Spring 2018, Math 304

Last name:

First name:

UIN:

"An Aggie does not lie, cheat or steal or tolerate those who do."

This exam consists of **ten** problems, the total point value of which is 100 points.

The answer to each question must be justified in detail, unless otherwise specified.

The time length of this exam is 1 hour and 15 minutes.

The use of electronic devices, such as cellphones, tables, laptops, and calculators is prohibited.

Prb. 1	Prb. 2	Prb. 3	Prb. 4	Prb. 5	Prb. 6	Prb. 7	Prb. 8	Prb. 9	Prb. 10	Total
10	10	10	10	10	10	10	10	10	10	100

Problem 1. Let P_3 denote the vector space of polynomials of degree at most two and consider $q_1(x) = 1$, $q_2(x) = x + 1$, $q_3(x) = x^2 - 1$.

(i) Write the Wronskian of $q_1(x)$, $q_2(x)$, and $q_3(x)$. 3 pts.

(ii) Are $q_1(x)$, $q_2(x)$, and $q_3(x)$ linearly independent? 3 pts.

(iii) Is
$$F = \{q_1(x), q_2(x), q_3(x)\}$$
 a basis of P_3 ? 3 pts.

(iv) If $p_1(x) = 1$, $p_2(x) = x$, $p_3(x) = x^2$, it is given that $E = \{p_1(x), p_2(x), p_3(x)\}$ is a basis of P_2 . Write the coordinate vectors $[q_1(x)]_E$, $[q_2(x)]_E$ and $[q_3(x)]_E$. 1 pts.

Problem 2. Let C[0,1] denote the vector space of all continuous functions with domain [0,1], consider the functions $f_1(x) = 4x^{1/2}$, $f_2(x) = 4x^{3/2}$, $f_3(x) = 4x^{5/2}$. (i) What is the Wronskian of $f_1(x)$, $f_2(x)$, and $f_3(x)$? 4 pts.

(ii) Are $f_1(x)$, $f_2(x)$, and $f_3(x)$ linearly independent? 4 pts.

(iii) What is the dimension of the vector space $V = \text{Span}\{f_1, f_2, f_3\}$? 2 pts.

5 pt.

Problem 3.

(i) Consider the following subsets of \mathbb{R}^3 :

$$S_1 = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a - c = b \right\}, \text{ and } S_2 = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a^2 + b^2 + c^2 = 1 \right\}$$

f the above are subspaces and which are not? 5 *pt*.

Which of the above are subspaces and which are not?

(ii) Consider the following subsets of C[0, 1]:

$$X_1 = \{f : f(0) = f(1)\}$$
 and $X_2 = \{f : f(0) = 1\}$

Which of the above are subspaces and which are not?

Problem 4.

(i) Do the vectors
$$v_1 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 2\\1\\1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$, $v_4 = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$ form a spanning set of
 \mathbb{R}^3 ?
(ii) Do the vectors $v_1 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 2\\1\\1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$, $v_4 = \begin{bmatrix} 0\\-1\\1 \end{bmatrix}$ form a spanning set
of \mathbb{R}^3 ?
(iii) Do the vectors $v_1 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 2\\1\\1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$ form a spanning set of \mathbb{R}^3 ? *4 pt.*
(iii) Do the vectors $v_1 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 2\\1\\1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$ form a spanning set of \mathbb{R}^3 ? *2 pt.*

2 pt.

Problem 5.

Consider the matrix

$$A = \begin{bmatrix} 1 & -2 & -2 & 1 & 1 \\ -2 & 4 & 4 & 1 & 3 \\ 1 & -2 & -2 & 2 & 1 \end{bmatrix}.$$

8 pt.

(i) Find the null space of A.

(ii) Solve the equation $Ax = \mathbf{b}$ if x_0 is a known solution in the cases:

(1)
$$\mathbf{b} = \begin{bmatrix} 2\\1\\2 \end{bmatrix}$$
, $x_0 = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}$ and (2) $\mathbf{b} = \begin{bmatrix} -1\\5\\0 \end{bmatrix}$, $x_0 = \begin{bmatrix} 0\\1\\0\\1\\0 \end{bmatrix}$

You may use the back side of this page

Problem 6.

