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ABSTRACT

We introduce the concept of strategically reproducible bases in Banach

spaces and show that operators which have large diagonal with respect

to strategically reproducible bases are factors of the identity. We give

several examples of classical Banach spaces in which the Haar system is

strategically reproducible: multi-parameter Lebesgue spaces, mixed-norm

Hardy spaces and most significantly the space L1. Moreover, we show the

strategical reproducibility is inherited by unconditional sums.

1. Introduction

In this paper, we address the following question: Given a Banach space X with

a basis (ei)
∞
i=1, let T : X → X be an operator, whose matrix representation has

a diagonal whose elements are uniformly bounded away from 0. We say in that

case that T has a large diagonal. Is it possible to factor the identity operator

on X through T ?

The origin of this problem can be traced back to the work of Pe�lczyński [24],

who proved that every infinite-dimensional subspace of �p, 1 ≤ p < ∞ and c0

contains a further subspace which is complemented and isomorphic to the whole

space.

Closely related is the concept of primarity of a Banach space. Recall that X

is called primary, if for every bounded projection P : X → X , either P (X)

or (I − P )(X) is isomorphic to X . The connection between the primarity of

a Banach space and the factorization problem is as follows: either P has large

diagonal or I−P has large diagonal on a “large” subsequence of the basis (ei)
∞
i=1

of the Banach space X . For example Enflo (according to [17]) proved primarity

for X = Lp, 1 ≤ p < ∞, by showing that for every operator T : Lp → Lp, the

identity operator factors either through T or I − T ; see also Alspach–Enflo–

Odell [1]. Factorization and primarity theorems were obtained by Capon [4]

for the mixed norm spaces Lp(Lq), 1 < p, q < ∞, and by the third named

author [19] for H1 and BMO.

Separately, Andrew [2] showed that for 1 < p < ∞, every operator T :Lp → Lp

which has large diagonal with respect to the Haar system is a factor of the iden-

tity operator on Lp. More recently in [13] it was proved that for 1 ≤ p, q < ∞,

every operator T : Hp(Hq) → Hp(Hq) which has large diagonal is a factor of

the identity operator on Hp(Hq).
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In this paper we introduce a new approach to the factorization problem by de-

vising an infinite two-person game and isolate a property of a basis called strate-

gical reproducibility, which implies the factorization of the identity through

operators with large diagonal. We say in that case, the basis (ei)
∞
i=1 has the

factorization property. By using this method, we obtain simplified proofs of

existing results, and obtain the following new factorization theorems for L1 and

related spaces.

Theorem: The normalized Haar system of L1[0, 1] has the factorization prop-

erty. Moreover, the normalized bi-parameter Haar system of L1([0, 1]2) and

the tensor product of the �p unit vector basis with the Haar system have the

factorization property.

The paper is organized as follows. Section 2 covers basic concepts relevant to

this work. In Section 3, we define three notions of strategical reproducibility and

show that those imply the factorization property. In Section 4 we review basic

properties of multi-parameter Lebesgue- and Hardy spaces. In Section 5 we

establish that the Haar system is strategically reproducible in several classical

Banach spaces such as reflexive, multi-parameter Lebesgue spaces, H1 and two-

parameter Hardy spaces Hp(Hq), 1 ≤ p, q < ∞. In Section 6 we show that

the Haar system is strategically reproducible in L1
0. In Section 7 we show

that unconditional sums of spaces with strategically reproducible bases have

themselves that property. Finally, we discuss open problems in Section 8.

2. A brief discussion of basic concepts

We discuss several closely related concepts for operators on Banach spaces.

Definition 2.1: Let X be a Banach space and T : X → X be a bounded linear

operator.

(i) We say that T (X) contains a copy of X if there is a (necessarily

closed) subspace Y of T (X) that is isomorphic to X .

(ii) We say that T preserves a copy of X (or fixes a copy of X) if there

exists a subspace Y of X that is isomorphic to X and T restricted on Y

is an isomorphism.

(iii) We say that the identity operator I on X factors through T if there

are bounded linear operators R,S : X → X with I = STR.



16 R. LECHNER ET AL. Isr. J. Math.

We also consider a quantified version of (iii). For K > 0 we say that the identity

K-factors through T if there are bounded linear operators R,S : X → X with

‖R‖ · ‖S‖ ≤ K and I = STR

and we say that the identity almost K-factors through T if it (K+ε)-factors

through T for all ε > 0.

Remark 2.2: In general, for a given operator T , it is easy to see that (iii)⇒(ii)

and (ii)⇒(i). The converse implications are in general false. To see that (i) �⇒(ii)

take a quotient operator T0 : L1 → �1 and a quotient operator T1 : �1 → L1.

Then if T = T1 ◦ T0 : L1 → L1, T (L1) = L1 however T does not preserve a

copy of L1. There is an example demonstrating (iii)�⇒(ii) but it is slightly more

involved. We first observe that if I = STR and Z = TR(X), then Z is isomor-

phic to X and complemented in X . Indeed, it follows that R is bounded below

and T is bounded below on R(X) hence TR is an isomorphic embedding. Fur-

thermore, S restricted on Z = TR(X) is an isomorphism onto X . Therefore, we

can define the inverse map S|−1
Z : X → Z. One can check that Px = S|−1

Z (Sx)

defines a bounded projection onto Z. This easy fact implies that if X is a min-

imal space that is not complementably minimal, then there exists an operator

T : X → X that is an into isomorphism so that the identity does not factor

through X . To see this, choose a subspace Y of X that is isomorphic to X and

does not contain a further subspace isomorphic to X and complemented in X .

If T : X → X is an into isomorphism, the image of which is Y , then the identity

does not factor through T . Indeed, if I = STR then Z = TR(X) is isomorphic

to X and complemented to X . This is not possible because Z is a subspace

of Y . In conclusion, the fact that (iii)�⇒(ii) is reduced to the existence of a

minimal and not complementably minimal space X . It is well known that the

dual of Tsirelson space has this property, however to the best of our knowledge

there is no recorded proof of this fact so we give a short description of it here.

Assume that T ∗ is complementably minimal. We will show that this would

imply that T is minimal, which was proved to be false in [7]*Corollary VI.b.6,

page 58. Let X be an infinite-dimensional subspace of T . By [6]*Theorem 1 X

is isomorphic to a quotient of T and hence X∗ is isomorphic to a subspace of

T ∗. If T ∗ is complementably minimal, then X∗ contains a complemented copy

of T ∗ which yields that X contains a complemented copy of T . In particular,

T is minimal and this cannot be the case.
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The following definition of C-perturbable was introduced by Andrew in [2].

The concept of large diagonal, which was implicitly present in [2], was formally

introduced in [13].

Definition 2.3: Let X be a Banach space with a normalized Schauder basis (ek)k.

(i) Let 0 < C ≤ 1. The basis (ek)k is called C-perturbable if whenever

T : X → X is a bounded linear operator for which there exists δ > 0

with ‖T (ek)−ek‖ < C−δ for all k ∈ N, then T (X) contains a copy of X .

(ii) If an operator T on X satisfies infk |e∗k(T (ek))| > 0, then we say that T

has large diagonal.

(iii) An operator T on X satisfying e∗m(T (ek)) = 0 whenever k �= m is called

a diagonal operator.

(iv) We say that the basis (ek)k has the factorization property if when-

ever T : X → X is a bounded linear operator with infk |e∗k(Tek)| > 0

then the identity of X factors through T .

Remark 2.4: It is easy to see that a basis that has the factorizing property is

also 1-perturbable. However, there are bases that are C-perturbable without

the factorization property, as the following example shows.

The norm on the boundedly complete basis of James space (ei)i is defined as

follows:

(1)

∥∥∥∥
n∑

i=1

aiei

∥∥∥∥ = sup

( m∑
k=1

( ∑
i∈Ek

ai

)2 )1/2

,

where the supremum is taken over m ∈ N and sequences of successive intervals

(Ek)mk=1 of natural numbers. Let J denote the completion of the linear span

of (ei)i with this norm. Some well known important properties of J are the

following:

(i) The basis (ei)i is spreading. In particular, for any sequence scalars

(ai)
n
i=1 and natural numbers k1 < · · · < kn we have

(2)

∥∥∥∥
n∑

i=1

aiei

∥∥∥∥ =

∥∥∥∥
n∑

i=1

aieki

∥∥∥∥.
(ii) The sequence (ei)i is non-trivial weak Cauchy, i.e., there is e∗∗ ∈ J∗∗ \J

so that w∗- limi ei = e∗∗. Additionally, dist(e∗∗, J) = 1.
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(iii) The space J is quasi-reflexive of order one. In particular, J∗∗=Re∗∗⊕ J ,

i.e., J∗∗ is spanned by e∗∗ and the canonical embedding of J in J∗∗.

Note that by (iii), if the identity factors through an operator on J then that

operator cannot be weakly compact.

Proposition 2.5: There exists a weakly compact operator T : J → J with

e∗i (T (ei)) = 1,

for all i ∈ N. In particular, (ei) does not have the factorization property in J .

Proof. By (ii) the operator S : J → J given by Sei = ei+1, for all i ∈ N, is a

linear isometry. We define T = I − S, which has norm at most two. We will

show that S is weakly compact by showing that for every bounded sequence (xi)i

the sequence (Txi)i has a weakly convergent subsequence. By the separability

of J∗, we pass to a subsequence so that (xi)i converges in the w∗-topology to

some x∗∗ ∈ J∗∗. By (iii), there is x ∈ J and c ∈ R so that x∗∗ = x + ce∗∗. We

have

S∗∗(x∗∗) =S(x) + cS∗∗(e∗∗) = S(x) + c(w∗- lim
i
S(ei))

=S(x) + c(w∗- lim
i
ei+1) = S(x) + ce∗∗.

Thus w∗-limi Txi = w∗-limi(xi − S(xi)) = x+ ce∗∗ − (S(x) + ce∗∗) = x− S(x).

Because the w∗-limit is in J it has to be a weak limit.

We wish to show now that the boundedly complete basis of James space is

perturbable. To achieve that we shall need the following well known fact. We

describe a proof for completeness.

Proposition 2.6: Let (xi)i be a non-trivial weak Cauchy sequence in J . Then,

(xi)i has a subsequence (xji)i that is equivalent to (ei)i so that there exists a

bounded linear projection P : J → [(xji )i].

Proof. Proposition 7.4 from [3] says the result holds, provided that the sequence

(ei)i is equivalent to its convex block sequences and not equivalent to the sum-

ming basis of c0. Both of these properties follow from (1).

Proposition 2.7: Let T : J → J be a bounded linear operator with the

property supi ‖Tei− ei‖ < 1. Then the identity factors through T . That is, the

boundedly complete basis of J is perturbable.
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Proof. If C = lim inf ‖T (ei) − ei‖ < 1 then we have ‖T ∗∗(e∗∗) − e∗∗‖ ≤ C

and therefore, from (ii), dist(T ∗∗(e∗∗), J) ≥ 1 − C > 0. This means that

T ∗∗(e∗∗), which is the w∗-limit of (T (ei))i, is not in J . In other words, (T (ei))i

is non-trivial weak Cauchy. By Proposition 2.6 there is a subsequence (T (eji))i

of (T (ei))i that is equivalent to (ei)i and a bounded linear projection

P : J → W = [(T (eji))i].

Let A : J → J be the map defined by Aei = eji , which by (i) is bounded. Let

R : W → J be the isomorphism given by R(T (eji)) = ei and set B : J → J

with B = R ◦ P . It is easy to see that I = B ◦ T ◦A.

3. Strategical reproducibility, a condition implying the factorization

property

In this section we formulate several versions of a property of bases we call

strategical reproducibility and show that they imply the factorization property.

Notation and conventions. All our Banach spaces are assumed to be over

the real numbers R; BX denotes the unit ball, SX denotes the unit sphere of a

Banach space X , and c00 denotes the sequences in R which eventually vanish.

For a Banach space X we denote by cof(X) the set of cofinite-dimensional

subspaces of X , while cofw∗(X∗) denotes the set of cofinite dimensionl w∗-closed

subspaces of X∗.

If ē = (ei) is a basis of a Banach space X , for x =
∑∞

i=1 xiei ∈ X we call the

set

{i ∈ N : xi �= 0}
the support of x with respect to (ē) and denote it by suppē(x). If there is

no confusion possible, we also may write supp(x) instead of suppē(x).

We recall that a basis (en) of a Banach space X is shrinking if the coordinate

functionals (e∗n) are a basis of X∗, and unconditional if for some constant c ≥ 1

and all finite sequence of scalars (ai)
n
i=1, and all σ = (σi)

n
i=1 ∈ {±1},∥∥∥∥

n∑
i=1

σiaiei

∥∥∥∥ ≤ c

∥∥∥∥
n∑

i=1

aiei

∥∥∥∥.
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Let (xi)i and (yi)i be Schauder basic sequences in (possibly different) Banach

spaces and C ≥ 1. We say that (xi)i and (yi)i are C-equivalent if there are

A,B > 0 with A · B ≤ C so that for any (ai)i ∈ c00 of scalars we have

1

A

∥∥∥∥
∞∑
i=1

aiyi

∥∥∥∥ ≤
∥∥∥∥

∞∑
i=1

aixi

∥∥∥∥ ≤ B

∥∥∥∥
∞∑
i=1

aiyi

∥∥∥∥.
We say that (xi)i and (yi)i are impartially C-equivalent if for any finite

choice of scalars (ai)i ∈ c00 we have

1√
C

∥∥∥∥
∞∑
i=1

aiyi

∥∥∥∥ ≤
∥∥∥∥

∞∑
i=1

aixi

∥∥∥∥ ≤
√
C

∥∥∥∥
∞∑
i=1

aiyi

∥∥∥∥.
Note that if two sequences are C-equivalent, then by scaling one of them we

can always make them impartially C-equivalent.

