Fall 2016, Math 409, Section 502
Sixth Assignment
Due Friday, March 11 (at the beginning of class)

Exercise 1. Use only the definition of the limit of a function to solve the following:

2 pts.
(i) if $a \in \mathbb{R}$, prove that $\lim _{x \rightarrow a} x=a$,
(ii) if $a \in \mathbb{R}$, prove that $\lim _{x \rightarrow a}|x|=|a|$,
(iii) if $a \in \mathbb{R}$, prove that $\lim _{x \rightarrow a} x^{2}=a^{2}$.

Exercise 2. Using only properties of limits proved so far, evaluate the limit

$$
\begin{equation*}
\lim _{x \rightarrow 3} \frac{x^{2}-2 x-3}{x^{3}-9 x} \tag{zpts.}
\end{equation*}
$$

2 pts.

Exercise 3. Let $f: \mathbb{R} \rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R}$ be functions, and a, L, and M be real numbers. Assume that there exists an open interval I, containing a, so that $f(x) \neq L$ for all $x \in I \backslash\{a\}$. Then, if $\lim _{x \rightarrow a} f(x)=L$, and $\lim _{x \rightarrow L} g(x)=M$, prove that $\lim _{x \rightarrow a} g(f(x))=M$.

2 pts.

Exercise 4. Let I be an open interval of $\mathbb{R}, a \in I$ and f be a functions whose domain contains $I \backslash\{a\}$. Assume that for every sequence $\left(x_{n}\right)_{n}$ in $I \backslash\{a\}$, that converges to a, the sequence $\left(f\left(x_{n}\right)\right)_{n}$ converges to some real number, that may depend on the sequence. Prove that there exists $L \in \mathbb{R}$ with $\lim _{x \rightarrow a} f(x)=L$.

Exercise 5. Let $n \in \mathbb{N}$ and let $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ be a polynomial of degree n (i.e. $a_{n} \neq 0$). Prove that $\lim _{x \rightarrow+\infty} P(x)=+\infty$, if $a_{n}>0$, or $\lim _{x \rightarrow+\infty} P(x)=-\infty$, if $a_{n}<0$.

2 pts .

