Fall 2016, Math 409, Section 502
Third Assignment
Due Friday, February 12 (at the beginning of class)

Exercise 1. Find $f[A]$ and $f^{-1}[A]$, where $f: \mathbb{R} \rightarrow \mathbb{R}$, in the following cases:
(i) $f(x)=2-3 x$ and $A=(-1,2)$,

2 pts.
(ii) $f(x)=\cos (x)$ and $A=[0, \infty)$.

Exercise 2. Let X, Y be sets and $f: X \rightarrow Y$ be a function. 3 pts.
(i) If $\left(B_{i}\right)_{i \in I}$ is a collection of subsets of Y prove

$$
f^{-1}\left[\bigcup_{i \in I} B_{i}\right]=\bigcup_{i \in I} f^{-1}\left[B_{i}\right] \text { and } f^{-1}\left[\bigcap_{i \in I} B_{i}\right]=\bigcap_{i \in I} f^{-1}\left[B_{i}\right] .
$$

(ii) If D, F are subsets of Y prove

$$
f^{-1}[D \backslash F]=f^{-1}[D] \backslash f^{-1}[F] .
$$

(iii) If A is a subset of X and B is a subset of Y, then

$$
f\left[f^{-1}[B]\right] \subseteq B \text { and } f^{-1}[f[A]] \supseteq A .
$$

Exercise 3. Let A and B be sets and assume that A is uncountable. If there exists a function $g: B \rightarrow A$ that is onto, prove that B is uncountable. 2 pts.

Exercise 4. Let A be a finite set and $B \subseteq A$. Show that B is finite.
Hint: prove by induction on n the following statement: if $F \subseteq\{1, \ldots, n\}$ and $F \neq \varnothing$, then there exists a natural number $k \leqslant n$ and a bijection $f: F \rightarrow\{1, \ldots, k\}$.

3 pts.