We now formally define the concept of strategical reproducibility depending

on properties of the basis of a Banach space. The most general form will be

given in Definition 3.4. Nevertheless, under additional assumptions on the basis,

this notion simplifies considerably. The proof that the different definitions of

strategical reproducibility are equivalent under their respective assumptions on

the basis will be given later.

If we demand that our basis is unconditional and shrinking, strategical re-

producibility can be defined as follows.

Definition 3.1: Assume that X is a Banach space with a basis (en) which is

unconditional and shrinking. Let (e∗n) ⊂ X∗ be the corresponding coordinate

functionals. We say that (en) is strategically reproducible if the following

condition is satisfied for some C ≥ 1:

∀n1∈N ∃b1∈span(en : n≥n1)∃b∗1∈span(e∗n : n ≥ n1),(3)

∀n2∈N ∃b2∈span(en : n≥n2)∃b∗2∈span(e∗n : n≥n2),

∀n3∈N ∃b3∈span(en : n≥n3)∃b∗3∈span(e∗n : n≥n3),

...

so that

(bk) is impartially C-equivalent to (ek), and(3a)

(b∗k) is impartially C-equivalent to (e∗k),

b∗k(bl) = δk,l for all k, l ∈ N.(3b)
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Remark 3.2: Condition (3) in Definition 3.1 can be interpreted that one player

in a two-person game has a winning strategy:

We fix C ≥ 1. Player (I) chooses n1∈N, then player (II) chooses

b1∈span(en : n≥n1) and b∗1∈span(e∗n : n≥n1).

They repeat the moves infinitely many times, obtaining for every k ∈N num-

bers nk, and vectors bk and b∗k. Player (II) wins if he was able to choose the

sequences (bn) ⊂ X and (b∗n) ⊂ X∗ so that (3a), (3b) are satisfied. Thus, the

basis (ei) is strategically reproducible if and only if for some C ≥ 1 player (II)

has a winning strategy.

In general it is not true that two-player games of infinite length are deter-

mined, i.e., that one of the players has a winning strategy. Nevertheless, for

C ≥ 1 it is easy to see that the set of all sequences (bk, b
∗
k) in (X ×X∗)N which

satisfy 3(a) and 3(b) is Borel measurable (it is actually closed) with respect to

the product topology of the discrete topology on X ×X∗, and thus it follows

from the main result in [15] that this game is determined. More on these Infinite

Asymptotic Games can be found in [22].

Now we relax the condition on our basis (ei) and only require it be uncondi-

tional. In that case we define strategical reproducible as follows.

Definition 3.3: Let X be a Banach space with an unconditional basis (ei)i and

fix positive constants C ≥ 1.

Consider the following two-player game between player (I) and player (II).

For k ∈ N, turn k is played out in three steps.

Step 1: Player (I) chooses ηk > 0, Wk ∈ cof(X), and Gk ∈ cofw∗(X∗).

Step 2: Player (II) chooses a finite subset Ek of N and sequences of non-negative

real numbers (λk
i )i∈Ek

, (μk
i )i∈Ek

satisfying∑
i∈Ek

λ
(k)
i μ

(k)
i = 1.

Step 3: Player (I) chooses (ε
(k)
i )i∈Ek

in {−1, 1}Ek.

We say that player (II) has a winning strategy in the game Rep(X,(ei))(C) if

he can force the following properties on the result:

For all n ∈ N we set xk =
∑

i∈Ek
ε
(k)
i λ

(k)
i ei and x∗

k =
∑

i∈Ek
ε
(k)
i μ

(k)
i e∗i and

demand:

(i) the sequences (xk)k and (ek)k are impartially C-equivalent,
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(ii) the sequences (x∗
k)k and (e∗k)k are impartially C-equivalent,

(iii) for all n ∈ N we have dist(xk,Wk) < ηk, and

(iv) for all n ∈ N we have dist(x∗
k, Gk) < ηk.

We say that (ei)i is C-strategically reproducible in X if for every η > 0

player (II) has a winning strategy in the game Rep(X,(ei))(C + η).

Finally we will not even require the basis (ej) to be unconditional and define

strategical reproducible as follows:

Definition 3.4: Let X be a Banach space with a normalized Schauder basis (ei)i

and fix positive constants C ≥ 1, and η > 0.

Consider the following two-player game between player (I) and player (II):

Before the first turn player (I) is allowed to choose a partition of N = N1∪N2.

For k ∈ N, turn k is played out in three steps.

Step 1: Player (I) chooses ηk > 0, Wk ∈ cof(X), and Gk ∈ cofw∗(X∗).

Step 2: Player (II) chooses ik ∈ {1, 2}, a finite subset Ek of Nik and sequences

of non-negative real numbers (λk
i )i∈Ek

, (μk
i )i∈Ek

satisfying

1 − η <
∑
i∈Ek

λ
(k)
i μ

(k)
i < 1 + η.

Step 3: Player (I) chooses (ε
(k)
i )n∈Ek

in {−1, 1}Ek.

We say that player (II) has a winning strategy in the game Rep(X,(ei))(C, η)

if he can force the following properties on the result:

For all n ∈ N we set xk =
∑

i∈Ek
ε
(k)
i λ

(k)
i ei and x∗

k =
∑

i∈Ek
ε
(k)
i μ

(k)
i e∗i and

demand:

(i) the sequences (xk)k and (ek)k are impartially (C + η)-equivalent,

(ii) the sequences (x∗
k)k and (e∗k)k are impartially (C + η)-equivalent,

(iii) for all n ∈ N we have dist(xk,Wk) < ηk, and

(iv) for all n ∈ N we have dist(x∗
k, Gk) < ηk.

We say that (ei)i is C-strategically reproducible in X if for every η > 0

player II has a winning strategy in the game Rep(X,(ei))(C, η).

Remark 3.5: We first want to observe that if (ei) is a normalized shrinking

and unconditional basis, then being strategically reproducible in the sense of

Definition 3.1 is equivalent with being C-strategically reproducible for some

C ≥ 1 in the sense of Definition 3.4.
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Indeed, assume (ei) is 1-unconditional and shrinking and assume that for

some C̃ ≥ 1, (3) of Definition 3.1 holds. We will show that (ei) is

3C̃-strategically reproducible in the sense of Definition 3.4.

Let 1/3 > η > 0 be given and assume player (I) has at the beginning of

the game chosen a partition (N1, N2) of N. At the k-th step player (I) chooses

ηk > 0 and spaces Wk ∈ cof(X) and Gk ∈ cofw∗(X). Since (ek) is shrinking,

player (II) can “approximate Wk by a tail space” as follows: there is n
(1)
k ∈ N

so that for all x ∈ BX ∩ [ei : i ≥ n
(1)
k ] it follows that dist(x,Wk) < ηk/2C̃.

Secondly, since Gk is a w∗-closed and cofinite-dimensional subspace of X∗, and

thus the annihilator of a finite subset of X , we find n
(2)
k ∈ N so that for all

x∗ ∈BX∗ ∩ [e∗i : i≥ n
(2)
k ] it follows that dist(x∗,Wk) < ηk/2C̃. Finally we let

n
(3)
k = 1 + max(

⋃k−1
j=1 supp(xj) ∪ supp(x∗

j )). Let nk = max(n
(1)
k , n

(2)
k , n

(3)
k ) and

let player (II) follow his winning strategy, assuming player (I) has chosen nk ∈ N

in his k-th move of the game described in Definition 3.1, and let bk ∈ [ei : i ≥ nk]

and b∗k ∈ [e∗i : i ≥ nk] be chosen according to that strategy, which in particular

implies that ‖bk‖, ‖b∗k‖ ≤
√
C̃. We write bk and b∗k as

bk =

∞∑
j=1

λ̃
(k)
j ej and b∗k =

∞∑
j=1

μ̃
(k)
j ej.

By reducing the supports, if necessary we can assume, by using Proposition 3.8,

that Ẽk = supp(bk) = supp(b∗k) and, since b∗k(bk) =
∑∞

j=1 μ̃
(k)
j λ̃

(k)
j = 1, we can

choose ik ∈ {1, 2}, so that

ρk =
∑

j∈Nik

μ̃
(k)
j λ̃

(k)
j ≥ 1

2
.

Then we let

Ek = Ẽk ∩Nik , μ
(k)
j = μ̃

(k)
j /

√
ρk and λ

(k)
j = λ̃

(k)
j /

√
ρk

for j∈Ek. After player (I) has chosen (ε
(k)
j )j∈Ek

we also put

xk =
∑
j∈Ek

ε
(k)
j μ

(k)
j ej∈

√
2C̃BX ∩ [ej : j≥nk]

and

x∗
k =

∑
j∈Ek

ε
(k)
j λ

(k)
j e∗j ∈

√
2C̃BX∗ ∩ [e∗i : i≥nk].
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From the choice of nk, and the fact that ‖xk‖ ≤
√

2C̃ and ‖x∗
k‖ ≤

√
2C̃, it fol-

lows that dist(xk,Wk) < ηk and dist(x∗, Gk) < ηk. From the 1-unconditionality

of (ej) it follows for (ξk) ∈ c00 that

∥∥∥∥
∞∑
k=1

ξkxk

∥∥∥∥ ≤
√

2

∥∥∥∥
∞∑
k=1

ξkbk

∥∥∥∥ ≤
√

2
√
C̃ ≤

∥∥∥∥
∞∑
k=1

ξkek

∥∥∥∥
and ∥∥∥∥

∞∑
k=1

ξkx
∗
k

∥∥∥∥ ≤
√

2

∥∥∥∥
∞∑
k=1

ξkb
∗
k

∥∥∥∥ ≤
√

2
√
C̃ ≤

∥∥∥∥
∞∑
k=1

ξke
∗
k

∥∥∥∥.
Thus, by Proposition 3.8 below,(xk) is impartially 2C̃-equivalent to (ek) and(e∗k)

is impartially 2C̃-equivalent to (e∗k).

Conversely, it is easy to deduce that if (ej) is unconditional and shrinking

and strategically reproducible in the sense of Definition 3.4, then it is also

strategically reproducible in the sense of Definition 3.1.

In a similar way we can show that for an unconditional and normalized ba-

sis (ej) strategical reproducibility in the sense of Definitions 3.3 and 3.4 are

equivalent.

Remark 3.6: The unit vector basis of �1 has the factorization property yet it is

not strategically reproducible under any of the above definitions. It is possible

to give a fourth notion of strategic reproducibility that covers �1, is strictly

less restrictive than Definition 3.4, and implies the factorization property. This

formulation is rather technical, so we will not discuss it in the present paper.

We will now show that a basis which is strategically reproducible has the

factorization property. We will first need the following two observations.

Lemma 3.7: Assume that X is a Banach space with a basis (en), whose basis

constant is λ ≥ 1 and biorthogonal functionals (e∗n). Let (bn) and (b∗n) be block

bases of (en) and (e∗n), respectively, so that b∗m(bn) = δm,n, for m,n ∈ N, and

so that for some C ≥ 1 it follows that

(4)

∥∥∥∥
∞∑
j=1

ξjbj

∥∥∥∥
X

≤
√
C

∥∥∥∥
∞∑
j=1

ξjej

∥∥∥∥
X

and

∥∥∥∥
∞∑
j=1

ξjb
∗
j

∥∥∥∥
X∗

≤
√
C

∥∥∥∥
∞∑
j=1

ξje
∗
j

∥∥∥∥
X∗

,

for all (ξj) ∈ c00.
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Then Y = span(bj : j ∈ N) is a complemented subspace of X and

P : X → Y, x �→
∞∑
n=1

b∗n(x)bn

is well defined and a bounded projection onto Y with ‖P‖ ≤ λC. Moreover,

if (en) is shrinking, then ‖P‖ ≤ C.

Proof. If (en) is shrinking then span(e∗n : n ∈ N) is norm dense in X∗ and

therefore we have in that case

‖x‖ = sup
x∗∈span(e∗n:n∈N)

x∗(x).

If (en) is a general basis whose basis constant is λ, we denote by Pn the projec-

tion

Pn : X → X,

∞∑
j=1

xjej �→
n∑

j=1

xjej ,

and since ‖Pn‖ = ‖P ∗
n‖ ≤ λ we deduce for x ∈ X

(5)

‖x‖ = lim
n→∞ sup

x∗∈BX∗
x∗(Pn(x)) ≤ sup

n∈N,x∗∈BX∗
P ∗
n(x∗)(x)

≤ sup
z∗∈λBX∗∩span(e∗j :j∈N)

z∗(x)

= λ sup
z∗∈BX∗∩span(e∗j :j∈N)

z∗(x).

If x ∈ span(ej) then P (x) is a finite linear combination of elements of (bn).

