators
Tk : Xk → Xk, k = 1, . . . , n, we may define the operator

∑n
k=1⊕Tk =

∑n
k=1 T̃k.

Proposition 1.17 below provides a relation of the norm of
∑n
k=1⊕Tk, in the Calkin

algebra of Z, to the norms of the Tk, k = 1, . . . , n.

1.3. AH(L)-L∞ sums of separable Banach spaces for L an infinite subset of
the natural numbers. The construction of XAH is based on a sequence of param-
eters (mj , nj)j∈N satisfying certain lacunarity conditions that are preserved under
taking a subsequence (mj , nj)j∈L, where L is an infinite subset of N. Hence,
for every such L, the space XAH(L) can been defined by using as parameters the
sequence (mj , nj)j∈L.

In a similar manner, such a sequence (mj , nj)j is used for constructing the
Argyros-Haydon sum of a sequence of separable Banach spaces (Xn)n. By us-
ing an infinite subset of the natural numbers L and as parameters the sequence
(mj , nj)j∈L, we define the space (

∑∞
n=1⊕Xn)AH(L). Note also that, in (1.1), the

constant 1/m1 is now replaced with 1/mminL.
The statements from the following remark follow from the corresponding

proofs in [1, Proposition 3.2, Theorems 3.4 and 3.5, Proposition 5.11].

Remark 1.13. Let L be an infinite subset of the natural numbers. If ε =
2/(mminL − 2), then the following more precise estimations are satisfied for the
space XAH(L):

(i) The extension operators in have norm at most 1+ ε.
(ii) The space XAH(L) is a L∞,1+ε-space.
(iii) The dual of XAH(L) is (1+ ε)-isomorphic to ℓ1.

We recall the following result from [1] that is needed for the sequel.

Proposition 1.14. Let L be an infinite subset of N and (zk)k be a bounded block
sequence in XAH(L). Then, there exists an infinite subset L̃ of L such that, for every
j ∈ L̃, there exists a subsequence (zki)i of (zk)k satisfying

∥∥∥
nj∑

i=1

zki

∥∥∥ ≥ 1
2mj

nj∑

i=1

‖zki‖.
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Just as above, the statements from the remark below also follow from the
corresponding proofs in [12, Lemma 2.6, Propositions 3.1 and 5.1, Corollary
5.15].

Remark 1.15. Let L be an infinite subset of N and (Xn)n be a sequence of
separable Banach spaces. If ε = 2/(mminL − 2), then the following more precise
estimations are satisfied for the space (

∑∞
n=1⊕Xn)AH(L):

(i) The extension operators in have have norm at most 1+ ε.
(ii) The space (

∑∞
n=1⊕Xn)AH(L) is a BD-L∞,1+ε sum of (Xn)n.

(iii) The dual of (
∑∞
n=1⊕Xn)AH(L) is (1+ ε)-isomorphic to the space

( ∞∑

n=1

⊕(X∗n ⊕ ℓ1(∆n))1

)
1
,

where ∆n are finite sets.

The next statement is proved in [12, Proposition 6.3], where the constant
1/mminL results from the adjustment stated in Remark 1.6.

Proposition 1.16. Let (Xn,‖·‖n)n∈N be a sequence of separable Banach spaces,
L be an infinite subset of N, Z = (

∑∞
n=1⊕Xn)AH(L), and (zk)k be a bounded block

sequence in Z. Then, there exists an infinite subset L̃ of L such that, for every j ∈ L̃,
there exists a subsequence (zki)i∈N of (zk)k satisfying

∥∥∥
nj∑

i=1

zki

∥∥∥ ≥ 1
mminL

·
1

2mj

nj∑

k=1

‖zki‖.

The following proposition essentially states that the norm of diagonal oper-
ators defined on Z = (

∑
n⊕Xn)AH(L), in the Calkin algebra of Z, is a sufficient

approximation of the supremum of the norms of the operator when restricted onto
the coordinates Xn. This is the only part of this paper where the modification of
(1.1) stated in Remark 1.6 is needed.

Proposition 1.17. Let (Xn‖ · ‖n)n∈N be a sequence of separable Banach spaces,
L be an infinite subset of N, Z = (

∑∞
n=1⊕Xn)AH(L). Let also n ∈ N, Tk : Xk → Xk

be bounded linear operators for k = 1, . . . , n and λ ∈ R. Define T : Z → Z with
T =

∑n
k=1⊕Tk + λP(n,+∞) (see Remark 1.12). Then, there exists a compact operator

K : Z → Z so that

‖T − K‖ ≤

(
1+

4
mminL − 2

)
max{ max

1≤k≤n
‖Tk‖, |λ|}.

Proof. Consider the operators

S1
n, S

2
n :
( n∑

k=1

⊕(Xk ⊕ ℓ∞(∆k))∞
)
∞
→
( n∑

k=1

⊕(Xk ⊕ ℓ∞(∆k))∞
)
∞

such that if x = (xk, zk)
n
k=1, then S1

nx = (xk,0)
n
k=1 and S2

nx = (0, zk)
n
k=1.

Define A1
n = in ◦ S

1
n ◦ R[1,n] and A2

n = in ◦ S
2
n ◦ R[1,n].
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Observe that A2
n is a finite-rank operator. Also note that Pn = A1

n+A
2
n, and hence

Pn −A1
n is a finite-rank operator as well.

Define K = (Pn − A1
n) ◦

∑n
k=1⊕Tk − λA

2
n, which is a finite-rank operator.

Then,

(1.3) T −K = A1
n ◦

n∑

k=1

⊕Tk + λ(P(n,+∞) +A
2
n).

We shall show that

‖T −K‖ ≤ (1+ δ)max{max‖Tk‖, |λ|},

where δ = 4/(mminL − 2). Let x be an element of Z with ‖x‖ = 1, and consider
x = (xk, zk)

∞
k=1 as a vector in Z∞ = (

∑∞
k=1(Xk ⊕ ℓ∞(∆k))∞)∞. Observe that

(1.4)
(
A1
n ◦

n∑

k=1

⊕Tk
)
x = in

((
Tkxk,0

)n
k=1

)
and λA2

nx = in
((

0, λzk
)n
k=1

)
.

Set (T − K)x = y ; we shall prove that ‖y‖ ≤ (1 + δ)max{max‖Tk‖, |λ|}. By
(1.3), (1.4), and Pn = in ◦ Rn, we conclude that

(1.5) y = in
((
Tkxk, λzk

)n
k=1

)
+ λ(x − in ◦Rnx).

Write y = (yk,wk)∞k=1 as a vector in Z∞. Note that Rn(x−in ◦Rnx) = 0; there-
fore, by (1.5) we obtain that Rny = Rn ◦ in((Tkxk, λzk)

n
k=1) = (Tkxk, λzk)

n
k=1,

and hence,
‖Rny‖ ≤max{max‖Tk‖, |λ|}.

Also, by (1.5) and Definition 1.3(ii)(b)(ι) we obtain that, for k > n, we have
that yk = λxk. All that remains to be shown is that, for q > n, we have that
‖wq‖ ≤ (1+ δ)max{max‖Tk‖, |λ|}. Fix q > n; it suffices to show that

|~eγ(y)| ≤ (1+ δ)max{max‖Tk‖, |λ|} for all γ ∈ ∆q.

To that end, let γ ∈ ∆q.
Using (1.5), rewrite y as

y = in
((
Tkxk − λxk,0

)n
k=1

)
+ λx.

We conclude that

|~eγ(y)| =
∣∣λ~eγ(x)+ ~eγ

(
in
((
Tkxk − λxk,0

)n
k=1

))∣∣(1.6)

≤ |λ| +
∣∣~eγ

(
in
((
Tkxk − λxk,0

)n
k=1

))∣∣.
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We distinguish two cases concerning γ. We first study the case where γ ∈ ∆0
q.

