Practice problems for the second midterm exam Math 251, Fall 2015

Sections 504 \& 513

Problem 1. Evaluate the double integral $\iint_{R} e^{x} \sin (y) \mathrm{d} A$, where R is the rectangle $[0, \ln (2)] \times[0, \pi]$.
Problem 2. Evaluate the double integral $\iint_{R} \sin (x+2 y) \mathrm{d} A$, where R is the rectangle $[-\pi / 4, \pi / 4] \times[0, \pi / 2]$.

Problem 3. Let E denote the solid that lies above the rectangle $R=$ $[2,3] \times[-1,0]$ and below the elliptic paraboloid $3 x^{2}+3 y^{2}=z$.
(i) Set up a double iterated integral express the volume of E.
(ii) Find the volume of E.

Problem 4.

(i) Evaluate the iterated integral $\int_{0}^{1} \int_{x}^{e^{x}} 3 y^{2} \mathrm{~d} y \mathrm{~d} x$.
(ii) Identify the region of integration.

A

B

C

D

(iii) Express the region of integration as a region of type I.

Recall: A region of type I is of the form

$$
D=\left\{(x, y) \mid a \leqslant x \leqslant b, g_{1}(x) \leqslant y \leqslant g_{2}(x)\right\} .
$$

Problem 5. Let D be the region of the plane bounded by $y=1 / x, y=x^{2}$ and $x=2$.
(i) Identify the region of integration.
A

C

D

(ii) Express D as a region of type I.
(iii) Evaluate the double integral $\iint_{D} 2 x^{2} y \mathrm{~d} A$.

Problem 6. Let D be the region of the plane bounded by $y=\sqrt{x}, y=1$ and $x=0$.
(i) Express D as a region of type I.
(ii) Express D as a region of type II.

Recall: A region of type II is of the form

$$
D=\left\{(x, y) \mid c \leqslant y \leqslant d, h_{1}(y) \leqslant x \leqslant h_{2}(y)\right\}
$$

(iii) Evaluate the double integral $\iint_{D} e^{-y^{3}} \mathrm{~d} A$.

Hint: choose the appropriate expression of D.
Problem 7. Let E denote the solid in the first octant, below the elliptic paraboloid $z=x^{2}+3 y^{2}$ and bounded by the plane $x+y=1$.
(i) Set up a double iterated integral expressing the volume of E.
(ii) Find the volume of E.

Problem 8. Let R be the region of the plane inside the circle $x^{2}+y^{2}=1$, but outside the circle $x^{2}+y^{2}=1 / 4$ and above the lines $y=x$ and $y=-x$.
(i) Identify the region of integration.

(ii) Express R in polar coordinates.
(iii) Write $\iint_{R} \frac{x+y}{x^{2}+y^{2}} \mathrm{~d} A$ in the form of a double iterated integral with polar coordinates.
(iv) Evaluate $\iint_{R} \frac{x+y}{x^{2}+y^{2}} \mathrm{~d} A$.

Problem 9. Let E denote the solid above the $x y$-plane, in the cylinder $x^{2}+y^{2}=1$ and below the upper sheet of the hyperboloid $-x^{2}-y^{2}+z^{2}=1$.
(i) Set up a double iterated integral with polar coordinates expressing the volume of E.
(ii) Find the volume of E.

Problem 10. Let D denote the region inside the polar rectangle defined by $0 \leqslant r \leqslant 2$ and $\pi / 4 \leqslant \theta \leqslant \pi / 2$, but outside the circle $r=2 \sin (\theta)$.
(i) Identify D.

(ii) Express D as polar region of type II.

Recall: a polar region of type II is of the form

$$
D=\left\{(r, \theta): \alpha \leqslant \theta \leqslant \beta, \rho_{1}(\theta) \leqslant r \leqslant \rho_{2}(\theta)\right\}
$$

(iii) Set up a double iterated integral with polar coordinates expressing the area of D.
(iv) Find the area of D.

Problem 11. Let D denote the disk with center the origin and radius one. A pizza occupies the region D. The inexperienced cook distributed the toppings unevenly and so, the mass density at each point of the pizza is given by $\rho(x, y)=y+2$.
(i) Set up a double iterated integral in polar coordinates expressing the total mass of the pizza.
(ii) Find the total mass of the pizza.
(iii) Set up a double iterated integrals in polar coordinates expressing the center of mass of the pizza.
(iv) Find the center of mass of the pizza.

Hints: $\sin ^{2} \theta=(1 / 2)(1-\cos (2 \theta)), \int_{0}^{2 \pi} \cos \theta \sin \theta \mathrm{~d} \theta=0$.
Problem 12. Evaluate the triple integral $\iiint_{B} x y z \mathrm{~d} V$, if B is the rectangular box $[0,1] \times[-1,0] \times[1,2]$.

Problem 13.

(i) Evaluate the triple integral $\int_{0}^{1} \int_{x^{2}}^{x} \int_{x^{2}+y^{2}}^{x^{2}+2 y^{2}} x \mathrm{~d} z \mathrm{~d} y \mathrm{~d} x$.
(ii) Express the region of integration as a region of type 1.

Problem 14. Let E be the solid region above the plane $x-z=1$, beneath the elliptic paraboloid $z=x^{2}+3 y^{2}$, bounded by the planes $x=0, y=0$ and $x+y=1$.
(i) Express E as a solid region of type 1.
(ii) Set up a triple iterated integral which expresses the volume of E. Recall: the volume of E is $\iiint_{E} \mathrm{~d} V$.
(iii) Evaluate the volume of E.

Problem 15.

(i) Identify the type of surface defined by the equation $1 / 2=\sin ^{2} \phi \cos ^{2} \theta$ in spherical coordinates.
(ii) Identify the type of surface defined by the equation $\cos ^{2}(\phi)=\frac{\rho^{2}-1}{2 \rho^{2}}$ in spherical coordinates.

Problem 16.

(i) Identify the type of surface defined by the equation $z^{2}=1+r^{2}$ in cylindrical coordinates.
(ii) Set up a triple iterated integral in cylindrical coordinates that expresses the volume of the solid region E, bounded by $z^{2}=1+r^{2}$ and the cylinder $r=2$.
(iii) Evaluate the volume of E.

Problem 17. Let E be the spherical wedge defined by $\sqrt[3]{\pi / 4} \leqslant \rho \leqslant \sqrt[3]{\pi / 2}$, $0 \leqslant \theta \leqslant \pi / 2$ and $\pi / 4 \leqslant \phi \leqslant \pi / 2$. A solid is occupying region E and its mass density is described by the function $\varrho(x, y, z)=\sin \left(\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}\right)$.
(i) Set up a triple iterated integral in spherical coordinates that expresses the total mass of the solid.
(ii) Evaluate the total mass of the solid.

