Exercise 1. Let $(x_n)_n$ be an increasing sequence that is **not** bounded above. Show that $\lim_n x_n = +\infty$ (i.e. $(x_n)_n$ diverges to $+\infty$.) 1 pt.

Exercise 2. Let A be a non-empty subset of \mathbb{R} that is bounded above. Assume that $\sup A \notin A$. Prove that there exists a strictly increasing sequence $(x_n)_n$ of A so that $\lim_n x_n = \sup A$. 2 pts.

Exercise 3. Let $(x_n)_n$ be a real sequence and assume that $x_n \in \mathbb{Z}$ for all $n \in \mathbb{N}$.

- (i) If $(x_n)_n$ is Cauchy, show that it is eventually constant (i.e. there exists $n_0 \in \mathbb{N}$ so that for all $n \ge n_0$ we have $x_n = x_{n_0}$).
- (ii) If $(x_n)_n$ converges to some $a \in \mathbb{R}$, then $a \in \mathbb{Z}$.

Exercise 4. Let $(x_n)_n$ be a real sequence. Assume that for every $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ so that for all $m \ge n \ge n_0$ we have $\left|\sum_{k=n}^m x_k\right| < \varepsilon$. Show

that there exists
$$S \in \mathbb{R}$$
 with $\lim_{n} \left(\sum_{k=1}^{n} x_k \right) = S.$ 2 *pts.*

Exercise 5. Let $(x_n)_n$ be a real sequence and assume that there exists $a \in \mathbb{R}$ with 0 < a < 1, so that $|x_n - x_{n+1}| \leq a^n$ for all $n \in \mathbb{N}$. Show that $(x_n)_n$ converges to some real number x.

Exercise 6. Calculate $\liminf_n x_n$ and $\limsup_n x_n$ in the cases below (fully explain your answer). 2 pts.

(i)
$$x_n = \sin\left(n\frac{\pi}{2}\right)$$
, for all $n \in \mathbb{N}$

(ii)
$$x_n = 2^{(-1)^n n}$$
 for all $n \in \mathbb{N}$.

Exercise 7.

3 pts.

- (i) Let $(x_n)_n$ be a real sequence and r be a real number. Assume that $r < \liminf_n x_n$. Show that there exists $n_0 \in \mathbb{N}$ with $r < x_n$ for all $n \ge n_0$.
- (ii) Let $(x_n)_n$, $(y_n)_n$ be real sequences so that $y_n \neq 0$ for all $n \in \mathbb{N}$ and $0 < \liminf_n y_n < +\infty$. Show that

$$\limsup_{n} \left(\frac{x_n}{y_n}\right) \leqslant \frac{\limsup_{n} x_n}{\liminf_{n} y_n}.$$