Fall 2016, Math 409, Section 502
Second Assignment Due Friday, February 5 (at the beginning of class)

Exercise 1. Let A be a non-empty subset of \mathbb{R}. Assume that s is a real number satisfying the following:
(i) s is an upper bound for A and
(ii) for every $\varepsilon>0$ there exists $a \in A$ with $s-\varepsilon<a \leqslant s$.

Show that $s=\sup A$.
1 pt.
Exercise 2 (Approximation property for infima). Let A be a non-empty subset of \mathbb{R} so that $s=\inf A$ exists. Show that for all $\varepsilon>0$ there exists $a \in A$ with $s \leqslant a<s+\varepsilon$.

1 pt.
Exercise 3 (Completeness property for infima). Let A be a non-empty subset of \mathbb{R} that is bounded below. Show that inf A exists. 1 pt.

Exercise 4. If a, b are real numbers with $a<b$ and $A=(a, b)$, show that $\sup A=b$.

1 pt.
Exercise 5. Let A and B be non-empty subsets of \mathbb{R} with the property $a \leqslant b$ for all $a \in A$ and $b \in B$. Show that $\sup A$ and $\inf B$ exist and in particular sup $A \leqslant \inf B$.

2 pts.

Exercise 6.

(i) Show that $2^{n}<n$!, for all $n \in \mathbb{N}$ with $n \geqslant 4$.
(ii) Show that $n 2^{n}<n$!, for all $n \in \mathbb{N}$ with $n \geqslant 6$. 1 pt.

Exercise 7. Let $a \in \mathbb{R}$ with $a \geqslant 0$. The goal is to show that there exists a non-negative real number r, with $r^{2}=a$. We call r the square root of a and denote it by $r=\sqrt{a}$ or $r=a^{1 / 2}$. Define

$$
A=\left\{x \in \mathbb{R}: 0 \leqslant x \text { and } x^{2} \leqslant a\right\} \text { and } B=\left\{x \in \mathbb{R}: 0 \leqslant x \text { and } a \leqslant x^{2}\right\}
$$

Without assuming the existence of \sqrt{a} prove:
(i) A is non-empty and $\max \{1, a\}$ is an upper bound for A,
(ii) B is non-empty and $\min \{1, a\}$ is a lower bound for B,
(iii) if $s=\sup A$, then $s^{2} \leqslant a$ (Hint: use the approximation property for suprema),
(iv) if $t=\inf B$, then $a \leqslant t^{2}$ (Hint: use the approximation property for infima),
(v) $s=t$ and hence $s^{2}=a$.

3 pts.