We compute

sup
x∈BX∩span(ej :j∈N)

‖P (x)‖ = sup
x∈BX∩span(ej :j∈N)

∥∥∥∥
∞∑
j=1

b∗j (x)bj

∥∥∥∥
≤

√
C sup

x∈BX∩span(ej :j∈N)

∥∥∥∥
∞∑
j=1

b∗j (x)ej

∥∥∥∥.
Using (5) yields

sup
x∈BX∩span(ej :j∈N)

‖P (x)‖ ≤ λ
√
C sup

x∈BX∩span(ej :j∈N)
x∗∈BX∗∩span(e∗j :j∈N)

x∗
( ∞∑

j=1

b∗j(x)ej

)

= λ
√
C sup

x∗∈BX∗∩span(e∗j :j∈N)

∥∥∥∥
∞∑
j=1

x∗(ej)b
∗
j

∥∥∥∥.
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By (4), we obtain therefore

sup
x∈BX∩span(ej :j∈N)

‖P (x)‖ ≤ λ
√
C sup

(ξj)∈c00,‖
∑

ξje∗j ‖≤1

∥∥∥∥
∞∑
j=1

ξjb
∗
j

∥∥∥∥ ≤ λC.

In the case that (ej) is shrinking we can replace in the first inequality λ by 1,

and therefore obtain that ‖P (x)‖ ≤ C for x ∈ BX .

Proposition 3.8: Assume that X is a Banach space with a basis (en) and

biorthogonal functionals (e∗n). Let (bn) and (b∗n) be block bases of (en) and (e∗n),

respectively, so that b∗m(bn) = δm,n, for m,n ∈ N, and so that for some C ≥ 1

it follows that

(6)

∥∥∥∥
∞∑
j=1

ξjbj

∥∥∥∥
X

≤
√
C
∥∥∥ ∞∑

j=1

ξjej

∥∥∥
X

and

∥∥∥∥
∞∑
j=1

ξjb
∗
j

∥∥∥∥
X∗

≤
√
C

∥∥∥∥
∞∑
j=1

ξje
∗
j

∥∥∥∥
X∗

,

for all (ξj) ∈ c00.

Then (bn) is λC-impartially equivalent to (en) and (b∗n) is C-impartially equiv-

alent to (en). If (en)n is shrinking then (bn) is C-impartially equivalent to (en).

Proof. For a sequence (ξj) ∈ c00 we compute∥∥∥∥
∞∑
j=1

ξjbj

∥∥∥∥ ≥ sup
(ηj)∈c00,‖

∑∞
j=1 ηjb∗j ‖≤1

∞∑
j=1

ηjb
∗
j

( ∞∑
j=1

ξjbj

)

= sup
(ηj)∈c00,‖

∑∞
j=1 ηjb∗j ‖≤1

∞∑
j=1

ξj · ηj .

By (6) and then (5) we obtain∥∥∥∥
∞∑
j=1

ξjbj

∥∥∥∥ ≥ sup
(ηj)∈c00,‖

∑∞
j=1 ηje∗j ‖≤1/

√
C

∞∑
j=1

ξj · ηj

=
1√
C

sup
(ηj)∈c00,‖

∑∞
j=1 ηje∗j ‖≤1

∞∑
j=1

ξj · ηj =≥ 1

λ
√
C

∥∥∥∥
∞∑
j=1

ξjej

∥∥∥∥.
Similarly we show that ∥∥∥∥

∞∑
j=1

ξjb
∗
j

∥∥∥∥ ≥ 1√
C

∥∥∥∥
∞∑
j=1

ξje
∗
j

∥∥∥∥.
In order to deduce that strategical reproducibility implies the factorization

property, we will also need a condition on diagonal operators which is automat-

ically satisfied in the case that the given basis is unconditional.
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Definition 3.9: Let X be a Banach space with a normalized Schauder

basis (en)n. We say that the basis (en)n has the uniform diagonal fac-

torization property if for every δ > 0 there exists K(δ) ≥ 1 so that for every

bounded diagonal operator T : X → X with infn |e∗n(T (en))| ≥ δ the identity

almost K(δ)-factors through T . If we wish to be more specific we shall say that

(en)n has the K(δ)-diagonal factorization property.

Note that if (en) is unconditional then it has the uniform diagonal factor-

ization property. The following definition quantifies the uniform factorization

property.

Definition 3.10: Let X be a Banach space with a normalized Schauder

basis (en)n. We say that the basis (en)n has the uniform factorization prop-

erty if for every δ > 0 there exists K(δ) ≥ 1 so that for every bounded linear

operator T : X → X with infn |e∗n(T (en))| ≥ δ the identity almost K(δ)-factors

through T . If we wish to be more specific we shall say that (en)n has the

K(δ)-factorization property.

Remark 3.11: Note that in Definitions 3.9 and 3.10, K(δ) ≥ 1/δ. This can be

witnessed by taking T = δI. Also, whenever the function K : (0,∞) → R is well

defined it is also continuous. In fact, for 0 < ε < δ a simple scaling argument

yields

(7) K(δ) ≤ K(δ − ε) ≤ δ

δ − ε
K(δ).

To see this, use the following trick: if T has a diagonal whose elements are abso-

lutey bounded below by δ−ε, then the elements of the diagonal of δ/(δ−ε)T are

absolutely bounded below by δ. Inspecting (7) we also deduce K(δ) ≤ K(1)/δ

and therefore
1

δ
≤ K(δ) ≤ K(1)

δ
,

for all δ > 0.

Theorem 3.12: Let X be a Banach space with a Schauder basis (en)n that

has a basis constant λ. Assume also that

(i) the basis (ei)i has the K(δ)-diagonal factorization property and

(ii) the basis (ei)i is C-strategically reproducible in X .

Then (ei)i has the λC2K(δ)-factorization property.
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Remark 3.13: It is worth pointing out that in Definition 3.10 the norm of T does

not appear and the factorization constant of the identity through T depends

only on the diagonal of T . This means that having the uniform factorization

property is formally stronger than having the factorization property. Theorem

3.12 yields the stronger property. It is unclear whether these two properties are

actually distinct.

We postpone the proof of Theorem 3.12 to first present a necessary lemma.

Lemma 3.14: Let X be a Banach space with a normalized Schauder basis (en)n

with a basis constant λ, let T : X → X be a bounded linear operator, let (xn)n,

(x∗
n)n be sequences in X and X∗ respectively and let η > 0, C ≥ 1. Assume

that the following are satisfied:

(i) (xn)n and (en)n are impartially C-equivalent,

(ii) (x∗
n)n and (e∗n)n are impartially C-equivalent,

(iii) there exists a block sequence (x̃∗
n)n of (e∗n) so that

∑
n ‖x∗

n − x̃∗
n‖ < ∞,

(iv)
∑

n

∑
m 
=n |x∗

n(T (xm))| < η.

Then the diagonal operator D : X → X given by D(en) = x∗
n(T (xn))en

is bounded and there exist bounded linear operators B,A : X → X with

‖A‖‖B‖ ≤ λC2 so that ‖D −BTA‖ < 2λη.

If we additionally assume that K ≥ 1 is such that the identity K-factors

through D and η < 1/(2λK), then the identity ( KC2

1−2λKη )-factors through T .

Proof. The maps A : X → X , S : [xn : n ∈ N] → X with A(en) = xn,

S(xn) = en are well defined and satisfy ‖A‖‖S‖ ≤ C.

From Lemma 3.7 it follows that the map R : X → [xn : n ∈ N] given by

R(x) =

∞∑
n=1

x∗
n(x)xn

is well defined and ‖R‖ ≤ λC.

Define B = S ◦ R : X → X . Then ‖B ◦ A‖ ≤ λC2. It also follows that for

each m ∈ N we have BTA(em) =
∑∞

n=1 x
∗
n(T (xm))en. By (iv) we deduce that

for each m ∈ N we have

‖BTA(em) − x∗
m(T (xm))em‖ ≤

∑
n
=m

|x∗
n(T (xm))|.

Combining this with the triangle inequality we obtain that the desired diagonal

map D is bounded and ‖D −BTA‖ < 2λη.
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For the additional part, assume that B̂ : X → X and Â : X → X are such

that ‖B̂‖‖Â‖ ≤ K and I = B̂DÂ. It follows that

‖I − B̂BTAÂ‖ = ‖B̂(D −BTA)Â‖ < 2λKη < 1.

Hence, the map Q = B̂BTAÂ is invertible with ‖Q−1‖ ≤ 1/(1 − 2λKη). In

conclusion, if we set

B̃ = Q−1B̂B, Ã = AÂ,

then B̃T Ã = I and ‖B̃‖‖Ã‖ ≤ λKC2/(1 − 2λKη).

Proof of Theorem 3.12. Let δ > 0, T : X → X be a bounded linear operator

and infn |e∗n(T (en))| ≥ δ. Let us fix η > 0 to be determined later.

We will now describe a strategy for player (I) in a game Rep(X,(ei))(C, η), and

assume player (II) answers by following his winning strategy.

At the beginning, player (I) chooses

N1 = {n ∈ N : e∗n(T (en)) ≥ δ} and N2 = {n ∈ N : e∗n(T (en)) ≤ −δ}.

In the first step of the n’th turn he chooses

ηn < η(‖T ‖n2n
√
C + η)−1

and if ln = max1≤k<n(Ek) he chooses Gn = A⊥
n and Wn = (Bn)⊥, where

An = {x1, T (x1), . . . , xn−1, T (xn−1), e1, T (e1), . . . , eln , T (eln)},
Bn = {x∗

1, T
∗(x1), . . . , x∗

n, T
∗(x∗

n), e∗1, T
∗(e∗1), . . . , e∗ln , T

∗(e∗ln)}.

Player (II), following a winning strategy, chooses in = 1 or in = 2, picks

En ⊂ Nin , and non-negative scalars (λ
(n)
i )i∈En , (μ

(n)
i )i∈En with

1 − η <
∑
i∈En

λ
(n)
i μ

(n)
i < 1 + η.

Then player (I) picks signs (ε
(n)
i )i∈En so that if x∗

n =
∑

i∈En
μ
(n)
i ε

(n)
i e∗i then

(8)

∣∣∣∣x∗
n

(
T

( ∑
i∈En

ε
(n)
i λ

(n)
i ei

))∣∣∣∣ > (1 − η)δ.

That this is possible follows using the following probabilistic argument:
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Let r = (rj)j∈En be a Rademacher sequence, i.e., rj , j ∈ En, are

independent random variables on some probability space (Ω,Σ,P), with

P(rj = 1)=P(rj = −1)= 1
2 .

E

(( ∑
i∈En

riμ
(n)
i e∗i

)(
T

( ∑
j∈En

rjλ
(n)
j ej

)))
= E

( ∑
i,j∈En

rirjμ
(n)
i λ

(n)
j e∗j (T (ei))

)

=
∑
i∈En

μ
(n)
i λ

(n)
i e∗i (T (ei))

> δ(1 − η).

It follows therefore that we can choose (ε
(n)
j )j∈En appropriately to satisfy (8).

After the game is completed, put

xn =
∑
i∈En

ε
(n)
i λ

(n)
i ei and x∗

n =
∑
i∈En

ε
(n)
i μ

(n)
i e∗i .

Conditions (i) to (iv) of Definition 3.4 are satisfied. Then (8) can be rewritten

as

(9) |x∗
n(T (xn))| ≥ (1 − η)δ.

Furthermore, observe that for any k < n we have

|x∗
k(T (xn))| = |T ∗(x∗

k)(xn)| ≤ ‖T ∗(x∗
k)‖ · dist(xn,Wn)

≤ ‖T ‖
√
C + η · dist(xn,Wn),

|x∗
n(T (xk))| ≤ ‖T (xk)‖ · dist(x∗

n, Gn)

≤ ‖T ‖
√
C + η · dist(x∗

n, Gn).

We conclude that
∑

n

∑
m 
=n |x∗

n(T (xm))| < η. A similar argument yields that

(x∗
n)n is summably close to a block sequence of (e∗i )i. By Lemma 3.14, the

diagonal operator D : X → X given by Den = x∗
n(T (xn)) is bounded. By

assumption, for any ξ > 0, the identity (K(δ − η) + ξ)-factors through D and,

if η is sufficiently small, then by the second part of Lemma 3.14 the iden-

tity ( (λK(δ−η)+ξ)(C+η)2

1−2λ(K(δ−η)+ξ)η )-factors through T . Recall that by (7) the function

K : (0,∞) → R is continuous. As we could have picked η and ξ arbitrarily close

to zero we deduce that the identity almost λK(δ)C2-factors through T .
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4. A basic overview: multi-parameter Lebesgue and Hardy spaces

Here we give a preparation for the following sections in which we exhibit exam-

ples of strategically reproducible bases.

4.1. The multi-parameter Haar system. We denote by D the collection

of all dyadic intervals in [0, 1), namely (N0 = N ∪ {0})

D =
{[ i− 1

2j
,
i

2j

)
: j ∈ N0, 1 ≤ i ≤ 2j

}
.

For each n ∈ N0 we define Dn = {I ∈ D : |I| = 2−n} and Dn =
⋃n

k=0 Dk. We

define the bijective function O : D → N by[ i− 1

2j
,
i

2j

)
�→ 2j + i− 1.

The function O defines a linear order on D. Recall that Haar system (hI)I∈D is

defined as follows: if I = [(i−1)/2j, i/2j) then set I+ = [(i−1)/2j, (2i−1)/2j+1),

I− = [(2i− 1)/2j+1, i/2j), and

hI = χI+ − χI− .

The d-parameter dyadic rectangles Rd are given by

Rd = {I1 × · · · × Id : I1, . . . , Id ∈ D},
and the d-parameter tensor product Haar system (hĪ)Ī∈Rd

is given by

hĪ(t1, t2, . . . , td) = hI1(t1) · hI2(t2) · · ·hId(td), t1, t2, . . . , td ∈ [0, 1).

4.2.A linear order onR2.First, we define the bijective function ON2
0

:N2
0→N0

by

ON2
0
(m,n) =

⎧⎨
⎩n2 + m, if m < n,

m2 + m + n, if m ≥ n.