In this case, there exists ~f ∈ (
∑q−1
k=1⊕X

∗
k )1 with ‖ ~f‖ ≤ 1, such that we have

~e∗γ = ~e
∗
γ ◦ P{q} + (1/mminL) ~f (recall that in the construction of (

∑
k⊕Xk)AH(L),

in (1.1) the constant 1/m1 is replaced with 1/mminL). It follows that

∣∣~eγ
(
in
((
Tkxk − λxk,0

)n
k=1

))∣∣(1.7)

=
1

mminL

∣∣ ~f
(
in
((
Tkxk − λxk,0

)n
k=1

))∣∣

≤
1

mminL
(|λ| +max‖Tk‖)

≤
2

mminL
max{max‖Tk‖, |λ|}.

Combining (1.6) with (1.7), we obtain the desired bound.
We now assume that γ ∈ ∆1

q. Applying Lemma 1.7, we obtain that either
~eγ(in((Tkxk − λxk,0)

n
k=1)) = 0 or that there exist j ∈ L, 1 ≤ p ≤ n, and

~b∗ ∈ (
∑n
k=1⊕ℓ1(∆k))1 with ‖~b∗‖ ≤ 1 so that

~eγ
(
in
((
Tkxk − λxk,0

)n
k=1

))
=

1
mj

~b∗ ◦ P[p,n] ◦ in
((
Tkxk − λxk,0

)n
k=1

)
,

and therefore we obtain

∣∣~eγ
(
in
((
Tkxk − λxk,0

)n
k=1

))∣∣(1.8)

≤
1
mj

‖P[p,n]‖(|λ| +max‖Tk‖)

≤
1

mminL

2mminL

mminL − 2
(|λ| +max‖Tk‖)

=
2

mminL − 2
(|λ| +max‖Tk‖)

≤
4

mminL − 2
max{max‖Tk‖, |λ|}.

Finally, combining (1.6) and (1.8), we conclude that

|~eγ(y)| ≤

(
1+

4
mminL − 2

)
max{ max

1≤k≤n
‖Tk‖, |λ|},

which completes the proof. ❐

1.4. Well-founded trees. A tree is an ordered space (T ,≤) such that, for
every t ∈ T , the set {s ∈ T | s ≤ t} is well ordered. An element t ∈ T will be
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called a node of T , and a minimal node will be called a root. A subset S of T is
called a downwards closed subtree of T if, for every t ∈ S, the set {s ∈ T | s ≤ t}
is a subset of S. For every node t, we denote by succ(t) the set of the immediate
successors of t, while by Tt, we denote the set {s ∈ T | t ≤ s}. Note that the set
Tt, with the induced ordering, is also a tree. If t is a node of T and s ∈ succ(t),
then t is called the immediate predecessor of s, and is denoted by s−. For a node t,
we define the height of t, denoted by |t|, to be the order type of the well-ordered
set {s ∈ T | s ≤ t}. In particular, if t is a root of T , then |t| = 0. A tree is called
well founded if it does not contain any infinite chains. Note that in this case, |t| is
finite for every t ∈ T .

Remark 1.18. From now on, unless stated otherwise, every tree T will be
assumed to be well founded and have a unique root, denoted by∅T ; and for every
non-maximal node t, the set succ(t) will be assumed to be infinitely countable.
Note that such a tree is either infinitely countable or a singleton.

A tree T is equipped with the compact Hausdorff topology having the sets
Tt, t ∈ T as a subbase. Then, a node is an isolated point if and only if the set
succ(t) is finite, which (following the convention from Remark 1.18) is the case
if and only if t is a maximal node. Moreover, the set of all maximal nodes of T is
dense in T .

For a tree T the derivative T ′ of T is defined to be the downwards closed
subtree of all non-maximal nodes ofT . For an ordinal number α, the derivative of
orderα ofT , which is also a downwards closed subtree ofT , is defined recursively.
For α = 0, set T 0 = T . Assuming that, for an ordinal number α, the derivatives
T β have been defined for all β < α, define T α =

⋂
β<αT

β if α is a limit ordinal
number, and T α = (T β)′ if α is a successor ordinal number with α = β+1. The
rank of the tree T , denoted by ρ(T), is defined to be the smallest ordinal number
α satisfying T α = T α+1 = 0. Note that ρ(T ) is a countable ordinal number.

For a node t, the rank of t, with respect to the tree T , denoted by ρT (t),
is also defined to be the supremum of all ordinal numbers α such that t ∈ T α.
Observe that the supremum is actually obtained: that is, if ρT (t) = α, then
t ∈ T α. The function ρT satisfies the following properties: ρT (t) = 0 if and
only if t is a maximal node, and otherwise ρT (t) = sup{ρT (s) + 1 | t < s} =
sup{ρT (s) + 1 | s ∈ succ(t)}. Moreover, ρ(T ) = sup{ρT (t) + 1 | t ∈ T } =
ρT (∅T ) + 1. Furthermore, if s is a node of T and we consider the tree Ts with
the induced ordering, then ρT (t) = ρTs (t) for every t ∈ Ts .

Remark 1.19. It is more convenient to use the rank ρT (∅T ) of the root of
a tree T instead of the rank ρ(T ) of the tree itself. Therefore, unless stated oth-
erwise, by rank of a tree T we shall mean the ordinal number o(T ) = ρT (∅T ).
Under this notation, we have that o(T ) = 0 if and only if T is a singleton, and
otherwise o(T ) = sup{o(Ts)+ 1 | s ∈ T , with s ≠∅T }.
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2. THE SPACES X(T ,L,ε)

For every tree T , infinite subset of the natural numbers L, and positive real num-
ber ε, we define a Banach space X(T ,L,ε). Let us for now forget the parameter ε,
which represents the declination of the space’s dual from ℓ1, and concentrate on
the set L, which plays a significant role in proving the properties of the space; thus,
let us for the moment denote the spaces in the form X(T ,L). The purpose of this
set L lies in the fact that, as already mentioned, the Argyros-Haydon space is con-
structed using a sequence of pairs of natural numbers (mj , nj)j , called weights;
and using a subsequence (mj , nj)j∈L of these weights, one can define the space
XAH(L). As is proved in [1], if the intersection of two sets L,M is finite, then every
operator from XAH(L) to XAH(M) is compact. Returning now to the recursive def-
inition of the spaces (which we for now denote by X(T ,L)), in the basic recursive
step the space X(T ,L) is the space XAH(L), while in the general case the space X(T ,L)
is the direct sum (

∑
⊕X(Tn,Ln))AH(L0), where (Ln)n defines a partition of L. This

method of construction endows these spaces with the following properties: every
operator defined onX(T ,L) is a multiple of the identity plus a horizontally compact
operator (see Definition 3.4), and if S is a tree whileM is such that its intersection
with L is finite, then every operator T : X(T ,L) → X(S,M) is compact. These facts
are the main tools used to prove Theorem A in the Introduction.

Definition 2.1. By transfinite recursion on the order o(T ) of a tree T , we
define the spaces X(T ,L,ε) for every L infinite subset of the natural numbers and
ε positive real number. We distinguish two cases, namely, the basic step and the
general inductive step:

(i) Let T be a tree with o(T ) = 0 (i.e., T = {∅T }), L be an infinite subset
of the natural numbers, and ε be a positive real number. Let δ > 0 with
(1+δ)2 < 1+ ε. Choose L′ an infinite subset of L such that 4/(minL′−
2) < δ, and define X(T ,L,ε) = XAH(L′).

(ii) Let T be a tree with 0 < α = o(T ), L be an infinite subset of the natural
numbers, and ε be a positive real number. Assume that, for every tree
S with o(S) < α, for every infinite subset of the natural numbers M and
positive real number ε′, the spaceX(S,M,ε′) has been defined. Choose {sn |
n ∈ N}, an enumeration of the set succ(∅T ), δ > 0 with (1+δ)2 < 1+ε,
L′ an infinite subset of L with 4/(minL′ − 2) < δ, and a partition of L′

into infinite sets (Ln)
∞
n=0. Define Xsn = X(Tsn ,Ln,δ) and

X(T ,L,ε) =
( ∞∑

n=1

⊕Xsn

)
AH(L0)

.

