Fall 2016, Math 409, Section 502Seventh AssignmentDue Monday, March 28 (at the beginning of class)

Exercise 1. Let $f, g : \mathbb{R} \to \mathbb{R}$ be continuous functions so that for all $q \in \mathbb{Q}$ we have f(q) = g(q). Prove that f = g, i.e. f(x) = g(x) for all $x \in \mathbb{R}$. 2 pts.

Exercise 2. Let $\mathbb{Q} = \{q_n : n \in \mathbb{N}\}$ be an enumeration of the set of rational numbers (i.e. for each $q \in \mathbb{Q}$ there is exactly one $n \in \mathbb{N}$ with $q = q_n$). Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by the rule

$$f(x) = \begin{cases} 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \\ \frac{1}{n} & \text{if } x \in \mathbb{Q} \text{ and } x = q_n. \end{cases}$$

Prove that f is continuous at x if and only if $x \in \mathbb{R} \setminus \mathbb{Q}$. 2 pts.

Exercise 3. Let a, b be real numbers with a < b and $f : [a, b] \rightarrow [a, b]$ be a continuous function. Prove that there exists $x \in [a, b]$ with f(x) = x. 2 pts.

Exercise 4. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function and assume that $f[\mathbb{R}] \subseteq \mathbb{R} \setminus \mathbb{Q}$. Prove that f is constant, i.e. there is some $c \in \mathbb{R}$ with f(x) = c for all $x \in \mathbb{R}$.

Exercise 5. Let $f : [0, +\infty) \to \mathbb{R}$ be the function defined by $f(x) = \sqrt{x}$, for all $x \in [0, +\infty)$. Prove that f is uniformly continuous. 2 pts.