To see that ON2
0

is bijective consider that for each k ∈ N:

• ON2
0
(0, 0) = 0,

• m �→ ON2
0
(m, k) maps {0, . . . , k−1} bijectively onto {k2, . . . , k2+k−1}

and preserves the natural order on N0,

• ON2
0
(k, 0) = ON2

0
(k − 1, k) + 1,

• n �→ ON2
0
(k, n) maps {0, . . . , k} bijectively onto {k2 + k, . . . , k2 + 2k}

and preserves the natural order on N0,

• ON2
0
(0, k + 1) = ON2

0
(k, k) + 1.
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Figure 1. The first 49 rectangles and their indices O� .

Now, let <� denote the lexicographic order on R3. For two dyadic rectangles

Ik×Jk ∈ R2 with |Ik| = 2−mk , |Jk| = 2−nk , k = 0, 1, we define I0×J0 � I1×J1

if and only if

(ON2
0
(m0, n0), inf I0, inf J0)<�(ON2

0
(m1, n1), inf I1, inf J1).

Associated to the linear ordering � is the bijective index function O� : R2 → N0

defined by

O� (R0) < O� (R1) ⇔ R0 � R1, R0, R1 ∈ R2.

See Figure 1 for a picture of O� .

4.3. Multi-parameter Lebesgue spaces. Given 1 ≤ p ≤ ∞, we define Lp
0

as the closed subspace of Lp[0, 1] given by

Lp
0 =

{
f ∈ Lp :

∫ 1

0

f(t)dt = 0

}
.

Note that the Haar system (hI)I∈D ordered by O is a monotone basis for Lp
0,

whenever 1 ≤ p < ∞. Moreover, (hI)I∈D is unconditional in Lp
0, whenever

1 < p < ∞. The only reason for considering Lp
0 rather than Lp is a notational

one. Otherwise we would have to consider the first basis element of Lp, namely

χ[0,1], always separately from the other ones.
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Given p̄ = (p1, . . . , pd), where 1 ≤ p1 ≤ · · · ≤ pd ≤ ∞ we define the mixed

norm Lebesgue space Lp̄ by

Lp̄ = Lp1(Lp2(Lp3(. . . (Lpd)) . . .)).

Moreover, we define the closed subspace Lp̄
0 of Lp̄ by

Lp̄
0 =

{
f ∈ Lp̄ :

∫ 1

0

f(t1, . . . , td)dtj = 0 for all 1 ≤ j ≤ d

}
.

The d-parameter tensor product Haar system (hĪ)Ī∈Rd
is an unconditional basis

for Lp̄
0, whenever p̄ = (p1, . . . , pd) and 1 < p1, . . . , pd < ∞. The dual of Lp̄

0 is

then Lq̄
0, where q̄ = (q1, . . . , qd), and 1

pi
+ 1

qi
= 1, for i = 1, 2, . . . , d.

In the following, we prove the equivalence of the Lp̄ norm and the d-parametric

square function norm in the reflexive case, i.e., p = (p1, . . . , pd) with

1 < p1, . . . , pd < ∞. The content of Proposition 4.1 was known and used by

Capon [4]; for the convenience of the reader, we provide a detailed exposition

below.

Proposition 4.1: Let d ∈ N, 1 < p1, p2, . . . , pd < ∞ and p̄ = (p1, p2, . . . , pd).

For f =
∑

Ī∈Rd
aĪhĪ ∈ Lp̄

0 we define

(10) |||f |||p̄ =

(∫ 1

0

(
. . .

∫ 1

0

(∫ 1

0

( ∑
Ī∈Rd

a2Īh
2
Ī(t1, . . . , td)

) pd
2

dtd

) pd−1
pd

. . .

) p1
p2

dt1

) 1
p1

.

Then |||·|||p̄ is an equivalent norm on Lp̄
0. The dual norm to |||·|||p̄ is equivalent (with

constants depending on p̄) to ||| · |||q̄, where q̄ = (q1, q2, . . . , qd), and 1
pi

+ 1
qi

= 1,

for i = 1, 2, . . . , d.

Proof. We show (10) by induction on d. By the unconditionality of the Haar sys-

tem in Lp, 1 < p < ∞ (theorem of Paley–Marcinkiewicz [23] and [14]) the state-

ment is true for d = 1. Assume that we proved (10) for L
(p2,...,pd)
0 . In the follow-

ing, we use the abbreviations Xj = L
(p1,...,pj)
0 and Yj = L

(pj,...,pd)
0 (�2(Rd−1)),

1 ≤ j ≤ d. Since L
(p2,...,pd)
0 has the UMD property[16, page II.12] we obtain

that

‖f‖Lp̄
0
∼p̄

(∫ 1

0

∥∥∥∥∑
Ī

εI1aĪhI1(t1)hI2,...,Id

∥∥∥∥
p1

(p2,...,pd)

dt1

) 1
p1

,
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for all choices of signs εI1 , I1 ∈ D. Hence, by averaging and Kahane’s inequal-

ity [12, Theorem 4], we obtain

‖f‖Lp̄
0
∼p̄

(∫ 1

0

(
Eε

∥∥∥∥∑
Ī

εI1aĪhI1(t1)hI2,...,Id

∥∥∥∥
(p2,...,pd)

)p1

dt1

) 1
p1

=

∥∥∥∥Eε

∥∥∥∥∑
Ī

εI1aĪhI1hI2,...,Id

∥∥∥∥
(p2,...,pd)

∥∥∥∥
X1

.

By induction hypothesis, we obtain

‖f‖Lp̄
0
∼p̄

∥∥∥∥Eε

∥∥∥∥
( ∑

(I2,...,Id)

(∑
I1

εI1aĪhI1

)2

h2
I2,...,Id

) 1
2
∥∥∥∥
(p2,...,pd)

∥∥∥∥
X1

.

Now, observe that

Eε

∥∥∥∥
( ∑

(I2,...,Id)

(
∑
I1

εI1aĪhI1)2h2
I2,...,Id

) 1
2
∥∥∥∥
(p2,...,pd)

=Eε

∥∥∥∥
∥∥∥∥∑

I1

εI1

(
aĪhI1hI2,...,Id

)
(I2,...,Id)

∥∥∥∥
�2(I2,...,Id)

∥∥∥∥
(p2,...,pd)

=Eε

∥∥∥∥∑
I1

εI1

(
aĪhI1hI2,...,Id

)
(I2,...,Id)

∥∥∥∥
Y2

.

Kahane’s inequality yields

Eε

∥∥∥∥∑
I1

εI1

(
aĪhI1hI2,...,Id

)
(I2,...,Id)

∥∥∥∥
Y2

∼p̄

(
Eε

∥∥∥∥∑
I1

εI1

(
aĪhI1hI2,...,Id

)
(I2,...,Id)

∥∥∥∥
p2

Y2

) 1
p2

=

(∫
Eε

∥∥∥∥∑
I1

εI1

(
aĪhI1hI2,...,Id

)
(I2,...,Id)

∥∥∥∥
Y3

dt2

) 1
p2

.

Combining our estimates yields

‖f‖Lp̄
0
∼p̄

∥∥∥∥
(∫

Eε

∥∥∥∥∑
I1

εI1

(
aĪhI1hI2,...,Id

)
(I2,...,Id)

∥∥∥∥
Y3

dt2

) 1
p2

∥∥∥∥
X1

=

∥∥∥∥Eε

∥∥∥∥∑
I1

εI1

(
aĪhI1hI2,...,Id

)
(I2,...,Id)

∥∥∥∥
Y3

∥∥∥∥
X2

.
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With the same argument, we obtain

‖f‖Lp̄
0
∼p̄

∥∥∥∥Eε

∥∥∥∥∑
I1

εI1

(
aĪhI1hI2,...,Id

)
(I2,...,Id)

∥∥∥∥
Y4

∥∥∥∥
X3

.

Continuing in this fashion yields

(11) ‖f‖Lp̄
0
∼p̄

∥∥∥∥Eε

∥∥∥∥∑
I1

εI1

(
aĪhI1hI2,...,Id

)
(I2,...,Id)

∥∥∥∥
�2(Rd−1)

∥∥∥∥
Lp̄

0

.

Applying Kahane’s inequality one last time, we obtain

(12)

Eε

∥∥∥∥∑
I1

εI1

(
aĪhI1hI2,...,Id

)
(I2,...,Id)

∥∥∥∥
�2(Rd−1)

∼p̄

(
Eε

∥∥∥∥
(∑

I1

εI1aĪhI1hI2,...,Id

)
(I2,...,Id)

∥∥∥∥
2

�2(Rd−1)

)1/2

.

Note that the last expression is equal to( ∑
I2,...,Id

Eε

∣∣∣∣∑
I1

εI1aĪhI1hI2,...,Id

∣∣∣∣
2)1/2

=

( ∑
I2,...,Id

∑
I1

a2Īh
2
I1h

2
I2,...,Id

)1/2

=

(∑
Ī

a2Īh
2
Ī

)1/2

.

(13)

Combining (11) with (12) and (13) yields (10).

4.4. Hardy spaces. We define the dyadic Hardy spaces Hp, 1 ≤ p < ∞ as the

completion of

span{hI : I ∈ D}
under the square function norm∥∥∥∥∑

I∈D
aIhI

∥∥∥∥
Hp

=

∥∥∥∥S
(∑

I∈D
aIhI

)∥∥∥∥
Lp

,

where the square function S is given by

S

(∑
I∈D

aIhI

)
=

(∑
I∈D

a2Ih
2
I

)1/2

,

for all scalar sequences (aI)I∈D.

The bi-parameter dyadic Hardy spaces Hp(Hq), 1 ≤ p, q < ∞ are defined as

the completion of

span{hĪ : Ī ∈ R2}
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under the bi-parameter square function norm∥∥∥∥ ∑
Ī∈R2

aĪhĪ

∥∥∥∥
Hp(Hq)

=

∥∥∥∥S
( ∑

Ī∈R2

aĪhĪ

)∥∥∥∥
Lp(Lq)

,

where the bi-parameter square function S is given by

S

( ∑
Ī∈R2

aĪhĪ

)
=

( ∑
Ī∈R2

a2Īh
2
Ī

)1/2

,

for all scalar sequences (aĪ)Ī∈R2
.

The following Lemma is taken from [13].

Lemma 4.2: Form ∈ N, let Xm and Ym be non-empty, finite families of pairwise

disjoint dyadic intervals, define fm =
∑

I∈Xm, J∈Ym
hI×J , and let 1 ≤ p, q < ∞.

Suppose in addition that:

• Xm ∩ Xn = ∅ or Ym ∩ Yn = ∅ whenever m,n ∈ N are distinct;

• ⋃Xm =
⋃Xn and

⋃Ym =
⋃Yn for all m,n ∈ N.

Then for each γ ∈ �∞(R) with ‖γ‖∞ ≤ 1, the operator Mγ defined as the linear

extension of the map hI×J �→ γI×JhI×J is bounded by 1, both as a map from

Hp(Hq) to itself and from Hp(Hq)∗ to itself. Moreover,

(i) for each g ∈ Hp(Hq)∗, supγ∈B�∞(R)
|〈Mγfm, g〉| → 0 as m → ∞;

(ii) for each g ∈ Hp(Hq), supγ∈B�∞(R)
|〈Mγg, fm〉| → 0 as m → ∞.

4.5. Collections of dyadic intervals. We introduce convenient notation

and gather basic facts of collections of dyadic intervals.

Notation 4.3:

(i) For A ⊂ D set

G0(A) = {I ∈ A : I is maximal with respect to inclusion}.

(ii) For A ⊂ D, recursively define for n ∈ N the collection

Gn(A) = G0(A \ (∪n−1
k=0Gk(A))).

For every n ∈ N and I ∈ Gn+1(A) there is a unique J ∈ Gn(A) with

I ⊂ J . In paricular, Gn+1(A)∗ ⊂ Gn(A)∗.

(iii) For A ⊂ D set lim supA = ∩nGn(A)∗.
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(iv) For a finite H ⊂ D, consisting of pairwise disjoint intervals, and

ε̄ = (ε)I∈H ∈ {−1, 1}H, we define

H∗
ε̄ =

[ ∑
I∈H

εIhI = 1

]
and H∗

-ε̄ =

[ ∑
I∈H

εIhI = −1

]
.

These two sets have measure |H∗|/2 and they form a partition of H∗.

(v) For A ⊂ D, n, k ∈ N, with k ≥ n and a finite H ⊂ Gn(A), define the

collection

Hsucc
k = {I ∈ Gk(A) : I ⊂ J for some J ∈ H}.

For any ε̄ ∈ {−1, 1}H define the sets

Hsucc
ε̄,k = {I ∈ Gk(A) : I ⊂ H∗

ε̄} and Hsucc
-ε̄,k = {I ∈ Gk(A) : I ⊂ H∗

-ε̄}.

The sets Hsucc
ε̄,k , Hsucc

-ε̄,k form a partition of Hk. We point out that the def-

initions of Hsucc
k , Hsucc

ε̄,k , and Hsucc
-ε̄,k depend on the ambient collection A.

Lemmas 4.4 and 4.5 will be used in Section 6.

Lemma 4.4: Let A ⊂ D. Then for any κ > 0 there is Ã ⊂ A so that for each

k ∈ N we have

(i) Gk(Ã) is finite and Gk(Ã) ⊂ Gk(A) and

(ii) | lim sup(Ã)| ≥ | lim sup(A)| − κ.

