Tenth Assignment

Exercise 1. Let $f: (a, b) \to \mathbb{R}$ be a differentiable, bounded and 1-1 function. Prove the following: 4 *pts*.

- (i) There exist real numbers c < d with f[(a, b)] = (c, d).
- (ii) For every $r < s \in (a, b)$ there exists $x \in (r, s)$ with $f'(x) \neq 0$.
- (iii) For every $v < w \in (c, d)$ there exists $y \in (v, w)$ so that the function $f^{-1}: (c,d) \to \mathbb{R}$ is differentiable at y.

Exercise 2. Let $F = \{a_1, \ldots, a_n\}$ be a finite subset of [0, 1] and let also $f:[0,1] \to \mathbb{R}$ be the function defined by

$$f(x) = \begin{cases} 1 & \text{if } x \in F \\ 0 & \text{if } x \in [0,1] \setminus F. \end{cases}$$

Use the definition of the Riemann integral to show that f is Riemann integrable and $\int_0^1 f(x) dx = 0$. 3 pts.

Exercise 3. Let $f: [a,b] \to \mathbb{R}$ be a continuous function with $f(x) \ge 0$ for all $x \in [a, b]$. If f is not the zero function, show that $\int_a^b f(x) dx > 0$. 3 pts.