Remark 2.2. Proposition 1.4(ii) and a transfinite induction on o(T ) yield
that the space X(T ,L,ε) is HI-saturated, for all T , L, ε as in Definition 2.1.

Proposition 2.3. Let T , L, ε be as in Definition 2.1. Then, X∗(T ,L,ε) is (1+ ε)-
isomorphic to ℓ1.
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Proof. We use transfinite induction on the order o(T ) of a tree T . In the
case that o(T ) = 0, the result follows by Remark 1.13. We now assume that
o(T ) = α > 0, and that for every tree S with o(S) < α, every infinite subset M
of N, and every ε′ > 0, the dual space X∗(S,M,ε′) is (1 + ε′)-isomorphic to ℓ1. Let
{sn | n ∈ N}, L′, (Ln)

∞
n=0, δ > 0, and Xsn as in Definition 2.1(ii) such that

X(T ,L,ε) =
( ∞∑

n=1

⊕Xsn

)
AH(L0)

.

Observe that since L0 ⊂ L′, it follows that 2/(minL0 − 2) < δ, and hence by
Proposition 1.4 and Remark 1.15, there exist (∆n)n∈N pairwise disjoint subsets of
N such that

X∗(T ,L,ε) ≃
1+δ

( ∞∑

n=1

⊕(X∗sn ⊕ ℓ1(∆n))1

)
1
.

Since Xsn = X(Tsn ,Ln,δ) and o(Tsn) < α for every n ∈ N, applying our inductive
assumption, we conclude that X∗sn ≃

1+δ ℓ1.
The result follows by the choice of δ. ❐

Remark 2.4. The above, in conjunction with the principle of local reflexivity
[9], yields that the space X(T ,L,ε) is a L∞,(1+ε′)-space for every ε′ > ε.

At this point, we shall make a few observations that follow from Definition
2.1 and the discussion made in Section 1. First, we mention that each space
X(T ,L,ε) is associated with a sequence (∆n)n∈N that is involved in its construction,
and we denote the union

⋃
n∆n by Γ (T , L, ε). In particular, if o(T) = 0, the

space X(T ,L,ε) has an FDD (Mn)n∈N such that each Mn is isometric to ℓ∞(∆n),
while in the case that o(T ) > 0 and {sn | n ∈ N} is the enumeration of the set
succ(∅T ) (as in the definition of the space X(T ,L,ε)), the space admits a Schauder
Decomposition (Zn)n∈N such that each Zn is isometric to (Xsn ⊕ ℓ∞(∆n))∞.

Using the already-introduced terminology of Section 1, for the sequel we de-
note by Pn the projections associated with the FDD or the Schauder Decomposi-
tion of the space X(T ,L,ε), where the image ImPn = Zn by Lemma 1.9 is isometric
to (Xsn ⊕ ℓ∞(∆n))∞. Also, for n ∈ N, we denote by

jn : Xsn → (
n∑

k=1

⊕(Xsn ⊕ ℓ∞(∆n))∞)∞

the natural embedding, as well as by πn : (
∑n
k=1⊕(Xsn ⊕ℓ∞(∆n))∞)∞ → Xsn the

natural coordinate projection, and by R[1,n] : Z → (
∑n
k=1⊕(Xsn ⊕ ℓ∞(∆n))∞)∞

the natural restriction mappings. We shall define the projections In : Z → Z as
In = in ◦ jn ◦πn ◦R[1,n]. Lemma 1.10 yields that ‖In‖ = 1 for every n ∈ N, and
by Corollary 1.9 we obtain that the image Im In is isometric to Xsn .

In a similar manner as above, for each t ∈ T non-maximal, following the
notation in Proposition 2.5(iv), we denote by P tn the projections defined upon
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Xt, such that for each n, the image ImP tn is isometric to (Xsn ⊕ ℓ∞(∆tn))∞ and⋃
n∆tn = Γ (Tt, Lt, δt). Note that by the above, we have Pn = P

∅T
n . Moreover, for

I = (n,m] interval of natural numbers and t ∈ T , we define P tI =
∑m
i=n+1 P

t
i .

Finally, the notion of a block sequence in X(T ,L,ε) is defined as in Section 1
using the FDD (if o(T) = 0) or the Schauder Decomposition (if o(T) ≠ 0). In
the second case, we call the block sequence horizontally block.

Proposition 2.5. Let T , L, ε be as in Definition 2.1. Then, there exist (Ls)s∈T
infinite subsets of the natural numbers, (εs)s∈T positive real numbers, (Is)s∈T norm-
one projections defined on X(T ,L,ε), and (Xs)s∈T infinitely dimensional subspaces of
X(T ,L,ε) such that the following are satisfied:

(i) The sets L∅T and L are equal; if s, t are nodes in T , and if t and s are
incomparable, we have that Ls ∩ Lt = 0, while if s ≤ t, then we have that
Lt ⊂ Ls .

(ii) The projection I∅T is the identity map; if s, t are nodes in T , and if t
and s are incomparable, we have that Im Is ⊂ ker It, and if s ≤ t then
Is ◦ It = It ◦ Is = It.

(iii) The image of the operator Is is the space Xs , and Xs is isometric to X(Ts ,Ls ,εs).
(iv) If t is a non-maximal node of T , then there is an enumeration {sn | n ∈ N}

of succ(t), and L0
t an infinite subset of Lt \

⋃
s∈succ(t) Ls such that the follow-

ing is satisfied:

Xt =
( ∞∑

n=1

⊕Xsn

)
AH(L0

t )
.

Proof. We use induction on the order of the tree T , o(T ). In the case that
o(T ) = 0, let L′ be such that X(T ,L,ε) = XAH(L′). We set L∅T = L, I∅T = I, where
I denotes the identity map on XAH(L′) and δ∅T = ε. Assume that o(T ) = α > 0
and that the statement has been proved for every S,M, δ such that o(S) < α, with
M ⊆ N infinite and δ > 0.

Let {sn | n ∈ N}, (Ln)∞n=0, δ > 0, and Xsn as in Definition 2.1(ii) such that

X(T ,L,ε) =
( ∞∑

n=1

⊕Xsn

)
AH(L0)

.

Let also In : X(T ,L,ε) → X(T ,L,ε) be the norm-one projections for every n ∈ N

such that Im In is isometric to Xsn . We recall that Xsn = X(Tsn ,Ln,δ), and since
o(Tsn) < α, applying our inductive assumption for every n ∈ N, we obtain
(Ls)s∈Tsn infinite subsets of the natural numbers, (εs)s∈Tsn positive real numbers,
and (Is)s∈Tsn norm-one projections defined on X(Tsn ,Ln,δ) satisfying the condi-
tions (i)–(iv) above.

We set L∅T = L, I∅T = I, where I denotes the identity map on X(T ,L,ε),
ε∅T = ε. For t ∈ T with t ≠ ∅T , note that there exists n0 ∈ N such that
t ∈ Tsn0

; hence, Lt, εt, and It : Xsn0
→ Xsn0

(where Im It is isometric to Xt) have
already been defined by our inductive assumption.
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We extend It : X(T ,L,ε) → X(T ,L,ε) as It = It◦In0 , and we setXt = It[X(T ,L,ε)].
It is not hard to check that (Ls)s∈T , (εs)s∈T , (Is)s∈T , and (Xs)s∈T satisfy the
thesis. ❐

3. OPERATORS ON THE SPACES X(T ,L,ε)

We study the properties of the operators defined on the spaces X(T ,L,ε). The pur-
pose is to show that every bounded linear operator is approximated by a sequence
of operators, each one of which is a linear combination of the projections Is , s ∈ T
plus a compact operator. We start by giving the definition of Rapidly Increasing
Sequences (RIS) in the spaces X(T ,L,ε).