Proof. Pick a finite B0 ⊂ G0(A) with |G0(A)∗\B∗
0 | < κ/2. Recursively for k ∈ N,

if C = Bk−1, pick Bk ⊂ Csucc
k with |(Csucc

k )∗ \ B∗
k| < κ/2k+1. Set Ã =

⋃∞
k=0 Bk.

One can check by induction that for all k ∈ N we have Gk(Ã) = Bk ⊂ Gk(A)

and that |Gk(A)∗ \ B∗
k| ≤

∑k
i=1 κ/2i. The conclusion easily follows.

Lemma 4.5: Let A ⊂ D, n ∈ N, κ ∈ (0, 1/2), and H ⊂ Gn(A) be a non-empty

finite collection so that if A = lim supA then |H∗ ∩ A| > (1 − κ)|H∗|. The

following hold:

(i) For any ε̄ ∈ {−1, 1}H, if C = H∗
ε̄ or C = H∗

-ε̄ we have

|H∗|
2

≥ |C ∩A| > (1 − 2κ)|C| = (1 − 2κ)
|H∗|

2
.

(ii) For any δ > 0 there exists k0 ∈ N so that for all k ≥ k0 and ε̄ ∈ {−1, 1}H,
if C = (Hsucc

ε̄,k )∗ or C = (Hsucc
-ε̄,k )∗ we have |C ∩A| ≥ (1 − δ)|C|.
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Proof. For the proof of (i) let C = H∗
ε̄ . Recall that |H∗

ε̄ | = |H∗
-ε̄| = |H∗|/2.

Now,

(1 − κ)2|H∗
ε̄ | = (1 − κ)||H∗| < |H∗ ∩A|

= |H∗
ε̄ ∩A| + |H∗

-ε̄ ∩ A|
≤ |H∗

ε̄ ∩A| + |H∗
-ε̄| = |H∗

ε̄ ∩A| + |H∗
ε̄ |

which yields |H∗
ε̄ ∩A| > (1 − 2κ)|H∗

ε̄ |. The same argument works for C = H-ε̄.

We now prove (ii). As there are finitely many choices of ε̄ ∈ {−1, 1}H it

suffices to prove it by fixing one of them. Observe the sequence ((Hsucc
ε̄,k )∗)k is

decreasing so we can define

(Hsucc
ε̄,∞ )∗ =

⋂
k

(Hsucc
ε̄,k )∗ = H∗

ε̄ ∩A =
⋂
k

((Hsucc
ε̄,k )∗ ∩A).

We obtain limk |(Hsucc
ε̄,k )∗| = |H∗

ε̄ ∩ A| ≥ (1 − 2κ)|H∗
ε̄ ∩ A| > 0. Since also

limk |(Hsucc
ε̄,k )∗ ∩A| = |H∗̄

ε ∩A| we obtain limk(|H∗̄
ε |/|H∗̄

ε ∩A|) = 1 which yields

the desired conclusion.

5. Strategical reproducibility of the Haar system

We establish that the Haar system is strategically reproducible in the following

classical Banach spaces:

(i) The multi-parameter tensor product Haar system is strategically repro-

ducible in the reflexive mixed norm Lebesgue spaces L(p1,...,pd),

1 < pi < ∞, 1 ≤ i ≤ d, d ∈ N, in the sense of Definition 3.1.

(ii) The one-parameter Haar system in H1 is strategically reproducible ac-

cording to Definition 3.3.

(iii) The two-parameter tensor product Haar system is strategically repro-

ducible in the two-parameter mixed norm Hardy spaces Hp(Hq),

1 ≤ p, q < ∞ in the sense of Definition 3.3.

5.1. The Haar system in multi-parameter Lebesgue spaces. Here we

show that (hĪ) is strategically reproducible in L(p1,...,pd), 1 < pi < ∞, 1 ≤ i ≤ d,

d ∈ N, in the sense of Definition 3.1. We exploit the fact that (hĪ) is an

unconditional basis for L(p1,...,pd), and that (L(p1,...,pd))∗ = L(q1,...,qd), where
1
pi

+ 1
qi

= 1, 1 ≤ i ≤ d.
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Theorem 5.1: Let d ∈ N, 1 < p1, p2, . . . , pd < ∞ and put p̄ = (p1, p2, . . . , pd).

Then (hĪ) with an appropriate linear order is strategically reproducible in Lp̄
0.

Proof. We linearly order Rd into (Ī(k)) = (I
(k)
1 , I

(k)
2 , . . . , I

(k)
d )∞k=1 in a manner

which is compatible with “⊂”, i.e., we assume that if for m, k ∈ N, we have

I
(m)
i ⊂ I

(k)
i , for i = 1, 2, . . . , d, then m ≥ k. We also linearly order the Haar

basis of Lp̄
0 into (hĪ(k))∞k=1. For any Ī ∈ Rd, n(Ī) denotes the number n ∈ N so

that Ī = Ī(n).

Then a winning strategy for player (II) will look as follows:

Assume he has chosen b1, b2, . . . , bl, and b∗1, b
∗
2, . . . , b

∗
l in Lp̄

0 and (Lp̄
0)∗. Assume

that bj , 1 ≤ j ≤ l is of the following form:

bj =
∑

J̄=(J1,...,Jd)∈Dk(j,1)×Dk(j,2)×···×Dk(j,d)

J1×J2×···×Jd⊂I
(j)
1 ×I

(j)
2 ×···×I

(j)
d

hJ̄

with k(j, i) ≤ k(j′, i) if j ≤ j′, and k(j, i) < k(j′, i) if I
(j)
i � I

(j′)
i , for

i = 1, 2, . . . , d. We also assume that for all j = 1, 2, . . . , l we have n(J̄) > nj for

all J̄ ∈ Dk(j,2) × · · · × Dk(j,d), where nj was the j-th move of player (I) and,

moreover, we assume that

b∗j =

( d∏
s=1

|I(j)s |
)−1

bj .

Thus (b∗j )lj=1 is biorthogonal to (bj)
l
j=1 and |bj | = |hĪ(j) |, for j = 1, 2, . . . , l which

means that with respect to ||| · |||p̄ and, using (10) in Proposition 4.1, (bj)
l
j=1 and

(b∗j )lj=1 are isometrically equivalent to (hĪj )lj=1 and (h∗̄
Ij

)lj=1, respectively.

Assuming now the (l+ 1)st move of player (I) is nl+1, player (II) can proceed

as follows. For j = 1, 2, . . . , d, he chooses k(l + 1, j) ≥ maxm≤l k(m, j) so that

k(l + 1, j) > k(m, j) if I
(l+1)
j � I

(m)
j and so that for all J̄ ∈ ∏d

j=1 Dk(l+1,j), we

have n(J̄) ≥ nl+1.

5.2. The Haar system in H1
. Here, we use the Gamlen–Gaudet construc-

tion [10] (see also [18, 21]) to show that the one-parameter Haar system in H1

is strategically reproducible according to Definition 3.3.

For convenience, we introduce the following notation: We define eI = hI/|I|,
I ∈ D, thus (eI)I∈D forms a 1-unconditional normalized basis for H1. Note

that e∗I = hI ∈ (H1)∗, I ∈ D. Finally, we will identify a dyadic interval I ∈ D
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with O(I), e.g.,

ek ↔ eI , xk ↔ xI , x∗
k ↔ x∗

I , I ∈ D, O(I) = k.

Recall that the linear order O was introduced in Section 4.1.

Theorem 5.2: The normalized Haar basis is strategically reproducible in H1.

Proof. Here, we show that (eI)I∈D is
√

2-strategically reproducible in H1.

We start the game with turn 1. In step 1, player (I) chooses η[0,1) > 0,

W[0,1) ∈ cof(H1), and G[0,1) ∈ cofw∗((H1)∗). In step 2, player (II) selects one

of the sets E(j)
[0,1) = Dj , j ∈ N. Put

d
(j)
[0,1) =

∑
K∈E(j)

[0,1)

|K|eK ,

d
∗(j)
[0,1) =

∑
K∈E(j)

[0,1)

e∗K ,

and note that (d
(j)
[0,1))

∞
j=1 converges to 0 in the weak topology of H1 and the

sequence (d
∗(j)
[0,1))

∞
j=1 converges in the w∗ topology in (H1)∗. Hence, there exists

an index j0 such that

distH1(d
(j0)
[0,1),W[0,1)) < η[0,1) and dist(H1)∗(d

∗(j0)
[0,1) , G[0,1)) < η[0,1).

Player (II) concludes step 2 by choosing

E[0,1) = E(j0)
[0,1)

and

λ
[0,1)
K = |K| and μ

[0,1)
K = 1, K ∈ E[0,1).

In step 3, player (I) chooses (ε
([0,1))
K )K∈E[0,1)

∈ {−1, 1}E[0,1).

Assume that the game has already been played for k = O(I) − 1 turns. We

will now play out turn k + 1 = O(I). In step 1, player (I) chooses ηI > 0,

WI ∈ cof(H1), and GI ∈ cofw∗((H1)∗). In step 2, it is player (II)’s choice to

select the finite sets EI ⊂ D. We will now describe this procedure. Note that

since WI ∈ cof(H1) and GI ∈ cofw∗((H1)∗), there exist fj ∈ H1, gj ∈ (H1)∗,

1 ≤ j ≤ NI , such that WI = {g1, . . . , gNI}⊥ and GI = {f1, . . . , fNI}⊥. Let Ĩ

denote the dyadic predecessor of I, i.e., Ĩ is the unique dyadic interval that
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satisfies Ĩ � I and |Ĩ| = 2|I|. Note that O(Ĩ) ≤ k; specifically, EĨ has already

been defined. Put

XI =

⎧⎨
⎩{K� : K ∈ EĨ}, if I is the left successor of Ĩ ,

{Kr : K ∈ EĨ}, if I is the right successor of Ĩ ,

where K� denotes the left successor of K and Kr denotes the right successor

of K. We note that by induction |XI | = |I|;
d
(j)
I =

∑
K∈Dj

K⊂XI

|K|eK , j ∈ N,

d
∗(j)
I =

∑
K∈Dj

K⊂XI

e∗K , j ∈ N.

Since the sequence (d
(j)
I )∞j=1 converges to 0 in the weak topology of H1 and

(d
∗(j)
I )∞j=1 converges to 0 in the w∗ topology of (H1)∗, there exists an index j0

such that

supp(d
(j0)
I ) = XI , 2−j0 < min

{
|K| : K ∈

k⋃
i=1

Ei
}
,

as well as

distH1(d
(j0)
I ,WI) < ηI , dist(H1)∗(d

∗(j0)
I , GI) < ηI .

Player (II) concludes step 2 by choosing the collection

EI = {K ∈ Dj0 : K ⊂ XI},
the numbers

λ
(I)
K = |K|/|I|, K ∈ EI , and μ

(I)
K = 1, K ∈ EI ,

and defining

xI = d
(j0)
I and x∗

I = d
∗(j0)
I .

Clearly, since |XI | = |E∗
I | = |I|, we have∑

K∈EI

λ
(I)
K μ

(I)
K = 1.

We conclude turn k+ 1 = O(I) with player (I) choosing (ε
(I)
K )K∈EI in {−1, 1}EI

in step 3.
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We claim that this defines a winning strategy for player (II). In fact, (xI)I∈D
and (xI)∗I∈D were constructed using the Gamlen–Gaudet construction, for which

it was verified in [18, Theorem 0] that (xI)I is equivalent to (eI)I ∈ D in H1

and (x∗
I)I is equivalent to (e∗I)I ∈ D in (H1)∗ . Moreover, we note that in the

text above we already verified distH1 (xI ,WI) < ηI and dist(H1)∗(x∗
I , GI) < ηI ,

I ∈ D.

5.3. The Haar system in Hp(Hq), 1 ≤ p, q < ∞. In [13] it was shown

that the two-parameter tensor product Haar system in Hp(Hq) has the fac-

torization property. We use the techniques introduced in [13] to show that,

moreover, the two-parameter tensor product Haar system is strategically repro-

ducible Hp(Hq). Hence, by Theorem 3.12 we recover the main result in [13].

Finally, we remark that by exploiting Theorem 7.6 (see Section 7 below) we

obtain a simpler construction than the one used in [13].

In the proof below, we will use following notation: The Hp(Hq)-normalized

bi-parameter Haar system (eI⊗fJ)I,J is given by eI⊗fJ = hI⊗hJ/(|I|1/p|J |1/q),

and its bi-orthogonal functionals ((eI ⊗ fJ)∗)I,J are given by

(eI ⊗ fJ)∗ = e∗I ⊗ f∗
J = hI ⊗ hJ/(|I|1/p′ |J |1/q′ ),

where 1/p + 1/p′ = 1 and 1/q + 1/q′ = 1, with the usual convention that

1/∞ = 0.

Theorem 5.3: The normalized bi-parameter Haar system is strategically re-

producible in the mixed norm Hardy spaces Hp(Hq), 1 ≤ p, q ≤ ∞.

Proof. Define the subspaces V1, V2 of Hp(Hq) by

V1 = span{hI×J : |I| < |J |}H
p(Hq)

and V2 = span{hI×J : |I| ≥ |J |}H
p(Hq)

,

and note that V1 ⊕ V2 = Hp(Hq). We will now show that the bi-parameter

Haar system is strategically reproducible in V1 and in V2, separately.

