Practice problems for the second midterm exam Math 251, Fall 2015 Sections 504 & 513

Problem 1. Evaluate the double integral $\iint_R e^x \sin(y) dA$, where *R* is the rectangle $[0, \ln(2)] \times [0, \pi]$.

Problem 2. Evaluate the double integral $\iint_R \sin(x+2y) dA$, where *R* is the rectangle $[-\pi/4, \pi/4] \times [0, \pi/2]$.

Problem 3. Let *E* denote the solid that lies above the rectangle $R = [2,3] \times [-1,0]$ and below the elliptic paraboloid $3x^2 + 3y^2 = z$.

(i) Set up a double iterated integral express the volume of E.

(ii) Find the volume of E.

Problem 4.

(i) Evaluate the iterated integral $\int_0^1 \int_x^{e^x} 3y^2 dy dx$.

(ii) Identify the region of integration.

(iii) Express the region of integration as a region of type I. Recall: A region of type I is of the form

$$D = \{(x, y) | a \leq x \leq b, g_1(x) \leq y \leq g_2(x)\}.$$

Problem 5. Let D be the region of the plane bounded by y = 1/x, $y = x^2$ and x = 2.

(iii) Evaluate the double integral $\iint_D 2x^2 y dA$.

Problem 6. Let *D* be the region of the plane bounded by $y = \sqrt{x}$, y = 1 and x = 0.

- (i) Express D as a region of type I.
- (ii) Express D as a region of type II. Recall: A region of type II is of the form

$$D = \{(x, y) | c \leq y \leq d, h_1(y) \leq x \leq h_2(y)\}.$$

(iii) Evaluate the double integral $\iint_D e^{-y^3} dA$. *Hint:* choose the appropriate expression of D.

Problem 7. Let *E* denote the solid in the first octant, below the elliptic paraboloid $z = x^2 + 3y^2$ and bounded by the plane x + y = 1.

- (i) Set up a double iterated integral expressing the volume of E.
- (ii) Find the volume of E.

Problem 8. Let R be the region of the plane inside the circle $x^2 + y^2 = 1$, but outside the circle $x^2 + y^2 = 1/4$ and above the lines y = x and y = -x.

(i) Identify the region of integration.

- (ii) Express R in polar coordinates.
- (iii) Write $\iint_R \frac{x+y}{x^2+y^2} dA$ in the form of a double iterated integral with polar coordinates.

(iv) Evaluate
$$\iint_R \frac{x+y}{x^2+y^2} dA$$
.

Problem 9. Let *E* denote the solid above the *xy*-plane, in the cylinder $x^2 + y^2 = 1$ and below the upper sheet of the hyperboloid $-x^2 - y^2 + z^2 = 1$.

- (i) Set up a double iterated integral with polar coordinates expressing the volume of E.
- (ii) Find the volume of E.

Problem 10. Let *D* denote the region inside the polar rectangle defined by $0 \le r \le 2$ and $\pi/4 \le \theta \le \pi/2$, but outside the circle $r = 2\sin(\theta)$.

(i) Identify D.

2

3

(ii) Express D as polar region of type II.*Recall:* a polar region of type II is of the form

$$D = \{ (r, \theta) : \alpha \leq \theta \leq \beta, \rho_1(\theta) \leq r \leq \rho_2(\theta) \}.$$

- (iii) Set up a double iterated integral with polar coordinates expressing the area of D.
- (iv) Find the area of D.

Problem 11. Let *D* denote the disk with center the origin and radius one. A pizza occupies the region *D*. The inexperienced cook distributed the toppings unevenly and so, the mass density at each point of the pizza is given by $\rho(x, y) = y + 2$.

- (i) Set up a double iterated integral in polar coordinates expressing the total mass of the pizza.
- (ii) Find the total mass of the pizza.
- (iii) Set up a double iterated integrals in polar coordinates expressing the center of mass of the pizza.
- (iv) Find the center of mass of the pizza. Hints: $\sin^2 \theta = (1/2)(1 - \cos(2\theta)), \int_0^{2\pi} \cos \theta \sin \theta d\theta = 0.$

Problem 12. Evaluate the triple integral $\iiint_B xyz dV$, if *B* is the rectangular box $[0,1] \times [-1,0] \times [1,2]$. **Problem 13.**

- Problem 15.
 - (i) Evaluate the triple integral $\int_0^1 \int_{x^2}^x \int_{x^2+y^2}^{x^2+2y^2} x dz dy dx$.
 - (ii) Express the region of integration as a region of type 1.

Problem 14. Let *E* be the solid region above the plane x - z = 1, beneath the elliptic paraboloid $z = x^2 + 3y^2$, bounded by the planes x = 0, y = 0 and x + y = 1.

- (i) Express E as a solid region of type 1.
- (ii) Set up a triple iterated integral which expresses the volume of E. *Recall:* the volume of E is $\iiint_E dV$.
- (iii) Evaluate the volume of E.

Problem 15.

(i) Identify the type of surface defined by the equation $1/2 = \sin^2 \phi \cos^2 \theta$ in spherical coordinates.

(ii) Identify the type of surface defined by the equation $\cos^2(\phi) = \frac{\rho^2 - 1}{2\rho^2}$ in spherical coordinates.

Problem 16.

4

- (i) Identify the type of surface defined by the equation $z^2 = 1 + r^2$ in cylindrical coordinates.
- (ii) Set up a triple iterated integral in cylindrical coordinates that expresses the volume of the solid region E, bounded by $z^2 = 1 + r^2$ and the cylinder r = 2.
- (iii) Evaluate the volume of E.

Problem 17. Let *E* be the spherical wedge defined by $\sqrt[3]{\pi/4} \le \rho \le \sqrt[3]{\pi/2}$, $0 \le \theta \le \pi/2$ and $\pi/4 \le \phi \le \pi/2$. A solid is occupying region *E* and its mass density is described by the function $\varrho(x, y, z) = \sin((x^2 + y^2 + z^2)^{3/2})$.

- (i) Set up a triple iterated integral in spherical coordinates that expresses the total mass of the solid.
- (ii) Evaluate the total mass of the solid.