Definition 3.1. Let L be an infinite subset of N, (Xn)n be a sequence of
separable Banach spaces, and X = (

∑
n⊕Xn)AH(L). We say that a block sequence

(respectively, a horizontally block sequence) (zk)k∈N in XAH(L) (respectively, in
X) is a C-rapidly increasing sequence (RIS) if there exists a constant C > 0 and a
strictly increasing sequence (jk)k∈N in L such that the following hold:

(i) ‖zk‖ ≤ C for all k ∈ N.
(ii) jk+1 >max ranzk.
(iii) |~e∗γ (zk)| ≤ C/mi for every γ ∈ Γ with w(γ) < mjk .

Note that in XAH(L), the definition of a C-RIS essentially coincides with the
corresponding one presented in [1]. Furthermore, the existence of C-RIS in
X = (

∑
n⊕Xn)AH(L) is proved in a manner similar to what is described in [12],

and makes use of Proposition 1.16 as well as an analogue of [1, Lemma 8.4].
The next result follows readily from [1, Proposition 5.4; 12, Proposition 5.12].

Proposition 3.2. Let L be an infinite subset of the natural numbers, and X be
either XAH(L) or X = (

∑∞
n=1⊕Xn)AH(L), where (Xn)n is a sequence of separable

Banach spaces. Let also (zk)k be a C-RIS in X and j0 ∈ N. Then,

∥∥∥n−1
j0

nj∑

k=1

zk
∥∥∥ ≤





10C
mj0

if j0 ∈ L,

10C

m2
j0

if j0 ∉ L.

The following result is proved in [12, Proposition 5.14]

Lemma 3.3. Let L be an infinite subset of the natural numbers, (Xn)n be a
sequence of separable Banach spaces, and X = (

∑∞
n=1⊕Xn)AH(L). Let also Y be a

Banach space, and T : X → Y be a bounded linear operator; and assume there exists a
seminormalized horizontally block sequence (xk)k in X so that lim supk ‖Txk‖ > 0.

Then, there exists a RIS (yk)k in X such that lim supk ‖Tyk‖ > 0.
We adapt the following definition given in [12].

Definition 3.4. Let (Xn)n be a sequence of separable Banach spaces, L be an
infinite subset of the natural numbers, X = (

∑∞
n=1⊕Xn)AH(L), and Y be a Banach

space. We say that an operator K : X → Y is horizontally compact if, for every
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δ > 0, there exists n0 ∈ N such that ‖K − K ◦ P[1,n0]‖ < δ. Equivalently, K is
horizontally compact if limk ‖K(xk)‖ = 0 for every horizontally block sequence
(xk)k in X.

Proposition 3.5. Let (Xn)n be a sequence of separable Banach spaces, L be an
infinite subset of N, and Y be a Banach space. The following hold:

(i) If a bounded linear operator T : XAH(L) → Y is not compact, then there exists
a RIS (xk)k in XAH(L) such that lim supk ‖Txk‖ > 0.

(ii) If a bounded linear operator T : (
∑∞
n=1⊕Xn)AH(L) → Y is not horizon-

tally compact, then there exists a RIS (xk)k in (
∑∞
n=1⊕Xn)AH(L) such that

lim supk ‖Txk‖ > 0.

Proof. For (i), we first observe that, since T is not compact, there exists δ > 0
and a bounded block sequence (xk)k in XAH(L) such that ‖T(xk)‖ ≥ δ. By [1,
Proposition 5.11] the result follows. For (ii), we assume, towards a contradiction,
that lim supk ‖Txk‖ = 0 for every RIS sequence (xk)k in X. By Lemma 3.3,
again we conclude that lim supk ‖Txk‖ = 0 for every bounded horizontally block
sequence in X. It follows that T is horizontally compact, yielding a contradiction.

❐

Lemma 3.6. Let (Xk)k, (Yk)k be sequences of separable Banach spaces, and L,
M be infinite subsets of N such that L∩M is finite. Let, moreover, (xk)k be a C-RIS
in (

∑∞
n=1⊕Xn)AH(L) and (yk)k be a seminormalized horizontally block sequence in

(
∑∞
n=1⊕Yn)AH(M). Then, (xk)k does not dominate (yk)k; that is, the map xk → yk

does not extend to a bounded linear operator.

Proof. By Proposition 1.16, there exists M̃ subset ofM with the property that,
for every j ∈ M̃ passing to a subsequence, we have that

∥∥∥
nj∑

k=1

yk
∥∥∥ ≥ 1

2mj

nj∑

k=1

‖yk‖ ≥
1

mminM

nj
4mj

.

Moreover, by Proposition 3.2, for j ∉ L we obtain that ‖
∑nj
k=1 xk‖ ≤ 10Cnj/m

2
j .

Assume there is a constant c > 0 such that ‖
∑n
k=1 akxk‖ ≥ c‖

∑n
k=1 akyk‖

for every n ∈ N and every sequence of scalars (ak)k. Since M ∩ L is finite, we can
choose j ∈ M̃, j ∉ L such that mj >mminM · 40C/c. Combining the above and
passing to subsequences, we conclude that

1
mminM

cnj
4mj

≤ c
∥∥∥
nj∑

k=1

yk
∥∥∥ ≤

∥∥∥
nj∑

k=1

xk
∥∥∥ ≤

10Cnj
m2
j

.

The choice of j yields a contradiction. ❐
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Remark 3.7. In a similar manner, for L,M, (Yk)k as above, note that a C-RIS
in XAH(L) cannot dominate a seminormalized horizontally block sequence in the
space (

∑∞
n=1⊕Yn)AH(M).

Lemma 3.8. Let (Xn)n be a sequence of separable Banach spaces and M be an
infinite subset of the natural numbers. Let also T , L, ε be as in Definition 2.1 such
that L∩M is finite. Then, every bounded linear operator T : (

∑∞
n=1⊕Xn)AH(M) →

X(T ,L,ε) is horizontally compact.

Proof. We use transfinite induction on the rank of the tree o(T ). Suppose
that o(T ) = 0, and assume, towards a contradiction, that T is not horizon-
tally compact. By Proposition 3.5, there exists a RIS sequence (xk)k and δ > 0
such that ‖T(xk)‖ ≥ δ. We may assume that (xk)k is normalized and note that
(T(xk))k is weakly null.

Since X(T ,L,ε) = XAH(L′) for some L′ ⊆ L, we may assume (T(xk))k is a block
sequence, and by Proposition 1.14 we obtain L̃ ⊆ L′ infinite such that, for every
j ∈ L̃,

∥∥∥
nj∑

k=1

T(xk)
∥∥∥ ≥ 1

mminL′

δnj
4mj

,

passing to a subsequence. Let j ∈ L̃ such that j ∉M andmj >mminL′ ·10‖T‖/δ.

Proposition 3.2 yields that ‖
∑nj
k=1 xk‖ ≤ 10nj/m

2
j , yielding a contradiction by

the choice of j.
Suppose now that o(T ) = α > 0, and assume that, for every S,M ′, ε′ as in

Definition 2.1 (such that o(S) < α, M ′ ∩M is finite), every bounded linear op-
erator T : (

∑∞
n=1⊕Xn)AH(M) → X(S,M′,ε′) is horizontally compact. We will prove

that the same holds for T : (
∑∞
n=1⊕Xn)AH(M) → X(T ,L,ε), and let {sn | n ∈ N},

(Ln)
∞
n=0, δ > 0 as in Definition 2.1(ii) such that X(T ,L,ε) = (

∑∞
n=1⊕Xsn)AH(L0)

where Xsn = X(Tsn ,Ln,δ). Assume towards a contradiction that this is not the case,
and by Proposition 3.5, let (xk)k be a normalized RIS sequence and δ > 0 such
that ‖T(xk)‖ ≥ δ, for every k ∈ N. Form ∈ N, we consider the operator

R[1,m] ◦ T :
( ∞∑

n=1

⊕Xn
)

AH(M)
→
( m∑

n=1

⊕(Xsn ⊕ ℓ∞(∆n))∞
)
∞
,

where
⋃
n∆n = Γ (T , L, ε). Using our inductive assumption, we deduce that the

operator R[1,m] ◦ T is horizontally compact, and hence limk ‖P[1,m](T(xk))‖ =
limk ‖im ◦ R[1,m](T(xk))‖ = 0.