Case V1. Here, we will show that the bi-parameter Haar system is strategically

reproducible in V1. Player (I) opens the game by selecting η[0,1/2)×[0,1) > 0,

W[0,1/2)×[0,1) ∈ cof(Hp(Hq)) and G[0,1/2)×[0,1) ∈ cofw∗((Hp(Hq))∗). In step 2,

player (II) will select one of the following collections of dyadic rectangles

E(j)
[0,1/2)×[0,1), j ∈ N, given by

E(j)
[0,1/2)×[0,1) = {K × [0, 1) : K ∈ Dj , K ⊂ [0, 1/2)}, j ∈ N.
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To this end, define

d
(j)
[0,1/2)×[0,1) =

∑
K×L∈E(j)

[0,1/2)×[0,1)

|K|1/p|L|1/q
|[0, 1/2)|1/p|[0, 1)|1/q eK ⊗ fL, j ∈ N,

d
∗(j)
[0,1/2)×[0,1) =

∑
K×L∈E(j)

[0,1/2)×[0,1)

|K|1/p′ |L|1/q′
|[0, 1/2)|1/p′|[0, 1)|1/q′ e

∗
K ⊗ f∗

L, j ∈ N,

and note that K × L ∈ E(j)
[0,1/2)×[0,1) implies L = [0, 1). By Lemma 4.2 the

sequence (d
(j)
[0,1/2)×[0,1))

∞
j=1 is a null sequence in the weak topology of Hp(Hq)

and (d
∗(j)
[0,1/2)×[0,1))

∞
j=1 is a null sequence in the w∗ topology of Hp(Hq)∗; we can

find j0 such that

distHp(Hq)(d
(j0)
[0,1/2)×[0,1),W[0,1/2)×[0,1)) < η[0,1/2)×[0,1),

dist(Hp(Hq))∗(d
∗(j0)
[0,1/2)×[0,1), G[0,1/2)×[0,1)) < η[0,1/2)×[0,1).

Player (II) completes step 2 by selecting

E[0,1/2)×[0,1) = E(j0)
[0,1/2)×[0,1)

and the numbers

λ
[0,1/2)×[0,1)
K×L =

|K|1/p|L|1/q
|[0, 1/2)|1/p|[0, 1)|1/q , K × L ∈ E[0,1/2)×[0,1),

μ
[0,1/2)×[0,1)
K×L =

|K|1/p′ |L|1/q′
|[0, 1/2)|1/p′|[0, 1)|1/q′ , K × L ∈ E[0,1/2)×[0,1).

Finally, in step 3, player (I) chooses

(ε
[0,1/2)×[0,1)
K×L )K×L∈E[0,1/2)×[0,1)

∈ {−1,+1}E[0,1/2)×[0,1),

completing turn 1.

Assume that the turns 1, . . . , k of the game have been played out. We will

now describe turn k + 1. Select I, J ∈ D such that |I| < |J | and I × J

is the (k + 1)st rectangle of the set {K × L : |K| < |L|} in the order � .

Player (I) starts off the turn by choosing ηI×J > 0, WI×J ∈ cof(Hp(Hq)) and

GI×J ∈ cofw∗((Hp(Hq))∗). In step 2, player (II) will select one of the collections

E(j)
I×J , j ∈ N of dyadic rectangles, which we will now describe in detail. We will

distinguish between the following two cases: J = [0, 1) and J �= [0, 1).
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If J = [0, 1), we note that I �= [0, 1), hence, EĨ×[0,1) has already been defined.

Also note that [0, |I|) × [0, 1)� I × [0, 1), and choose the integer κ(I × [0, 1))

such that

2−κ(I×[0,1)) < min

{
|K| : K × L ∈

k⋃
i=1

Ei
}
.

For all j ∈ N, we define

E(j)
I×[0,1) =

⎧⎨
⎩{K+ × [0, 1) : K ∈ Dj , K ⊂ [0, 1) ⊂ EĨ×[0,1)}, if I = (Ĩ)�,

{K− × [0, 1) : K ∈ Dj , K ⊂ [0, 1) ⊂ EĨ×[0,1)}, if I = (Ĩ)r,

where J� denotes the left successor and Jr the right successor of a dyadic interval

J ∈ D. Define the functions

d
(j)
I×[0,1) =

∑
K×L∈E(j)

I×[0,1)

|K|1/p|L|1/q
|I|1/p|[0, 1)|1/q eK ⊗ fL, j ∈ N,

d
∗(j)
I×[0,1) =

∑
K×L∈E(j)

I×[0,1)

|K|1/p′ |L|1/q′
|I|1/p′ |[0, 1)|1/q′ e

∗
K ⊗ f∗

L, j ∈ N,

and note that by Lemma 4.2, (d
(j)
I×[0,1))

∞
j=1 converges to 0 in the weak topology

of Hp(Hq) and (d
∗(j)
I×[0,1))

∞
j=1 converges to 0 in the w∗ topology of (Hp(Hq))∗.

Hence, there exists an index j0 > κ(I × [0, 1)) such that

distHp(Hq)(d
(j0)
I×[0,1),WI×[0,1)) < ηI×[0,1),

dist(Hp(Hq))∗(d
∗(j0)
I×[0,1), GI×[0,1)) < ηI×[0,1).

Player (II) then completes step 2 by putting

EI×[0,1) = E(j0)
I×[0,1)

and selecting the numbers

λ
I×[0,1)
K×L = |K|1/p|L|1/q/(|I|1/p|[0, 1)|1/q),

μ
I×[0,1)
K×L = |K|1/p′ |L|1/q′/(|I|1/p′ |[0, 1)|1/q′).

If J �= [0, 1), then EI×[0,1) has already been defined. The collection EI×J will

be chosen as one of the following collections E(j)
I×J , j ∈ N, which are given by

E(j)
I×J = {K × L : K ∈ Dj , K × L ⊂ EI×[0,1)}, j ∈ N.
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To this end, define the functions

d
(j)
I×J =

∑
K×L∈E(j)

I×J

|K|1/p|L|1/q
|I|1/p|J |1/q ek ⊗ fL, j ∈ N,

d
∗(j)
I×J =

∑
K×L∈E(j)

I×J

|K|1/p′ |L|1/q′
|I|1/p′ |J |1/q′ e

∗
k ⊗ f∗

L, j ∈ N,

and note that by Lemma 4.2, (d
(j)
I×J )∞j=1 converges to 0 in the weak topology of

Hp(Hq) and that (d
(j)
I×J )∞j=1 converges to 0 in the w∗ topology of (Hp(Hq))∗.

Consequently, we can find an index j0 such that

2−j0 < min

{
|K| : K × L ∈

k⋃
i=1

Ei
}
,

and

distHp(Hq)(d
(j0)
I×J ,WI×J ) < ηI×J and dist(Hp(Hq))∗(d

∗(j0)
I×J , GI×J) < ηI×J .

Player (II) completes step 2 by selecting

EI×J = E(j0)
I×J

and the numbers

λI×J
K×L =

|K|1/p|L|1/q
|I|1/p|J |1/q and μI×J

K×L =
|K|1/p′ |L|1/q′
|I|1/p′ |J |1/q′ ,

for all K × L ∈ EI×J .

Finally, in both cases (J = [0, 1) and J �= [0, 1)) player (I) completes step 3

(and thereby turn (k + 1)) and chooses

(εI×J
K×L)K×L∈EI×J ∈ {−1,+1}EI×J .

Case V2. Follows from a completely parallel argument to Case V1.

6. The Haar system in L1 is strategically reproducible

In this section we consider the space L1 of all absolutely integrable functions

on [0, 1] instead of L1
0. If we additionally define h∅ = χ[0,1) and D+ = D ∪ {∅},

then (hI)I∈D+ is a monotone Schauder basis of L1, if ordered lexicographically

(i.e., ∅ is the minimum of D+ and the rest of the order is inherited from the

lexicographical order of D). The reason we consider L1 is that we can prove an
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isometric statement in this setting and it is unclear whether this is possible for

the space L1
0. The purpose is to prove that the normalized Haar system of L1

is strategically reproducible, and thus has the factorization property. The main

difficulty is proving the following statement.

Theorem 6.1: The normalized Haar system of L1 is 1-strategically repro-

ducible.

The proof of the above will be presented in its own Subsection 6.2. We will

also need the following statement.

Proposition 6.2: The normalized Haar system of L1 has the 1/δ-diagonal

factorization property.

We will give the proof of Proposition 6.2 in Subsection 6.1. For the time

being, we use the above two results to prove the following Corollary.

Corollary 6.3: The normalized Haar system of L1 has the 1/δ-factorization

property.

Proof. By Theorem 6.1 the normalized Haar system is 1-strategically repro-

ducible and by Proposition 6.2 it has the 1/δ-factorization property. Since the

Haar system is monotone, Theorem 3.12 yields that it has the 1/δ-factorization

property.

The following is a direct consequence of Corollary 6.3.

Corollary 6.4: The normalized bi-parameter Haar system of L1(L1) (which

is isometrically isomorphic to L1([0, 1]2)) has the 1/δ-factorization property.

Proof. Let T : L1(L1) → L1(L1) be a bounded linear operator so that for all

I, J ∈ D we have∣∣∣∣
∫ ∫

(hI ⊗ hJ )T
( 1

|I||J |hI ⊗ hJ

)
dxdy

∣∣∣∣ ≥ 1

δ
.

The space L1(L1) is the projective tensor product of L1 with itself. This means

that if we consider any two bounded linear operators R,S on L1, then there is

a (unique) bounded linear operator R⊗ S : L1(L1) → L1(L1) satisying

(R⊗ S)(f ⊗ g) = (Rf) ⊗ (Sg) and ‖R⊗ S‖ = ‖R‖‖S‖.
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Consider the canonical projection P[0,1) from L1 onto the linear span of h∅,

which has norm one, and also consider the identity IL1 on L1. Take the map

P = P[0,1) ⊗ IL1 : L1(L1) → L1(L1),

which satisfies ‖P‖ = 1. Its image is the space Y = [h∅ ⊗ hI ]I∈D, which is

naturally isometric to L1 via the map h∅ ⊗ hI �→ hI . It follows that the map

P ◦ T : Y → Y may be identified with a map on L1 with diagonal bounded

below by δ. This means, by Theorem 6.2, that for ε > 0 there are B : Y →
L1, A : L1 → Y so that B(PT )A = IL1 and ‖A‖‖B‖ ≤ (1 + ε)/δ. Now,

since L1 and L1(L1) are isometrically isomorphic we may take an onto isometry

Q : L1 → L1(L1) and set

Ã = AQ−1 : L1(L1) → L1(L1), B̃ = QBP : L1(L1) → L1(L1).

It follows that ‖Ã‖‖B̃‖ ≤ (1 + ε)/δ and B̃T Ã = I.

Remark 6.5: One can use [8, Theorem 4.2] to give a relatively short proof of the

following. There is C ≥ 1, so that if T : L1 → L1 is a bounded linear operator

with diagonal bounded below by δ then there are A,B : L1 → L1 with BTA = I

and ‖B‖‖A‖ ≤ C‖T ‖/δ2. There are two differences with Theorem 6.2. The

first one is the power appearing on δ. The more noticeable one is that in

Theorem 6.2 the factorization does not depend on ‖T ‖. This seems to be the

case for all known spaces with the factorization property.

Remark 6.6: We point out that Theorem 6.1, Proposition 6.2, and Corollary 6.3

are true for the normalized Haar system of Lp[0, 1], 1 ≤ p < ∞, as well. The

proof of Theorem 6.1 requires only minor modifications and in certain cases it

is simpler due to reflexivity and unconditionality. The proof of Proposition 6.2

is different and one has to use the details of the proof of Theorem 6.1. The

factorization property of these spaces has been known since [2], however ex-

isting proofs did not give a sharp factorization estimate; in particular, it was

not known whether the Haar system of Lp[0, 1], 1 ≤ p < ∞, has the C/δ-

factorization property for a uniform constant C ≥ 1.

6.1. The proof of Proposition 6.2. We now turn to the proof of Proposi-

tion 6.2. We divide the argument into several steps formulated in Lemmas 6.7

and 6.9 below. Lemma 6.7 is likely to be known. We present a short proof for

the sake of completeness and convenience of the reader.
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Lemma 6.7: Let I0 ∈ D and YI0 = [(hI)I⊂I0 ]. Then there are a subspace Z

of YI0 that is isometrically isomorphic to L1 and a norm one linear projection

P : L1 → Z.

Proof. Set m0 = inf I0, M0 = sup I0, and let Z be the subspace consisting of

all absolutely integrable functions f that have support in I0 and satisfy the

condition

f(x) = −f
(m0 + M0

2
+ x

)
a.e. in I+0 .

It follows that W is a subspace of YI0 . An onto isometry T : Z → L1 is given

by

Tf(x) = |I0|f
(
m0 +

|I0|
2

x
)
.

The desired projection P : L1 → Z is defined as follows. For every f ∈ L1

let f1 = f |I+
0

, f2 = f |I−
0

, let g1 be the function with support I+0 so that

g1(x) = f(x + |I0|/2), for x ∈ I+0 , and let g2 be the function with support I−0
so that g2(x) = f(x− |I0|/2), for x ∈ I−0 . One can check that

‖f1 + f2‖L1 = ‖g1 + g2‖L1 = ‖f‖L1.

It is also not hard to see that (f1 + f2) − (g1 + g2) = (f1 − g1) + (f2 − g2) is

in W . The final step is to observe that

Pf = (1/2)[(f1 + f2) − (g1 + g2)]

is a norm one projection onto Z.

It is common to call diagonal operators on the Haar system Haar multipliers.

Loosely following [25] we use the following notation.

