Last name:

First name:

UIN:

"An Aggie does not lie, cheat or steal or tolerate those who do."

This exam consists of ten problems, the total point value of which is 100 points. The answer to each question must be justified in detail, unless otherwise specified. The time length of this exam is 1 hour and 15 minutes.

The use of electronic devices, such as cellphones, tables, laptops, and calculators is prohibited.

Good luck!

Prb. 1	Prb. 2	Prb. 3	Prb. 4	Prb. 5	Prb. 6	Prb. 7	Prb. 8	Prb. 9	Prb. 10	Total
10	10	10	10	10	10	10	10	10	10	100

Problem 1. Let P_{3} denote the vector space of polynomials of degree at most two and consider $q_{1}(x)=1, q_{2}(x)=x+1, q_{3}(x)=x^{2}-1$.
(i) Write the Wronskian of $q_{1}(x), q_{2}(x)$, and $q_{3}(x)$. 3 pts.
(ii) Are $q_{1}(x), q_{2}(x)$, and $q_{3}(x)$ linearly independent? $3 p t s$.
(iii) Is $F=\left\{q_{1}(x), q_{2}(x), q_{3}(x)\right\}$ a basis of P_{3} ? 3 pts.
(iv) If $p_{1}(x)=1, p_{2}(x)=x, p_{3}(x)=x^{2}$, it is given that $E=\left\{p_{1}(x), p_{2}(x), p_{3}(x)\right\}$ is a basis of P_{2}. Write the coordinate vectors $\left[q_{1}(x)\right]_{E},\left[q_{2}(x)\right]_{E}$ and $\left[q_{3}(x)\right]_{E} . \quad 1$ pts.

Problem 2. Let $C[0,1]$ denote the vector space of all continuous functions with domain $[0,1]$, consider the functions $f_{1}(x)=4 x^{1 / 2}, f_{2}(x)=4 x^{3 / 2}, f_{3}(x)=4 x^{5 / 2}$. (i) What is the Wronskian of $f_{1}(x), f_{2}(x)$, and $f_{3}(x)$? 4 pts.
(ii) Are $f_{1}(x), f_{2}(x)$, and $f_{3}(x)$ linearly independent?

4 pts.
(iii) What is the dimension of the vector space $V=\operatorname{Span}\left\{f_{1}, f_{2}, f_{3}\right\}$?

2 pts.

Problem 3.

(i) Consider the following subsets of \mathbb{R}^{3} :

$$
S_{1}=\left\{\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]: a-c=b\right\}, \quad \text { and } \quad S_{2}=\left\{\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]: a^{2}+b^{2}+c^{2}=1\right\}
$$

Which of the above are subspaces and which are not? 5 pt.
(ii) Consider the following subsets of $C[0,1]$:

$$
X_{1}=\{f: f(0)=f(1)\} \quad \text { and } \quad X_{2}=\{f: f(0)=1\}
$$

Which of the above are subspaces and which are not?
5 pt.

Problem 4.
Problem 4.
(i) Do the vectors $v_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right], v_{3}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], v_{4}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ form a spanning set of
$\mathbb{R}^{3} ?$
4 pt.
(ii) Do the vectors $v_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right], v_{3}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], v_{4}=\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]$ form a spanning set of \mathbb{R}^{3} ? 4 pt. (iii) Do the vectors $v_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right], v_{3}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ form a spanning set of \mathbb{R}^{3} ? 2 pt.

Problem 5.

Consider the matrix

$$
A=\left[\begin{array}{ccccc}
1 & -2 & -2 & 1 & 1 \\
-2 & 4 & 4 & 1 & 3 \\
1 & -2 & -2 & 2 & 1
\end{array}\right]
$$

(i) Find the null space of A.

8 pt.
(ii) Solve the equation $A x=\mathbf{b}$ if x_{0} is a known solution in the cases:

2 pt.

$$
\text { (1) } \mathbf{b}=\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right], x_{0}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
1
\end{array}\right] \quad \text { and } \quad(2) \mathbf{b}=\left[\begin{array}{c}
-1 \\
5 \\
0
\end{array}\right], x_{0}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0
\end{array}\right]
$$

Problem 6.