By a sliding hump argument, it follows that (T(xk))k is equivalent to a hor-
izontally block sequence in X(T ,L,ε), and, since T is bounded, by Lemma 3.6 we
arrive at a contradiction. ❐

Remark 3.9. For M,T , L, ε as above, we obtain that every bounded linear
operator T : XAH(M) → X(T ,L,ε) is compact.
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The following result is similar to [1, Theorem 10.4].

Proposition 3.10. Let T , L, ε and S,M, δ be as in Definition 2.1 such that
L ∩ M is finite. Then, every bounded linear operator T : X(T ,L,ε) → X(S,M,δ) is
compact.

Proof. We use a transfinite induction on o(T ). In the case that o(T ) is zero,
let L′ such that X(T ,L,ε) = XAH(L′), and observe that the statement follows by
Remark 3.9.

Assume now o(T ) = α, and suppose that for every tree T ′ with o(T ′) < α,
every operator T : X(T ′,L′,ε) → X(S,M,δ) is compact for every S,M, δ that sat-
isfy Definition 2.1. Fix S,M, δ, and let also {sn | n ∈ N}, (Ln)

∞
n=0, δ > 0

as in Definition 2.1(ii) such that we have X(T ,L,ε) = (
∑∞
n=1⊕Xsn)AH(L0) where

Xsn = X(Tsn ,Ln,δ). In order to show that T : X(T ,L,ε) → X(S,M,δ) is compact, we
first need to observe that, by Lemma 3.8, the operator T is horizontally compact.
Hence, limk ‖T − TP[1,k]‖ = 0.

Let Isn : X(T ,L,ε) → Xsn be the projections defined in Proposition 2.5. By

Remark 1.11, the operator T ◦ P[1,k] −
∑k
n=1 T ◦ Isn is compact. Consider the

bounded operators T ◦ Isn : Xsn → X(S,M,δ). Since o(Tsn) < α, applying our
inductive assumption, we conclude that T ◦ Isn is compact for every n = 1, . . . , k.
It follows that T ◦ P[1,k] is compact, and therefore T = limk T ◦ P[1,k] is compact
as well. ❐

The statement of the next lemma is proved as in [12, Lemma 7.7] by using
Proposition 3.10.

Lemma 3.11. Let T , L, ε be as in Definition 2.1, (xk)k be a RIS in X(T ,L,ε),
and T : X(T ,L,ε) → X(T ,L,ε) be a bounded linear operator. Then, we have that
limk dist(Txk,Rxk) = 0.

The next proposition shares arguments similar to those in [1, Theorem 7.4]
and [12, Proposition 7.8].

Proposition 3.12. Let T , L, ε be as in Definition 2.1 and T : X(T ,L,ε) →
X(T ,L,ε) be a bounded linear operator. Then, there exists a real number λ such that
the operator λI − T is horizontally compact.

Lemma 3.13. Let T , L, ε be as in Definition 2.1, and let also s be a node of
T . Then, for every bounded linear operator T : X(T ,L,ε) → X(T ,L,ε), we have that the
operator T ◦ Is − Is ◦ T ◦ Is is a compact one.

Proof. We prove this lemma using transfinite induction on the rank of T . If
o(T ) = 0, then T = {∅T }, and therefore s = ∅T ; that is, Is is the identity map.
We conclude that T ◦ Is − Is ◦ T ◦ Is is the zero operator, which is compact.

Assume now that α is a countable cardinal number such that the statement
holds for every S, M , δ as in Definition 2.1 with o(S) < α, and let T be a tree
with o(T ) = α. Assume that X(T ,L,ε) = (

∑∞
n=1⊕Xsn)AH(L0), where {sn | n ∈ N}

is an enumeration of succ(∅T ) and Lt ∩ L0 = 0 for every t ∈ T with t ≠∅T .
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We shall use transfinite induction once more, this time on the rank ρT (s) of
the node t. Assume that ρ(s) = 0, that is, Xs = XAH(Ls). Let S : Xs → X(T ,L,ε)
be the restriction of T ◦ Is − Is ◦ T ◦ Is onto Xs . As Is is a projection onto Xs , it
is enough to show that S is compact. Assume that it is not; then, by Proposition
3.5(1), there exists a RIS (xk)k in Xs and a positive real number θ such that
‖Sxk‖ > θ for all k ∈ N.

Let n0 denote the unique natural number such that s ∈ Tsn0
, and let Pn

denote the natural projections on the components Zn = in[(Xsn ⊕ ℓ∞(∆n))∞].
Recall that, from Remark 1.11, Pn−Isn is a finite-rank operator, and therefore it is
compact. For n ≠ n0, since Lsn ∩Lsn0

= 0 and Ls ⊂ Lsn0
, Proposition 3.10 yields

that Pn ◦ S is compact. Moreover, for n = n0, the inductive assumption implies
that the map Pn ◦ S is compact, and therefore we have that limk Pn ◦ Sxk = 0 for
all n ∈ N. We conclude that the sequence (Sxk)k has a subsequence equivalent
to a horizontally block sequence of X(T ,L,ε). Since L0 ∩ Ls = 0, Lemma 3.6 yields
a contradiction.

Assume now that 0 < β ≤ o(T ) is an ordinal number such that the statement
holds for every s ∈ T with ρT (s) < β, and let s be a node of T with ρT (s) = β.
If s is the root of the tree, then by the fact that I∅T is the identity map, one can
easily deduce the desired result. It is therefore sufficient to check the case in which
ρT (s) < ρT (∅T ) = o(T ) = α.

Since s is a non-maximal node, by Proposition 2.5 there exists an enumeration
{tn | n ∈ N} of succ(s) and L0

s an infinite subset of Ls \
⋃
t∈succ(s) Lt such that

Xs = (
∑∞
n=1⊕Xtn)AH(L0

s).
By setting S = Is ◦ T ◦ Is , since o(Ts) < α, the inductive assumption yields

that the operators S ◦ Itn − Itn ◦ S ◦ Itn are compact. In other words, the operators
Is◦T ◦Itn−Itn ◦T ◦Itn are compact for all n ∈ N. Moreover, since ρT (tn) < β for
all n ∈ N, the second inductive assumption yields that the operators T ◦ Itn − Itn ◦
T ◦Itn are compact for alln ∈ N. We conclude that the operators T ◦Itn−Is◦T ◦Itn
are compact for all n ∈ N.

For n ∈ N, we recall that P sn denotes the natural projections defined on Xs
onto the component Xtn ⊕ ℓ∞(∆sn), and we denote by Ptn the operators P sn ◦ Is .
As before, the operators Itn − Ptn are compact, which yields the following:

(3.1) For every n ∈ N, the operator T ◦ Ptn − Is ◦ T ◦ Ptn is compact.

Observe, moreover, that Is = SOT −
∑∞
i=1 Pti , and hence the following holds:

(3.2) T ◦ Is − Is ◦ T ◦ Is = SOT −
∞∑

i=1

(T ◦ Pti − Is ◦ T ◦ Pti).