Notation 6.8:

(i) A chain of D+ is a sequence of intervals C = (In)n so that I1 � I2 � · · · .
(ii) Given a Haar multiplier D with entries (cI)I∈D+ we define the quantity

‖D‖W = sup

∞∑
n=1

|cIn − cIn+1 |,

where the supremum is taken over all chains C = (In)n.

(iii) Given a Haar multiplier D with entries (cI)I∈D+ we define the quantity

‖D‖∞ = sup
I∈D+

|cI |.
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Lemma 6.9: Let D : L1 → L1 be a bounded Haar multiplier with entries

(cI)I∈D. Then for every ε > 0 there exists I0 ∈ D so that if YI0 = [(hI)I⊂I0 ]

then

‖(D − cI0I)|YI0
‖ ≤ ε.

Proof. According to [25, Theorem 3] (see also [26]), for any Haar multiplier

D : L1 → L1 we have

(14)
1

4
‖D‖W ≤ ‖D‖ ≤ ‖D‖W + 3‖D‖∞.

We use the above to choose I0 ∈ D with the property that for any chain C = (In)

with In ⊂ I0 we have
∑

n |cIn − cIn+1 | ≤ ε/4. If such an I0 would not exist

then it would easily follow that ‖D‖W = ∞, which by (14) contradicts the

boundedness of D.

Let PI0 define the canonical projection onto YI0 , given by

P

(∑
I∈D

aIhI

)
=

∑
I⊂I0

aIhI ,

which has norm at most two. Clearly, PI0 is a Haar multiplier. Next, define

the Haar multiplier S with entries (c̃I)I∈D+ , where c̃I = cI is I ⊂ I0 and

c̃I = 0 otherwise. It is easy to see that ‖S − cI0PI0‖W = ‖S‖W ≤ ε/4 and

that ‖S − cI0PI0‖∞ ≤ ε/4. Therefore by (14) we deduce ‖S − PI0‖ ≤ ε. Since

D|YI0
= S|YI0

and I|YI0
= PI0 |YI0

we finally conclude that

‖(D − cI0I)|YI0
‖ = ‖(S − cI0PI0)|YI0

‖ ≤ ‖S − cI0PI0‖ ≤ ε.

We are ready to conclude this subsection with a proof of Proposition 6.2.

Proof of Proposition 6.2. Let D be a bounded Haar multiplier on L1 satisfying

infI∈D+ |cI | ≥ δ > 0 and fix ε > 0. We will show that the identity (1 + ε)/δ-

factors through D. Use Lemma 6.9 to find I0 ∈ D so that

‖(D − cI0I)|YI0
‖ ≤ δε/(1 + ε).

By Lemma 6.7 there are a subspace Z of YI0 , an onto isometry A : L1 → Z,

and a norm one projection P : L1 → Z. Define B = (1/cI0)A−1P , which is

well defined on L1, and ‖B‖ = |1/cI0 | ≤ 1/δ. As the image of A is Z it easily

follows that B(cI0I)A = I. We calculate

‖BDA− I‖ = ‖B(D − cI0I)A‖ = ‖B(D − cI0I)|ZA‖ ≤ ‖B‖‖A‖ δε

1 + ε
≤ ε

1 + ε
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and hence the operator BDA is invertible with ‖(BDA)−1‖ ≤ 1 + ε. Define

B̃ = (BDA)−1B. Observe that B̃DA = I and ‖B̃‖‖A‖ ≤ (1 + ε)/δ, i.e., the

identity almost 1/δ-factors through D.

6.2. The proof of Theorem 6.1. The following Lemma 6.10 is a well known

result, which goes back to Gamlen–Gaudet [10]. For more details, we also refer

to [21, page 176 ff.]. It describes the situation player (II) is striving to achieve

in order to win the game of strategical reproducibility. Recall that for A ⊂ D
we set

A∗ =
⋃

A =
⋃
I∈A

I.

Lemma 6.10: Let κ ∈ (0, 1). Then, there exists a sequence of positive real

numbers (δn)n so that the following holds. Let (HI)I∈D+ be a collection of non-

empty finite subsets of D, so that for each I ∈ D+ the collection HI consists of

pairwise disjoint intervals, and for each I ∈ D+ let ε̄I = (εIL)L∈HI ∈ {−1, 1}HI .

Define for each I ∈ D the function

bI =
∑

L∈HI

εILhL

and

b∅ =

∣∣∣∣ ∑
L∈H∅

εILhL

∣∣∣∣.
Assume that the following are satisfied.

(a) For all I, J ∈ D with I ∩ J = ∅ we have H∗
I ∩H∗

J = ∅.
(b) For all I ∈ D we have supp(bI+) ⊂ [bI = 1] and supp(bI−) ⊂ [bI = −1].

(c) For all n ∈ N and I ∈ Dn if I = J+ or I = J− we have

(1 − δn)
|H∗

J |
2

≤ |H∗
I | ≤ (1 + δn)

|H∗
J |

2
.

(d) H∗
[0,1) ⊂ H∗

∅ and |H∗
[0,1)| ≥ (1 − δ1)|H∗

∅|.
Then, if λ = |H∗

∅|, the sequences (hI/|I|)I∈D+ and (bI/λ|I|)I∈D+ , when they are

both viewed as sequences in L1, are (1+κ)-impartially equivalent. Furthermore,

the sequences (bI)I∈D+ and (hI)I∈D+ , when they are both viewed as a sequence

in L∞, are isometrically equivalent.

The following Lemma allows player (II) to make the appropriate choice of

vectors.
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Lemma 6.11: Let H be in cof(L1), G be in cofw∗(L∞), and κ > 0. Then

there exists n0 ∈ N so that for every f in the linear span of (hI)I∈D\Dn0 with

‖f‖∞ ≤ 1 we have

(i) dist(f,H) < κ, if f is viewed as an element of L1, and

(ii) dist(f,H) < κ, if f is viewed as an element of L∞.

Proof. We first show (i). Recall that there are g1, . . . , gN ∈ L∞ so that

H =
⋂N

j=1 kergj. It follows, from the Hahn–Banach theorem, that there is

δ > 0 so that for every f ∈ L1 with | ∫ gj(x)f(x)dx| < δ for 1 ≤ j ≤ N

we have dist(f,H) < κ. If we assume that the conclusion is false, i.e., the

desired k0 does not exist, there is a sequence (fk)k with ‖fk‖∞ ≤ 1 and

fk ∈ span{hI : I ∈ D \ Dk}, so that dist(fk, H) ≥ κ for all k ∈ N. As this se-

quence is uniformly integrable it has a subsequence (fki)i that converges weakly

to an f ∈ ⋂
k span{hI : I ∈ D \ Dk} = {0}. Thus limi |

∫
gj(x)fki(x)dx| = 0,

for 1 ≤ j ≤ N , i.e., limk dist(fki , H) = 0, which is a contradiction.

The second statement follows from a similar argument. Use that there are

g1, . . . , gN in L1 so that G = {f1, . . . , fN}⊥ and that for any sequence (gk)k

with ‖gk‖∞ ≤ 1 and gk ∈ span{hI : I ∈ D \ Dk}, for all k ∈ N, we have that

(gk)k converges to zero in the w∗-topology.

We refer to Section 4.5 for the notation employed systematically in the proof

below.

Proof of Theorem 6.1. Enumerate D+ as (Ik)k∈N according to lexicographi-

cal order. We will describe the winning strategy of player (II) in a game of

Rep(L1
0,(hI))(1, η), for fixed η > 0. Before the game starts player (I) picks a

partition N = N1 ∪N2, which corresponds to a partition D+ = A1 ∪A2. Before

proceeding with the game, we claim that [0, 1) = lim sup (A1) ∪ lim sup (A2).

Indeed, if x ∈ [0, 1) then for every I ∈ D with x ∈ I we have I ∈ A1 or

I ∈ A2. That is, x ∈ I for infinitely many I ∈ A1 or for infinitely many I ∈ A2.

In the first case x ∈ lim sup (A1) and in the second case x ∈ lim sup (A2).

We proceed by assuming without loss of generality that | lim sup(A1)| ≥ 1/2.

By Lemma 4.4 there is A ⊂ A1 so that Gn(A) is finite for all n ∈ N and

| lim sup(A)| = λ ≥ 2/3. Henceforth, when we use Notation 4.3 it shall be with

respect to the collection A. This collection A corresponds to some N ⊂ N1.

Each round k corresponds to an I ∈ D+ via the lexicographical identification

D+ ↔ N. Player (I) first chooses ηk > 0, Wk ∈ cof(L1) and Gk ∈ cofw∗(L∞).
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Then player (II) has the right to choose a subset Ek of either N1 or N2. He

or she will always choose Ek ⊂ N . This Ek corresponds to a finite HI ⊂ A.

We shall describe the choice in detail further below, but let us say for the time

being that there is mk ∈ N, with mk > mk−1 if k > 1, so that HI ⊂ Amk
and

H∗
I ⊂ H∗

∅. Next, player (I) chooses signs (εki )i∈Ek
which we relabel as (εIL)L∈HI .

We shall put bI =
∑

L∈HI
εILhI and b̃I = b∅bI (pointwise). If k > 1, then by

the fact that mk > 1 and H∗
I ⊂ H∗

∅ we have that

b̃I =
∑

L∈HI

ε̃ILhI ,

for a choice of signs (ε̃IL)I∈HI that does not necessarily coincide with (εIL)L∈HI .

Of some importance is also the sequence of positive real numbers (δn)n provided

by Lemma 6.10 if we take κ = η.

We can now describe how player (II) makes a choice in each round k. Let

I ∈ D+ correspond to k in the lexicographical enumeration. Then, either I = ∅
(if k = 1), I = [0, 1) (if k = 2), or there is 2 ≤ k′ < k so that if J = Ik′ then

I = J+ or I = J−. The round starts by player (I) picking ηk > 0. Player (II)

will pick Ek ⊂ N that corresponds to an HI ⊂ A which is chosen as follows:

(i) There is mk ∈ N, with mk > mk−1 if k > 1, so that HI is one of the

following forms:

(ia) HI = Gmk
(A), if I = ∅ or I = [0, 1) (i.e., when k = 1 or k = 2).

(ib) HI = (HJ )succε̄J ,mk
, if I = J+ = Ik′ and ε̄J = (ε̃JL)J∈HJ coming

from b̃J .

(ic) HI = (HJ )succ-ε̄J ,mk
, if I = J− = Ik′ and ε̄J = (ε̃JL)J∈HJ coming

from b̃J .

(ii) If A = lim sup(A) then if |H∗
I ∩ A| > (1 − δn+1/2)|H∗

I |, where I ∈ Dn

and (δi)i is the sequence mentioned above, provided by Lemma 6.10. If

I = ∅ replace n with 0.

(iii) For every f ∈ span(hL)L∈D\Dmk−1 with ‖f‖∞ ≤ 1 we have

distL1(f,Wk) ≤ ηk|I| and distL∞(f,Gk) ≤ ηk.

Having chosen such an HI , player (II) picks scalars (λI
L)L∈HI , (μI

L)L∈HI by

taking λI
L = |L|/(|H∅||I|) and μI

L = 1, for all L ∈ HI .

We must show that player (II) can pick HI satisfying (i), (ii), and (iii) as well

as that

(15) 1 − η ≤
∑

L∈HI

λI
Lμ

I
L ≤ 1 + η.
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Note that if mk is sufficiently large, then by Lemma 6.11 condition (iii) is

satisfied. We can focus on showing that we can pick mk, as large as desired,

so that HI is one of the forms in (i) and so that (ii) is satisfied. If I = ∅ and

k = 1, then A =
⋂

m Gm(A)∗; so |A| = limn |Gm(A)∗| which easily yields that

we can pick m1 as large as we wish so that

|Gm1(A)∗ ∩A| = |A| > (1 − δ2/2)|Gm1(A)∗|.
If I = [0, 1) we act similarly. If I = J+ with I ∈ Dn, then by assumption

player (II) has picked HJ ⊂ A with |H∗
J ∩ A| > (1 − δn/2)|H∗

J |. Let also

ε̄J = (ε̃JL)J∈HJ denote the signs coming from b̃J . By Lemma 4.5 there exists m0

so that for any m ≥ m0 we have

|((HJ )succε̄J ,m)∗ ∩A| > (1 − δn+1/2)|((HJ )succε̄J ,m)∗|.
Thus, if we pick mk sufficiently large we may set HI = (HJ )succε̄J ,m and (i) and

(ii) are satisfied. If I = J− the argument is the same.

The proof of (15) requires an inductive argument. We will show this simulta-

neously with proving that player (II) has forced the desired winning conditions.

Define for I ∈ D+ the functions

xI =
∑

L∈HI

εIL
|L|

|H∅||I|
hI ∈ L1 and x∗

I =
∑

L∈HI

εILhI ∈ L∞.

Our next goal is to show that (xI)I∈D+ is (1 + η)-impartially equivalent to

(hI/|I|)I∈D+ in L1 and (x∗
I)I∈D is isometrically equivalent to (hI)I∈D in L∞.

We will first show that (b̃I)I∈D+ , where

b̃∅ = b2∅ =

∣∣∣∣ ∑
L∈H∅

ε∅LhL

∣∣∣∣
and, for each I ∈ D, b̃I =

∑
L∈HI

ε̃ILhI , satisfies the assumptions of Lemma

6.10 and use that to reach the desired goal.