Consider the matrix

$$A = \begin{bmatrix} 1 & 3 & 1 \\ 0 & 1 & 1 \\ 2 & 6 & 2 \\ 2 & 7 & 3 \end{bmatrix}.$$
(i) Find the null space of A .
(ii) Are the vectors $v_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 2 \end{bmatrix}, v_2 = \begin{bmatrix} 3 \\ 1 \\ 6 \\ 7 \end{bmatrix}, v_3 = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 3 \end{bmatrix}$ linearly independent?
(iii) Are the vectors $v_1 = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 4 \end{bmatrix}, v_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 2 \\ 1 \\ 4 \end{bmatrix},$ and $v_4 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \end{bmatrix}$ linearly independent?
independent?
2 pt.

You may use the back side of this page

Problem 7.

Consider the basis E of \mathbb{R}^3 given by the vectors

$$v_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \quad \text{and} \quad v_3 = \begin{bmatrix} 0\\-1\\1 \end{bmatrix}.$$

(i) Find the transition matrix from E to the usual basis $\{e_1, e_2, e_3\}$. 3 pt. (ii) Find the transition matrix from the usual basis to E. 3 pt.

(iii) Consider the basis F of \mathbb{R}^3 given by the vectors

$$w_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \quad w_2 = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \quad \text{and} \quad w_3 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}.$$

Find the transition matrix form F to E. 2 pt. (iv) Let v be a vector with $[v]_F = [-4, 5, 8]^{\top}$. Find the coordinate vector of v with respect to the basis E and with respect to the standard basis. 2 pt.

15

Problem 8. Consider the matrix

(

(

$$A = \begin{bmatrix} 1 & 1 & 2 & 0 \\ 1 & -1 & 0 & 2 \\ -1 & 2 & 1 & 0 \end{bmatrix}.$$
(i) Find the rank and nullity of A .
(ii) Write a basis for the row space of A .
(iii) Write a basis for the column space of A .
(iv) Write a basis for the null space of A .
(v) Consider $S = \text{Span} \left\{ \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \right\}$ as a subspace of \mathbb{R}^3 . What is dim (S) ?
(v) Write a basis for S .
(v) Write a basis for S .
(v) Write a basis for S .

You may use the back side of this page

Problem 9. (i) Let A be a non-singular $n \times n$ matrix and V be an $n \times m$ matrix with $N(B) = \{0\}$, i.e., the null space of B consists only of the zero vector. Show that $N(AB) = \{0\}$, i.e., show that the null space of AB consists only of the zero vector. 5 pt.

(ii) Let A be a non-singular $n \times n$ matrix and let x_1, \ldots, x_m be linearly independent vectors in \mathbb{R}^n . Show that the vectors $y_1 = Ax_1, \ldots, y_m = Ax_m$ are also linearly independent. 5 pt.

Problem 10. Let A, B be $m \times n$ matrices. That satisfy the following:

- (a) $col(A) \cap col(B) = \{0\}$, i.e. zero is the only common vector in the column space of A and the column space of B.
- (b) $N(A) \cap N(B) = \{0\}$, i.e. zero is the only common vector in the null space of A and the null space of B.
- (i) Show that for any $x \in \mathbb{R}^n$ the vector Ax is in col(A) and Bx is in col(B). 2 pt.
- (ii) Show that if some $x \in \mathbb{R}^n$ satisfies Ax = Bx then Ax = Bx = 0. 2 pt.
- (iii) Prove $N(A B) \subset N(A) \cap N(B)$, i.e. that any $x \in N(A B)$ is in N(A) and in N(B).
- (iv) Prove $N(A-B) = \{0\}$ i.e. that N(A-B) contains only the zero vector. 2 pt. (v) Show that rank(A - B) = n. 2 pt.