To conclude that the operator T◦Is−Is◦T◦Is is compact, (3.1) implies it is enough
to show that the series on the right-hand side of (3.2) converges in operator norm.
In other words, it is sufficient to show that, if we set R : Xs → X(T ,L,ε) to be the
restriction of T ◦ Is − Is ◦ T ◦ Is onto Xs , then R is horizontally compact.
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Towards a contradiction, assume that this is not the case. Lemma 3.3 yields
that there exists a RIS (xk)k in Xs and a positive real number θ with ‖Rxk‖ > θ
for all k ∈ N. Arguing exactly as in the case ρT (s) = 0, we conclude that the
sequence (Rxk)k has a subsequence equivalent to a horizontally block sequence of
X(T ,L,ε). Since L0 ∩ Ls = 0, once more Lemma 3.6 yields a contradiction. ❐

Lemma 3.14. Let T , L, ε be as in Definition 2.1 with o(T ) > 0. Let also s be
a non-maximal node of T , let {sn | n ∈ N} be the enumeration of succ(s), and let
L0
s be an infinite subset of L provided by Proposition 2.5(iv). Let also T : X(T ,L,ε) →
X(T ,L,ε) be a bounded linear operator. Then, there exists a unique real number λs and
a sequence of compact operators (Cn)n defined on X(T ,L,ε), such that if Ts = Is◦T ◦Is ,
then |λs| ≤ ‖Ts‖ and the following is satisfied:

(3.3) lim
n

∥∥∥Ts −
(
λsIs +

n∑

i=1

(Isi ◦ (Ts − λsIs) ◦ Isi)
)
− Cn

∥∥∥ = 0.

Proof. We consider the projections P s[1,n] : Xs → (
∑n
k=1⊕(Xsk⊕ℓ∞(∆k))∞)∞

where
⋃
n∆n = Γ (Ts , Ls , δs). By Proposition 3.12, there exists a real number λs

such that Ks = Ts − λsIs is horizontally compact. We will show that λs is the
desired scalar.

To find a sequence of operators (Cn)n satisfying (3.3), it is enough to show
the following: for every δ > 0, there is n0 ∈ N so that, for all n ≥ n0, there exists
a compact operator C with

(3.4)
∥∥∥Ts −

(
λsIs +

n∑

i=1

(Isi ◦ (Ts − λsIs) ◦ Isi)
)
−C

∥∥∥ < δ.

Fix δ > 0, and let n0 ∈ N such that ‖Ks−Ks ◦P
s
[1,n]‖ < δ for all n ≥ n0. Observe

that the operator C′ = Ks ◦ P
s
[1,n0]

−
∑n0
n=1Ks ◦ Isn is compact, and by Lemma

3.13 we have that the operator C̃ =
∑n0
n=1Ks ◦ Isn −

∑n0
n=1 Isn ◦Ks ◦ Isn is compact

as well. Setting C = C′ + C̃, it is easy to check that C is the desired operator.

In order to show that λs is unique, let λ̃s be a scalar so that there exists a
sequence of compact operators (C̃n)n with

(3.5) lim
n

∥∥∥Ts −
(
λ̃sIs +

n∑

i=1

(Isi ◦ (Ts − λ̃sIs) ◦ Isi)
)
− C̃n

∥∥∥ = 0.

Assume that λ̃s ≠ λs and choose a sequence of compact operators (Cn)n so that
(3.3) is satisfied. Combining (3.3) and (3.5), we conclude that

lim
n

∥∥∥∥Is −
( n∑

i=1

Isi +
1

λ̃s − λs
(Cn − C̃n)

)∥∥∥∥ = 0.
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This implies that the identity operator on Xs is horizontally compact, which is
absurd.

In order to prove that |λs| ≤ ‖Ts‖, fix δ > 0, and choose n0 ∈ N and a
compact operator C so that (3.4) is satisfied for n = n0. As C is compact, we
may choose x ∈ P s(n0,∞)

(Xs) with ‖x‖ = 1 such that ‖Cx‖ < δ. Considering the
above, we have that

|λs | = ‖λsx‖ ≤ ‖Ts(x)− λs(x)−C(x)‖ + ‖Ts(x)‖ + ‖C(x)‖ ≤ 2δ+ ‖Ts‖.

Since δ was chosen arbitrarily, the proof is complete. ❐

Corollary 3.15. Let T , L, ε be as in Definition 2.1. Then, every strictly singular
operator T : X(T ,L,ε) → X(T ,L,ε) is compact.

Proof. We shall use induction on the rank o(T ) of the tree T . The case
where o(T ) = 0 (i.e., X(T ,L,ε) = XAH(L) for some L ⊆ N infinite) follows by the
Argyros-Haydon method of construction in [1].

Suppose now that o(T ) = α and that the thesis is true for every S,M, δ
such that o(S) < α. Let T : X(T ,L,ε) → X(T ,L,ε) be a strictly singular operator,
and let also {sn | n ∈ N}, (Ln)∞n=0, δ > 0 as in Definition 2.1(ii) such that
X(T ,L,ε) = (

∑∞
n=1⊕Xsn)AH(L0) where Xsn = X(Tsn ,Ln,δ).

Since T is strictly singular, it is not hard to see that T is horizontally compact.
Indeed, it follows that, for every closed subspace generated by a bounded horizon-
tally block sequence (xn)n, there exists a further block subspace Y generated by a
block sequence (yn)n of (xn)n such that the operator T |Y is compact, and thus
horizontally compact. By Proposition 3.12, let λ be a scalar such that T − λI is
horizontally compact. It follows that λ = 0.

Lemma 3.14 gives us that

lim
n

∥∥∥T −
n∑

i=1

(Isi ◦ T ◦ Isi)−Cn

∥∥∥ = 0.

Since o(Tsi) < α, the inductive assumption applied on Tsi , Lsi , δ yields that, for
each i, the strictly singular operator Isi ◦T ◦ Isi : Xsi → Xsi is compact; and by the
above, the result follows. ❐

Recall that a tree T becomes a Hausdorff compact topological space if it is
equipped with the topology having the sets Tt, t ∈ T as a subbase. We are
now finally ready to prove the main result of this section, which states that every
operator defined on the space X(T ,L,ε) is approximated by a sequence of operators,
each one of which is a linear combination of the projections Is , s ∈ T plus a
compact operator.

Theorem 3.16. Let T , L, ε be as in Definition 2.1 and T : X(T ,L,ε) → X(T ,L,ε)
be a bounded linear operator. Then, there exists a unique function f : T → R such
that ‖f‖∞ ≤ ‖T‖, and it satisfies the following: if we set µ∅T = f (∅T ), and for
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every node s ≠∅T we set µs = f (s)−f (s−), then there exists an increasing sequence
(Sn)n of finite downwards closed subtrees of T with T =

⋃
n Sn, and a sequence of

compact operators (Cn)n such that

(3.6) lim
n

∥∥∥T −
∑

s∈Sn

µsIs −Cn

∥∥∥ = 0.

Moreover, the function f is continuous.

Proof. We define the function f as follows. For every non-maximal node s, set
f (s) = λs to be the real number provided by Lemma 3.14, and for every maximal
node s, f (s) = λs to be the unique real number such that Is ◦ T ◦ Is − λsIs is a
compact operator. By the definition of the function f , and since ‖Is‖ = 1 (see
Proposition 2.5), it immediately follows that ‖f‖∞ ≤ ‖T‖.

For the rest of the proof, we use induction on o(T ). If o(T ) = 0, then as
stated above, f (∅T ) is the unique real number λ such that K = T − λI∅T is
compact and (3.6) holds.

Assume o(T ) = α and that the statement is true for every tree T ′, L′, ε′ as
in Definition 2.1 with o(T ′) < α. Let also {tn | n ∈ N}, (Ln)∞n=0, δ > 0
as in Definition 2.1(ii) such that X(T ,L,ε) = (

∑∞
n=1⊕Xtn)AH(L0) where we have

Xtn = X(Ttn ,Ln,δ).
Since o(Ttn) < α, we apply the inductive assumption to each Ttn , Ln, δ,

Ktn = Itn ◦ (T − µ∅T I) ◦ Itn , and we thus obtain a unique continuous function

fn : Ttn → R with ‖fn‖∞ ≤ ‖Ktn‖, an increasing sequence (Stni )i of finite down-

wards closed subtrees of Ttn with Ttn =
⋃
i S
tn
i , and a sequence of compact op-

erators (Ctni )i such that if µ̃∅Ttn
= fn(tn) and µ̃s = fn(s) − fn(s−) for every

s ∈ Ttn , s ≠∅Ttn = tn, then the following holds:

lim
i

∥∥∥Ttn −
∑

s∈S
tn
i

µ̃sIs − C
tn
i

∥∥∥ = 0.