Assumption (a) follows easily from (i) and assumption (b) follows easily

from (ib) and (ic). Let us now show that (c) is satisfied and let n ∈ N, I ∈ Dn,

with I = Ik, so that I = J+ or I = J− for some J ∈ Dn−1. We shall assume

that I = J+ as the other case has the same proof. By (iii), applied to J , we

have that |H∗
J ∩A| > (1−δn/2)|H∗

J |. This, by the first statement of Lemma 4.5,

yields that

|(HJ)∗ε̄J ∩A| > (1 − δn)
|H∗

J |
2

.
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By the definition of (HJ )succε̄J ,mk
it follows that

(HJ)∗ε̄J ∩A = (HJ)∗ε̄J ,mk
∩A = H∗

I ∩A.

We calculate

|H∗
J |

2
= |(HJ )∗ε̄J | ≥ |H∗

I | ≥ |H∗
I ∩A| > (1 − δn)

|H∗
J |

2
,

i.e., (c) holds. Assumption (d) is easier to show.

Now that we know that the assumptions of Lemma 6.10 are satisfied we

conclude that the sequences

x̃I =
∑

L∈HI

ε̃IL
|L|

|H∅||I|
hI =∈ L1

and

x̃∗
I =

∑
L∈HI

ε̃ILhI ∈ L∞

are (1+η)-impartially equivalent to (hI/|I|)I∈D+ in L1 and isometrically equiv-

alent to (hI)I∈D in L∞ respectively. We next observe that for I ∈ D+ we have

x̃I = b∅xI and x̃∗
I = b∅x∗

I .

But |b∅(t)| is one whenever t ∈ H∗
∅ ⊃ supp(xI) = supp(x∗

I), and thus (xI)I∈D+

is isometrically equivalent to (x̃I)I∈D+ and (x∗
I)I∈D+ is isometrically equivalent

to (x̃∗
I)I∈D+ . This means that we have reached our goal.

Next, we need to observe that if I = Ik, then distL1(xI ,Wk) < ηk as well as

distL∞(x∗
I , Gk) < ηk. Both of these inequalities are an immediate consequence

of (iii) and the fact that xk, x
∗
k ∈ span(hL)L∈Gnk

(A) ⊂ span(hL)L∈D\Dmk−1 and

‖xI‖L∞ = |I|, ‖x∗
I‖L∞ = 1.

It only remains to prove (15), which follows easily from the fact that (xI)I is

(1 + η)-impartially equivalent to (hI/|I|)I . Indeed,∑
L∈HI

λI
Lμ

I
L =

1

λ|I|
∑

L∈HI

|L| = ‖xI‖L1

and ‖xI‖L1 is between√
(1 − η)(‖hI‖L1/|I|) > 1 − η and

√
(1 + η)(‖hI‖L1/|I|) < 1 + η.

The proof is complete.
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7. Unconditional sums of spaces with strategical reproducible bases

In this section we determine that the strategical reproducibility is inherited by

unconditional sums.

For a Banach space X with a 1-unconditional basis (en)n and a sequence

of Banach spaces (Yn)n, we denote by Z = (
∑

Yn)X the Banach space of all

sequences z = (yn)n with yn ∈ Yn for all n ∈ N and the quantity

‖z‖ =

∥∥∥∥
∞∑
n=1

‖yn‖Ynen

∥∥∥∥
X

is well defined. For each k ∈ N let Pk : Z → Yk denote the map given by

Pk(yn)n = yk.

The space Yk can be naturally isometrically identified with a subspace of Z,

namely the one consisting of all sequences which have all coordinates, except

the k’th one, equal to zero. Thus, with this identification, Pk is a norm one

projection.

Remark 7.1: If An : Yn → Yn, n ∈ N, are bounded linear operators and

supn ‖An‖ = C < ∞, then by 1-unconditionality the map A : Z → Z with

A(z) =
∑
n

AnPn(z)

is bounded with ‖A‖ = C.

Remark 7.2: If there exists a common λ ≥ 1 such that each Yn has a Schauder

basis (e
(n)
i )i whose basis constant is bounded by λ, then there is an enumera-

tion (ẽi) of ((e
(n)
i )i)n that is Schauder basic whose basis constant is at most λ.

In fact, this is satisfied by any enumeration (ẽi) with the property that whenever

i < j, if for some n ∈ N we have e
(n)
i = ẽ

k
(n)
i

, e
(n)
j = ẽ

k
(n)
j

, then k
(n)
i < k

(n)
j .

Lemma 7.3: Let X be a Banach space with a 1-unconditional basis (en)n,

(Yn)n be a sequence of Banach spaces, and Z = (
∑

Yn)X . Assume that there

are common λ ≥ 1 and K : (0,+∞) → R so that each Yn has a Schauder basis

(e
(n)
i )i whose constant is at most λ that has the K(δ)-diagonal factorization

property. Then the sequence ((e
(n)
i )i)n is a Schauder basis (using the linear

order defined in Remark 7.2) whose basis constant is at most λ and it has the

K(δ)-diagonal factorization property.
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Proof. Let D : X → X be a diagonal operator with respect to ((e
(n)
i )i)n so that

inf
i,n

|e(n)∗i D(e
(n)
i )| > δ.

If follows that for each n ∈ N the map D restricted on Yn is a diagonal opera-

tor Dn so that infi,n |e(n)∗i (Dn(e
(n)
i ))| > δ. For κ > 0, by assumption, there exist

Bn, An : Yn → Yn with ‖An‖‖Bn‖ ≤ K(δ)+κ and BnDnAn is the identity map

on Yn. By scaling, we may assume that max{‖An‖, ‖Bn‖} ≤ √
K(δ) + κ and

hence the maps A,B :Z→Z, with A(z)=
∑

n AnPn(z) and B(z)=
∑

n BnPn(z),

are well defined with

‖A‖‖B‖ ≤ K(δ) + κ.

It is easily verified that I = BDA.

Lemma 7.4: LetX be a Banach space with a 1-unconditional basis (en)n, (Yn)n

be a sequence of Banach spaces, and Z = (
∑

Yn)X . Fix n ∈ N and let A, B be

finite subsets of Z and Z∗ respectively. Define

An = {Pn(x) : x ∈ A}, Bn = {P ∗
n(x∗) : x∗ ∈ B},

G = A⊥, H =
⋂

x∗∈B

ker(x∗), Gn = A⊥
n , Wn =

⋂
x∗∈Bn

ker(x∗).

Then, for every x ∈ Yn and x∗ ∈ Y ∗
n we have

dist(x,H) ≤ dist(x,Wn) and dist(x∗, G) ≤ dist(x∗, Gn).

Proof. For every y ∈ Wn it follows that Pn(y) ∈ H . Hence

‖x− y‖ ≥ ‖Pn(x− y)‖ = ‖x− Pn(y)‖ ≥ dist(x,H)

and so dist(x,Wn) ≥ dist(x,H). Similarly, for f ∈ Gn we have P ∗
nf ∈ G and

we conclude in the same manner that dist(x∗, G) ≤ dist(x∗, Gn).

Proposition 7.5: LetX be a Banach space with a 1-unconditional basis (en)n,

(Yn)n be a sequence of Banach spaces, and Z = (
∑

Yn)X . Assume that there

are common λ ≥ 1 and C ≥ 1 so that each Yn has a C-strategically reproducible

Schauder basis (e
(n)
i )i whose basis constant is at most λ. Then the sequence

((e
(n)
i )i)n enumerated as (ẽn) according to Remark 7.2 is a C-strategically re-

producible Schauder basis whose basis constant is at most λ.

Proof. For each n ∈ N let Mn be the infinite subset of N so that

(ẽi)i∈Mn = (e
(n)
i )i.
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Here, we will now describe the winning strategy of player (II) in a game

Rep(X,(ẽi))(C, η). Let player (I) pick a partition N = N1 ∪ N2. Note that

for each n ∈ N, Mn = M1
n ∪M2

n, where

M1
n = N1 ∩Mn, M2

n = N2 ∩Mn.

The m’th round is played out as follows. Player (I) selects ηm > 0 as well as

Wn ∈ cof(Z), Gn ∈ cofw∗(Z∗). Then, there are finite subsets Am and Bm of

Z and Z∗ respectively so that Gm = A⊥
m and Wm = (Bm)⊥. If m ∈ Mn, for

some n ∈ N, and m is the k’th element of Mn then set A
(n)
k = {Pnx : x ∈ A}

and B
(n)
k = {P ∗

nf : f ∈ B}. Then set G
(n)
k = (A

(n)
k )⊥, W

(n)
k = (B

(n)
k )⊥. Let

player (II) treat this round as the k’th round of a game Rep
(Yn,(e

(n)
i ))

(C, η) and

follow a winning strategy. In the end, for each n ∈ N, player (II) has chosen

(x
(n)
k )k in Yn and (x

(n)∗
k )k in Y ∗

n so that

(i) the sequences (x
(n)
k )k and (e

(n)
k )k are impartially (C + η)-equivalent,

(ii) the sequences (x
(n)∗
k )k and (e

(n)∗
k )k are impartially (C + η)-equivalent,

(iii) for all k∈N, if the k’th element of Mn is m, we have dist(x
(n)
k ,Wn

k )<ηm,

(iv) for all k∈N, if the k’th element of Mn is m, we have dist(x
(n)∗
k , Gn

k )<ηm.

If we relabel (x
(n)
k )k as (x̃m)m∈Mn and stitch them all together to a sequence

(x̃m)m∈N then it easily follows that this sequence is impartially (C+η)-equivalent

to (ẽm)m. Also by Lemma 7.4 we have dist(xm,Wm) < ηm, for all m ∈ N. Simi-

larly, relabel (x
(n)∗
k )k as (x̃∗

m)m∈Mn and take (x̃∗
m)m, which is (C+η)-impartially

equivalent to (ẽ∗m)m. Also, dist(x∗
m, Gm) < ηm, for all m ∈ N. In other words,

player two has emerged victorious.

Theorem 7.6: Let X be a Banach space with a 1-unconditional basis (en)n,

(Yn)n be a sequence of Banach spaces, and Z = (
∑

Yn)X . Assume that there

are common λ ≥ 1, C ≥ 1, and K : (0,+∞) → R so that each Yn has a

Schauder basis (e
(n)
i )i that satisfies the following:

(i) its basis constant is at most λ,

(ii) it has the K(δ)-diagonal factorization property, and

(iii) it is C-strategically reproducible in Yn.

Then the sequence ((e
(n)
i )i)n enumerated as (ẽn) (using the linear order defined

in Remark 7.2) has the λC2K(δ)-factorization property.
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Proof. By Lemma 7.3 the basis of Z is λ-basic and it has the K(δ)-diagonal

factorization property. By Proposition 7.5 the basis of Z is C-strategically

reproducible. We finish off the proof by using Proposition 7.5.

Remark 7.7: A consequence of the above theorem is that if one takes X = �p,

1 ≤ p < ∞ of X = c0 and a sequence of spaces (Yn)n, with each Yn being

some Lp or �p, 1 ≤ p < ∞, or c0, then Z = (
∑

Yn)X has a 1-strategically

reproducible basis. Of course, X can be any space of an unconditional basis and

this produces an interesting example. It was proved in [13] that Gowers’ space X

with an unconditional basis from [11] does not satisfy the factorization property;

however, for this X and any sequence (Yn)n as before the space Z = (
∑

Yn)X

does satisfy it.

8. Final comments and open problems

Capon [4] showed that the bi-parameter Haar system in Lp(Lq), 1 < p, q < ∞,

has the factorization property. With refined techniques, Capon’s result was

extended to H1(H1) by [20] and then later in [13] to Hp(H1) and H1(Hp),

1 < p < ∞. In Section 5, we gave a different proof of their results by writing

Hp(Hq) as a complemented sum of two spaces, solving the problem in each of the

components separately, and then using the fact that strategical reproducibility

is inherited by complemented sums. This begs the following question.

Problem 8.1: If X and Y are Banach spaces with bases that have the factoriza-

tion property, does the union of those two bases (in the right order) have the

factorization property in the complemented sum of X and Y ?

As we remarked after Theorem 3.12 the uniform factorization property from

Definition 3.10 is formally stronger than the factorization property from Defi-

nition 2.3 (iii).

Problem 8.2: Is there a Banach space with a basis that satisfies the factorization

property and fails the uniform factorization property?

In Corollary 6.4 we showed that the bi-parameter Haar system has the fac-

torization property. Nevertheless, we do not know the answer to the following

problem.
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Problem 8.3: Is the normalized bi-parameter Haar system of L1(L1) strategi-

cally reproducible?

The unit vector basis of Tsirelson space T , i.e., the space constructed by

Figiel and Johnson in [9], which is the dual of Tsirelson’s original space, is

not strategically reproducible. This follows from the following two facts. On

the one hand, every block base (xi) is equivalent to a subsequence (eni) with

ni ∈ supp(xi), i ∈ N. Secondly, if the subsequence is an Ackerman sequence

(i.e., is increasing fast enough), then [eni ] is not isomorphic to T . Thus, if player

(I) chooses an Ackerman sequence in the game described in Definition 3.3, he

wins. This leads to the next problem.

Problem 8.4: Does the unit vector basis in T have the factorization property?

Among all the bi-parametric Lebesgue and Hardy spaces, Lp(L1) and L1(Lp),

1 < p < ∞, seem to resist our approaches.

Problem 8.5: Is the bi-parameter Haar system strategically reproducible or does

it at least have the factorization property in Lp(L1) and L1(Lp), 1 < p < ∞?

More generally, if X has a basis which is strategically reproducible, or has

the factorization property, does the tensor product of that basis with the Haar

system in Lp(X), 1 ≤ p < ∞ have the same property?

In this context it is worth noting that Capon [5] proved Lp(X), 1 ≤ p < ∞
is primary, if X has a symmetric basis.
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