Exercise 1. Let A be a non-empty subset of \mathbb{R} . Assume that s is a real number satisfying the following:

(i) s is an upper bound for A and

(ii) for every $\varepsilon > 0$ there exists $a \in A$ with $s - \varepsilon < a \leq s$. Show that $s = \sup A$.

Exercise 2 (Approximation property for infima). Let A be a non-empty subset of \mathbb{R} so that $s = \inf A$ exists. Show that for all $\varepsilon > 0$ there exists $a \in A$ with $s \leq a < s + \varepsilon$.

Exercise 3 (Completeness property for infima). Let A be a non-empty subset of \mathbb{R} that is bounded below. Show that $\inf A$ exists. 1 pt.

Exercise 4. If a, b are real numbers with a < b and A = (a, b), show that $\sup A = b$. 1 pt.

Exercise 5. Let A and B be non-empty subsets of \mathbb{R} with the property $a \leq b$ for all $a \in A$ and $b \in B$. Show that $\sup A$ and $\inf B$ exist and in particular $\sup A \leq \inf B$. 2 pts.

Exercise 6.

- (i) Show that $2^n < n!$, for all $n \in \mathbb{N}$ with $n \ge 4$.
- (ii) Show that $n2^n < n!$, for all $n \in \mathbb{N}$ with $n \ge 6$. 1 pt.

Exercise 7. Let $a \in \mathbb{R}$ with $a \ge 0$. The goal is to show that there exists a non-negative real number r, with $r^2 = a$. We call r the square root of a and denote it by $r = \sqrt{a}$ or $r = a^{1/2}$. Define

$$A = \{x \in \mathbb{R} : 0 \leqslant x \text{ and } x^2 \leqslant a\} \text{ and } B = \{x \in \mathbb{R} : 0 \leqslant x \text{ and } a \leqslant x^2\}.$$

Without assuming the existence of \sqrt{a} prove:

- (i) A is non-empty and $\max\{1, a\}$ is an upper bound for A,
- (ii) B is non-empty and $\min\{1, a\}$ is a lower bound for B,
- (iii) if $s = \sup A$, then $s^2 \leq a$ (Hint: use the approximation property for suprema),
- (iv) if $t = \inf B$, then $a \leq t^2$ (Hint: use the approximation property for infima),
- (v) s = t and hence $s^2 = a$. 3 pts.