Observe that, by Lemma 3.14 and the definition of the functions f and fn, it
follows that f (s) − µ∅T = fn(s) and therefore µs = µ̃s for every s ∈ Ttn . Since
f (∅T ) = µ∅T such that T − µ∅T I is horizontally compact, the uniqueness of
fn implies that f is unique. Moreover, by Lemma 3.14 there exists a sequence of
compact operators (C′n)n such that

lim
n

∥∥∥T −
(
µ∅T I∅T +

n∑

i=1

Kti

)
−C

′
n

∥∥∥ = 0.

Here, T =
⋃
nTtn , and for each n we set Sn =

⋃n
i=1 S

ti
n , Cn =

∑n
i=1 C

tn
i +C

′
n.

It follows that T =
⋃
n Sn, where (Sn)n is an increasing sequence of finite down-

wards closed subtrees, and (Cn)n is a sequence of compact operators defined on
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X(T ,L,ε); using a diagonalization argument, we conclude that

lim
n

∥∥∥T −
∑

s∈Sn

µsIs − Cn

∥∥∥ = 0.

It remains to show that f is continuous. Observe that it is enough to show
that f is continuous on ∅T , or equivalently, that (f (sn))n converges to f (∅T ).
We recall by the above that ‖fn‖∞ ≤ ‖Itn ◦ (T − µ∅T ) ◦ Itn‖. Since T − µ∅T is
horizontally compact, it follows that (fn)n converges to zero in norm. Since we
have |fn(sn)| ≤ ‖fn‖∞ and fn(sn) = f (sn)− µ∅T , the proof is complete. ❐

4. THE CALKIN ALGEBRAS OF THE SPACES X(T ,L,ε)

As was proved in the previous section, every bounded linear operator defined on
X(T ,L,ε) is approximated by a sequence of operators, each one of which is a linear
combination of the projections Is , s ∈ T plus a compact operator. For a given
operator, these linear combinations define a continuous function with domain the
tree T , which is used to define a map Φ(T ,L,ε) : Cal(X(T ,L,ε)) → C(T ) that is an
onto bounded algebra homomorphism.

Remark 4.1. By Remark 2.4 and [7, Theorem 5.1], we conclude that the
space X(T ,L,ε) has a basis. Also, by Proposition 2.3, the dual X∗(T ,L,ε) is separa-
ble, and hence the space of all compact operators on X(T ,L,ε) is separable as well.
Theorem 3.16 clearly yields that the space 〈{Is | S ∈ T }〉 +K(X(T ,L,ε)) is dense
in L(X(T ,L,ε)), and hence the space of all bounded linear operators on X(T ,L,ε) is
separable. Therefore, Cal(X(T ,L,ε)), the Calkin algebra of X(T ,L,ε), is separable;
in particular, the linear span of the set {[Is] | s ∈ T } is dense in Cal(X(T ,L,ε)).

Proposition 4.2. Let T , L, ε be as in Definition 2.1. We define a map Φ̃(T ,L,ε) :
L(X(T ,L,ε)) → C(T ) such that, for every operator T , Φ̃(T ,L,ε)(T) is the function
provided by Theorem 3.16. Then, Φ̃(T ,L,ε) is a norm-one algebra homomorphism
with dense range, and ker Φ̃(T ,L,ε) = K(X(T ,L,ε)).

Proof. The fact that Φ̃(T ,L,ε) has norm at most one follows from Theorem
3.16, in particular, from the fact that ‖Φ̃(T ,L,ε)(T)‖∞ ≤ ‖T‖ for every bounded
operator T . Also, Φ̃(T ,L,ε) maps the identity map to the constant unit function,
and therefore Φ̃(T ,L,ε) has norm one.

We now show that Φ̃(T ,L,ε) has dense range, and that it is an algebra homo-
morphism on the space 〈{Is | s ∈ T }〉. First, by Proposition 2.5(ii), observe
that, for each s ∈ T , the image Φ̃(T ,L,ε)(Is) coincides with the characteristic func-
tion upon the subtree Ts , denoted as XTs . From this, it also follows that the
image of Φ̃(T ,L,ε) is dense in C(T ). Moreover, observe that for S =

∑n
i=1 λiIsi ,

T =
∑m
i=1 µiIti we have that Φ̃(T ,L,ε)(T ◦ S) = Φ̃(T ,L,ε)(T) · Φ̃(T ,L,ε)(S).

We now show that ker Φ̃(T ,L,ε) = K(X(T ,L,ε)). First, we observe that, if
Φ̃(T ,L,ε)(T) = 0, then by Lemma 3.16, T is the limit of a sequence of compact
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operators, and thus T is compact. Now, let T be a compact operator. Observe that
the zero function satisfies the conclusion of Theorem 3.16, and by uniqueness, we
conclude that T is in ker Φ̃(T ,L,ε).

Since, by Remark 4.1, the space 〈{Is | s ∈ T }〉 + K(X(T ,L,ε)) is dense in
L(X(T ,L,ε)), it also follows that Φ̃(T ,L,ε) is an algebra homomorphism. ❐

Remark 4.3. Let T , L, ε be as in Definition 2.1. Then, by the above, it
follows that the operator, Φ(T ,L,ε) : Cal(X(T ,L,ε)) → C(T ), defined by the rule
Φ(T ,L,ε)([T]) = Φ̃(T ,L,ε)(T), is a 1-1 algebra homomorphism with dense range
and ‖Φ(T ,L,ε)‖ = 1.

Proposition 4.4. Let T , L, ε be as in Definition 2.1. Then, Φ(T ,L,ε) is a bi-
jection; that is, Cal(X(T ,L,ε)) is isomorphic, as a Banach algebra, to C(T ). More
precisely, we have that ‖Φ(T ,L,ε)‖‖Φ−1

(T ,L,ε)‖ ≤ 1+ ε.

Proof. As Φ(T ,L,ε) is a norm-one algebra homomorphism with dense range, it
is enough to show that it is bounded below, and it is evidently enough to do so
for a dense subset of Cal(X(T ,L,ε)). We will show that, for every bounded linear
operator T on X(T ,L,ε) that is a finite linear combination of the Is , s ∈ T , there is
a compact operator K on X(T ,L,ε) so that

(4.1) ‖T −K‖ ≤ (1+ ε)‖Φ(T ,L,ε)([T])‖,

which of course yields that ‖ [T]‖ ≤ (1+ ε)‖Φ(T ,L,ε)([T])‖.
Let us first make a few simple observations:

(i) For every s ∈ T , we have that Φ(T ,L,ε)([Is]) is equal to XTs , the
characteristic function of the clopen set Ts .
(ii) For all real numbers (λs)s∈T , finitely many of which are not zero, if

f =
∑
s∈T λsXTs , we have that ‖f‖ = max

s∈T

∣∣∣
∑

∅T ≤t≤s

λt
∣∣∣.

The first observation follows trivially from the definition of the map Φ(T ,L,ε), while
the second one is an immediate consequence of the fact that f (s) =

∑
∅T ≤t≤s λt

for every s ∈ T .
By observations (i) and (ii), it is enough to show that if T =

∑
s∈T λsIs , then

there is a compact operator K so that

‖T −K‖ ≤ (1+ ε)max
s∈T

∣∣∣
∑

∅T ≤t≤s

λt
∣∣∣.

We are now ready to prove (4.1), by induction on o(T ). If o(T ) = 0, then
T = {∅T }, and Φ(T ,L,ε) is an isometry onto the one-dimensional Banach space
C(T ). Assume o(T ) = α, and that the statement is true for every treeT ′, L′, ε′ as
in Definition 2.1 with o(T ′) < α. Let also {tk | k ∈ N}, (Lk)

∞
k=0, δ > 0 be as in

Definition 2.1(ii) such that X(T ,L,ε) = (
∑∞
k=1⊕Xtk)AH(L0) where Xtk = X(Ttk ,Lk,δ).
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Let [T] =
∑
s∈T λs[Is] be a finite linear combination of the [Is], s ∈ T .

