Fall 2016, Math 409, Section 502

Seventh Assignment

Due Monday, March 28 (at the beginning of class)

Exercise 1. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions so that for all $q \in \mathbb{Q}$ we have $f(q)=g(q)$. Prove that $f=g$, i.e. $f(x)=g(x)$ for all $x \in \mathbb{R}$. 2 pts.

Exercise 2. Let $\mathbb{Q}=\left\{q_{n}: n \in \mathbb{N}\right\}$ be an enumeration of the set of rational numbers (i.e. for each $q \in \mathbb{Q}$ there is exactly one $n \in \mathbb{N}$ with $q=q_{n}$). Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by the rule

$$
f(x)= \begin{cases}0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} \\ \frac{1}{n} & \text { if } x \in \mathbb{Q} \text { and } x=q_{n} .\end{cases}
$$

Prove that f is continuous at x if and only if $x \in \mathbb{R} \backslash \mathbb{Q}$.

Exercise 3. Let a, b be real numbers with $a<b$ and $f:[a, b] \rightarrow[a, b]$ be a continuous function. Prove that there exists $x \in[a, b]$ with $f(x)=x$. 2 pts.

Exercise 4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function and assume that $f[\mathbb{R}] \subseteq \mathbb{R} \backslash \mathbb{Q}$. Prove that f is constant, i.e. there is some $c \in \mathbb{R}$ with $f(x)=c$ for all $x \in \mathbb{R}$.

2 pts.

Exercise 5. Let $f:[0,+\infty) \rightarrow \mathbb{R}$ be the function defined by $f(x)=\sqrt{x}$, for all $x \in[0,+\infty)$. Prove that f is uniformly continuous.

2 pts .

