Fall 2016, Math 409, Section 502
Tenth Assignment
Due Friday, April 22 (at the beginning of class)

Exercise 1. Let $f:(a, b) \rightarrow \mathbb{R}$ be a differentiable, bounded and 1-1 function. Prove the following:

4 pts.
(i) There exist real numbers $c<d$ with $f[(a, b)]=(c, d)$.
(ii) For every $r<s \in(a, b)$ there exists $x \in(r, s)$ with $f^{\prime}(x) \neq 0$.
(iii) For every $v<w \in(c, d)$ there exists $y \in(v, w)$ so that the function $f^{-1}:(c, d) \rightarrow \mathbb{R}$ is differentiable at y.

Exercise 2. Let $F=\left\{a_{1}, \ldots, a_{n}\right\}$ be a finite subset of $[0,1]$ and let also $f:[0,1] \rightarrow \mathbb{R}$ be the function defined by

$$
f(x)= \begin{cases}1 & \text { if } x \in F \\ 0 & \text { if } x \in[0,1] \backslash F .\end{cases}
$$

Use the definition of the Riemann integral to show that f is Riemann integrable and $\int_{0}^{1} f(x) \mathrm{d} x=0$.

3 pts.

Exercise 3. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function with $f(x) \geqslant 0$ for all $x \in[a, b]$. If f is not the zero function, show that $\int_{a}^{b} f(x) \mathrm{d} x>0$. 3 pts.

