First Assignment

Due Friday, January 29 (at the beginning of class)

Exercise 1. Using only the field axioms and order axioms of \mathbb{R} , prove the statements below. 5 pts.

- (i) If a is a non-zero real number, then its multiplicative inverse is unique.
- (ii) If a is a real number, then $a \cdot 0 = 0$.
- (iii) If a is a real number, then $-a = (-1) \cdot a$.
- (iv) If a, b, c, and d are real numbers so that a < b and c < d, then a + c < b + d.
- (v) If a and b are real numbers with 0 < a < b, then 0 < 1/b < 1/a (here, 1/a denotes the multiplicative inverse of a).

Exercise 2. Let $x \in \mathbb{R}$.

2 pts.

- (i) Find all the values of x for which |3x + 2| < 10.
- (ii) Show that $|x| \leq 2$ implies $|x^2 1| \leq 3|x + 1|$.

Exercise 3. Let $x, y \in \mathbb{R}$. Show that if $x < (1 + \varepsilon)y$ for all $\varepsilon > 0$, then $x \leq y$.