Consider the matrix

$$
A=\left[\begin{array}{lll}
1 & 3 & 1 \\
0 & 1 & 1 \\
2 & 6 & 2 \\
2 & 7 & 3
\end{array}\right]
$$

(i) Find the null space of A. 5 pt .
(ii) Are the vectors $v_{1}=\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 2\end{array}\right], v_{2}=\left[\begin{array}{l}3 \\ 1 \\ 6 \\ 7\end{array}\right], v_{3}=\left[\begin{array}{l}1 \\ 1 \\ 2 \\ 3\end{array}\right]$ linearly independent? $\quad 3 p t$.
(iii) Are the vectors $v_{1}=\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 4\end{array}\right], v_{2}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right], v_{3}=\left[\begin{array}{l}0 \\ 2 \\ 1 \\ 4\end{array}\right]$, and $v_{4}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 2\end{array}\right]$ linearly
independent?

Problem 7.

Consider the basis E of \mathbb{R}^{3} given by the vectors

$$
v_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad \text { and } \quad v_{3}=\left[\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right] .
$$

(i) Find the transition matrix from E to the usual basis $\left\{e_{1}, e_{2}, e_{3}\right\}$. $3 p t$.
(ii) Find the transition matrix from the usual basis to E.

3 pt.
(iii) Consider the basis F of \mathbb{R}^{3} given by the vectors

$$
w_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad w_{2}=\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right], \quad \text { and } \quad w_{3}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

Find the transition matrix form F to E.
$2 p t$.
(iv) Let v be a vector with $[v]_{F}=[-4,5,8]^{\top}$. Find the coordinate vector of v with respect to the basis E and with respect to the standard basis.

2 pt.

Problem 8. Consider the matrix

$$
A=\left[\begin{array}{rrrr}
1 & 1 & 2 & 0 \\
1 & -1 & 0 & 2 \\
-1 & 2 & 1 & 0
\end{array}\right]
$$

(i) Find the rank and nullity of A.

2 pt .
(ii) Write a basis for the row space of A.

2 pt.
(iii) Write a basis for the column space of A.

3 pt .
(iv) Write a basis for the null space of A.

3 pt. (v) Consider $S=\operatorname{Span}\left\{\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{r}1 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right]\right\}$ as a subspace of \mathbb{R}^{3}. What is $\operatorname{dim}(S)$?

1 pt.
(vi) Write a basis for S. 1 pt .

Problem 9. (i) Let A be a non-singular $n \times n$ matrix and V be an $n \times m$ matrix with $N(B)=\{0\}$, i.e., the null space of B consists only of the zero vector. Show that $N(A B)=\{0\}$, i.e., show that the null space of $A B$ consists only of the zero vector.

5 pt.
(ii) Let A be a non-singular $n \times n$ matrix and let x_{1}, \ldots, x_{m} be linearly independent vectors in \mathbb{R}^{n}. Show that the vectors $y_{1}=A x_{1}, \ldots, y_{m}=A x_{m}$ are also linearly independent.

5 pt.

Problem 10. Let A, B be $m \times n$ matrices. That satisfy the following:
(a) $\operatorname{col}(A) \cap \operatorname{col}(B)=\{0\}$, i.e. zero is the only common vector in the column space of A and the column space of B.
(b) $N(A) \cap N(B)=\{0\}$, i.e. zero is the only common vector in the null space of A and the null space of B.
(i) Show that for any $x \in \mathbb{R}^{n}$ the vector $A x$ is in $\operatorname{col}(A)$ and $B x$ is in $\operatorname{col}(B)$. 2 pt.
(ii) Show that if some $x \in \mathbb{R}^{n}$ satisfies $A x=B x$ then $A x=B x=0$. \quad 2 pt. (iii) Prove $N(A-B) \subset N(A) \cap N(B)$, i.e. that any $x \in N(A-B)$ is in $N(A)$ and in $N(B)$.

2 pt.
(iv) Prove $N(A-B)=\{0\}$ i.e. that $N(A-B)$ contains only the zero vector. 2 pt.
(v) Show that $\operatorname{rank}(\mathrm{A}-\mathrm{B})=n$. 2 pt .

