Fall 2017, Math 304
First Midterm
Sample

Last name:

First name:

UIN:

"An Aggie does not lie, cheat or steal or tolerate those who do."

This exam consists of ten problems, the total point value of which is 100 points. The answer to each question must be justified in detail, unless otherwise specified. The time length of this exam is 50 minutes.

The use of electronic devices, such as cellphones, tables, laptops, and calculators is prohibited.

Good luck!

Prb. 1	Prb. 2	Prb. 3	Prb. 4	Prb. 5	Prb. 6	Prb. 7	Prb. 8	Prb. 9	Prb. 10	Total
10	10	10	10	10	10	10	10	10	10	100

Problem 1. Let A be the 3×3-matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right]
$$

(i) Write down the transpose A^{T}.

3 pts.

No justification is necessary for the answers to the following questions.
(ii) Is A symmetric?
1 pt.
(iii) Is A diagonal?

1 pt.
(iv) Is A upper triangular?

1 pt.
(v) Is A lower triangular?

1 pt.
(vi) What is $\operatorname{det}(A)$?

3 pt.

Problem 2. Let B be a 4×4-matrix such that $\operatorname{det}(B)=2$.
(i) Is B singular or non-singular? No justification is necessary. 2 pt .
(ii) Is the transpose B^{T} singular or non-singular? $2 p t s$.
(iii) Is B^{2} singular or non-singular?

2 pts.
(iv) Solve the equation $B x=\mathbf{0}$.

4 pts.

Problem 3.

(i) Let A be a non-singular matrix. Prove that $\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)$. 4 pt.
(ii) If A is an $n \times n$ matrix and λ is a scalar prove that $\operatorname{det}(\lambda A)=\lambda^{n} \operatorname{det}(A)$. 3 pt . (iii) If A is an non-singular $n \times n$ matrix so that $A^{-1}=-A$ prove that n must be even.

3 pt.

Problem 4.

(i) If A and B are $n \times n$ matrices with $A B=I$ prove that neither A nor B can be singular.

6 pt. (ii) If A and B are $n \times n$ non-zero matrices with $A B=\mathbf{0}$, prove that both A and B must be singular.

4 pt.

Problem 5. Consider the linear system
(\triangle)

$$
\begin{array}{cll}
x_{1} & -x_{3}+2 x_{4}=-2 \\
-x_{1}+x_{2}+2 x_{3}-3 x_{4}=7 \\
2 x_{1} & +2 x_{3}-4 x_{4}=8
\end{array}
$$

(i) Write the augmented coefficient matrix of this system.

3 pt.
(ii) Write an equivalent coefficient matrix so that the left part is in reduced row echelon form.

4 pt.
(iii) Identify the lead variable and the free variables of (\triangle). 1 pt .
(iv) Solve (\triangle)

2 pt..

Problem 6. Given a number $0 \leq \theta<2 \pi$ consider the 3×3 matrix

$$
R=\left[\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right]
$$

(i) Verify that R is invertible with $R^{-1}=R^{T}$.

7 pt.
(ii) Solve the equation $R \mathbf{x}=\mathbf{e}_{2}$, where $\mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$.

3 pt.

Problem 7.

(i) Compute the inverse of the matrix 6 pts.

$$
D=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

(ii) Find a 2×2 matrix X that satisfies the equation $A X+B=X$ where 4 pt .

$$
A=\left[\begin{array}{lll}
2 & 1 & 2 \\
1 & 3 & 1 \\
1 & 1 & 2
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ccc}
3 & 0 & -2 \\
1 & 4 & 0 \\
-2 & 1 & -3
\end{array}\right]
$$

Problem 8.

(i) Consider the following subsets of \mathbb{R}^{3} :

$$
S_{1}=\left\{\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]: a-c=b\right\}, \quad \text { and } \quad S_{2}=\left\{\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]: a^{2}+b^{2}+c^{2}=1\right\}
$$

Which of the above are subspaces and which are not? 6 pt.
(ii) Do the vectors $v_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right], v_{3}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ form a spanning set of $\mathbb{R}^{3} ? ~ \& p t$.

Problem 9.

Consider the matrix

$$
A=\left[\begin{array}{ccccc}
1 & -2 & -2 & 1 & 1 \\
-2 & 4 & 4 & 1 & 3 \\
1 & -2 & -2 & 2 & 1
\end{array}\right]
$$

(i) Find the null space of A.

8 pt.
(ii) Solve the equation $A x=\mathbf{b}$ if x_{0} is a known solution in the cases:

2 pt.
(1) $\mathbf{b}=\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right], x_{0}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right]$
(2) $\mathbf{b}=\left[\begin{array}{c}-1 \\ 5 \\ 0\end{array}\right], x_{0}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1 \\ 0\end{array}\right]$

Problem 10.

(i) Compute the determinant of the matrix 7 pts.

$$
A=\left[\begin{array}{cccc}
0 & -1 & -2 & 1 \\
0 & 2 & 1 & 1 \\
0 & 1 & 0 & 0 \\
2 & 0 & 1 & 3
\end{array}\right]
$$

(ii) Are the vectors

$$
v_{1}=\left[\begin{array}{c}
0 \\
-1 \\
-2 \\
1
\end{array}\right], v_{2}=\left[\begin{array}{l}
0 \\
2 \\
1 \\
1
\end{array}\right], v_{3}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], v_{4}=\left[\begin{array}{l}
2 \\
0 \\
1 \\
3
\end{array}\right]
$$

linearly independent?

$$
3 \text { pt. }
$$