Choose n ∈ N so that λs = 0 for every s ∉ {∅T }∪(
⋃n
k=1Ttk). For k = 1, . . . , n,

define the operators T ′k =
∑
s∈Ttk

λsIs and Tk = λ∅T Itk + T
′
k. Observe that

(4.2) Tk = (λ∅T + λtk)Itk +
∑

s>tk

λsIs ,

and rewrite T as follows:

T = λ∅T P[1,n] +
n∑

k=1

Tk + λ∅T P(n,+∞)(4.3)

= λ∅T

n∑

k=1

(Pk − Itk)+
n∑

k=1

(λ∅T Itk + Tk)+ λ∅T P(n,+∞)

=

n∑

k=1

Tk + λ∅T P(n,+∞) + λ∅T

n∑

k=1

(Pk − Itk).

For k = 1, . . . , n, we write Tk = S̃k where Sk is an operator on Xtk (see Re-
mark 1.12). The inductive assumption and (4.2) yield that there is a compact
operator Ck on Xtk so that

(4.4) ‖Tk − C̃k‖ ≤ (1+ δ) max
s∈Ttk

∣∣∣λ∅T +
∑

tk≤t≤s

λt
∣∣∣.

By using the above and applying Proposition 1.17, there is a compact operator K′

on X(T ,L,ε) so that if

S =
n∑

k=1

(Tk − C̃k)+ λ∅T P(n,+∞) − K
′,

then

‖S‖ ≤ (1+ δ)max
{

max
1≤k≤n

(1+ δ) max
s∈Ttk

|λ∅T +
∑

tk≤t≤s

λt|, |λ∅T |
}

(4.5)

≤ (1+ δ)2 max
s∈T

∣∣∣
∑

∅T ≤t≤s

λt
∣∣∣.

Finally, set

K =
n∑

k=1

C̃k +K
′ − λ∅T

n∑

k=1

(Pk − Itk).

By (4.3), we have that T −K = S. By Remark 1.11, the choice of δ, and (4.5), we
conclude that K is the desired compact operator. ❐

We conclude this section with some remarks concerning the space of bounded
operators on X(T ,L,ε).
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Remark 4.5. The space L(X(T ,L,ε)) does not contain an isomorphic copy of
c0. Indeed, towards a contradiction, assume there is a sequence of operators (Tk)k
on X(T ,L,ε) equivalent to the unit vector basis of c0. It follows that, for every
x ∈ X(T ,L,ε) and x∗ ∈ X∗(T ,L,ε), the series

∑
kx

∗Tkx converges absolutely. By
Remark 2.2, c0 does not embed into X(T ,L,ε). A well-known theorem by Bessaga
and Pełczynśki yields that, for every x ∈ X(T ,L,ε), the series

∑
k Tkx converges

unconditionally, which implies that the operator R : ℓ∞(N) → L(X(T ,L,ε)) with
R(ak)k = SOT −

∑
k akTk is well defined and bounded. By [10, Proposition 1.2],

there is an infinite subset L of N so that R restricted onto ℓ∞(L) is an isomorphic
embedding. Remark 4.1 yields a contradiction.

Remark 4.6. The quotient map Q : L(X(T ,L,ε)) → Cal(X(T ,L,ε)) is strictly
singular. Indeed, by Proposition 4.4, Cal(X(T ,L,ε)) is isomorphic to C(T ). If
o(T ) = 0, then Cal(X(T ,L,ε)) is one-dimensional, and the result trivially holds.
Otherwise, T is an infinitely countable compact metric space: that is, C(T ) is c0

saturated, and hence so is Cal(X(T ,L,ε)). Remark 4.5 yields that the quotient map
Q is strictly singular.

Remark 4.7. In [11], a space X∞ is presented whose Calkin algebra is ℓ1. It
follows that the space of compact operators on X∞ is complemented in the space of
bounded operators. This is also the case for X(T ,L,ε) if o(T ) = 0, as the compact
operators are of co-dimension one in the space of bounded operators. However,
if o(T ) > 0, this is no longer the case (i.e., K(X(T ,L,ε)) is not complemented
in L(X(T ,L,ε))). Indeed, if we assume there is a subspace Y of L(X(T ,L,ε)) so
that L(X(T ,L,ε)) = K(X(T ,L,ε)) ⊕ Y , the open mapping theorem implies that
Q|Y : Y → Cal(X(T ,L,ε)) is an onto isomorphism. Since o(T ) > 0, we conclude
that Y is necessarily infinite dimensional, which contradicts Remark 4.6.

Remark 4.8. By Remark 4.5, K(X(T ,L,ε)) does not contain c0. If, moreover,
o(T ) > 0, then by Remark 4.7,K(X(T ,L,ε)) is not complemented in L(X(T ,L,ε)).
This is related to Question B from [4], and is, to our knowledge, the first known
example of a Banach space where the space of compact operators does not contain
c0 and is at the same time not complemented in the space of bounded operators.

Remark 4.9. Corollary 3.15 and Remark 4.6 imply that, if o(T ) > 1, then
for every δ > 0 there is a non-strictly singular operator defined on X(T ,L,ε) that is
δ-close to a compact one. For example, if {sn | n ∈ N} are the immediate succes-
sors of the root ofT , then Remark 4.5 implies there is a finite subset F ofN so that
‖
∑
k∈F Isk‖ ≥ 2/δ. Proposition 1.17 yields that T = ‖

∑
k∈F Isk‖

−1(
∑
k∈F Isk) is

such an operator.

5. MAIN RESULT

In this final section, we conclude that, for every countable compact metric space
K, the algebra C(K) is homomorphic to the Calkin algebra of some Banach space.

Theorem 5.1. Let K be a countable compact metric space. Then, there exists
a L∞-space X, with X∗ isomorphic to ℓ1, and there also exists a norm-one algebra
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homomorphism Φ : Cal(X) → C(K) that is one-to-one and onto. Even more, for
every ε > 0, the space X can be chosen so that ‖Φ‖‖Φ−1‖ ≤ 1+ ε.

Proof. A well-known theorem by Sierpinski and Mazurkiewicz implies there
exist an ordinal number α and a natural number n so that K is homeomorphic
to the ordinal number ωαn. Note that ωα is homeomorphic to a tree T (which
is well founded and has a unique root; and every non-maximal node of it has
countable infinitely many immediate successors), and that this tree is of order α.

Let L1, . . . , Ln be pairwise disjoint infinite subsets of the natural numbers,
ε > 0, and consider the spaces X(T ,L1,ε), . . . , X(T ,Ln,ε). We define the space
X = (

∑n
i=1⊕X(T ,Li,ε))∞, and claim it has the desired properties. By Proposi-

tion 2.3 and Remark 2.4, it easily follows that X is a L∞-space with X∗ iso-
morphic to ℓ1. Also, Proposition 3.10 and the fact that the sets L1, . . . , Ln are
pairwise disjoint easily yield that Cal(X) is isometric, as a Banach algebra, to
(
∑n
i=1⊕Cal(X(T ,Li,ε)))∞. This, by Proposition 4.4, is (1 + ε)-isomorphic as a

Banach algebra to (
∑n
i=1⊕C(ω

α))∞, which is of course isometric as a Banach
algebra to C(ωαn); thus, this yields the desired result. ❐

Discovering the variety of Banach algebras that can occur as Calkin algebras
is a topic we believe should be investigated further. We point out here that all
known examples of Calkin algebras of Banach spaces are either finite dimensional
or non-reflexive.

Question 1. Does there exists a Banach space whose Calkin algebra is reflexive
and infinite dimensional?

It is worth mentioning that the method used in this paper does not seem to
be able to provide an example of a Banach space whose Calkin algebra is a C(K)
space for K uncountable.

Question 2. Does there exists a Banach space whose Calkin algebra is isomorphic,
as a Banach algebra, to C(K) for an uncountable compact space K?
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