Fall 2016, Math 409, Section 502Eleventh AssignmentDue Friday, April 29 (at the beginning of class)Eleventh Assignment

Exercise 1.

3 pts.

(i) Let x, y be real numbers with $0 \leq x \leq y$. Show that

$$x \leqslant \sqrt{\frac{x^2 + y^2 + xy}{3}} \leqslant y.$$

(ii) Let a, b be non-negative real numbers with a < b. Use Riemann sums to prove that $\int_{a}^{b} x^{2} dx = \frac{1}{3}(b^{3} - a^{3}).$

Exercise 2. Let a < b be real numbers and $f : [a, b] \to \mathbb{R}$ be a bounded function. $7 \ pts.$

(i) If $Q_1 = \{x_0, x_1, \ldots, x_n\}$ and $Q_2 = \{y_0, y_1, \ldots, y_m\}$ are partitions of the interval [a, b] and for each $i = 1, \ldots, n$ we define the set $E_i = \{1 \leq j \leq m : [y_{j-1}, y_j] \subseteq [x_{i-1}, x_i]\}$, prove

$$\left| (x_i - x_{i-1}) - \sum_{j \in E_i} (y_j - y_{j-1}) \right| \leq 2 \|Q_2\|.$$

(ii) If $Q_1 = \{x_0, x_1, \dots, x_n\}$, $Q_2 = \{y_0, y_1, \dots, y_m\}$ are partitions of [a, b] and we define $M = \sup\{|f(x)| : x \in [a, b]\}$, prove the following inequalities:

$$U(f, Q_2) \leq U(f, Q_1) + 3nM ||Q_2||$$
 and,
 $L(f, Q_2) \geq L(f, Q_1) - 3nM ||Q_2||.$

- (iii) Prove that the following statements are equivalent.
 - (a) The function f is Riemann integrable.
 - (b) For every $\varepsilon > 0$ there exists $\delta > 0$, so that for every partition P of [a, b] with $||P|| < \delta$ we have $U(f, P) L(f, P) < \varepsilon$.
 - (c) For every $\varepsilon > 0$ there exists $\delta > 0$, so that for every partition P of [a, b] with $||P|| < \delta$ and all samples t_j , s_j over P we have $|\mathcal{S}(f, P, t_j) \mathcal{S}(f, P, s_j)| < \varepsilon$.
- (iv) If f is assumed to be Riemann integrable, prove that if $(P_n)_n$ is a sequence of partitions of [a, b], with $\lim_n ||P_n|| = 0$, and t_j^n are

samples over P_n for all n, then $\lim_n \mathcal{S}(f, P_n, t_j^n) = \int_a^b f(x) dx$.

(v) Let $f : [0,1] \to \mathbb{R}$ be a Riemann integrable function. Prove that $\lim_{n} \frac{1}{n} \sum_{k=1}^{n} f(k/n) = \int_{0}^{1} f(x) dx.$

Comment: Statement (iii) of Exercise 2 is called the Darboux criterion of Riemann integrability.