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1. Introduction

The study of asymptotic properties lies at the heart of Banach space theory. It is 
intertwined with other central notions of Banach spaces, e.g., distortion, bounded lin-
ear operators, and metric embeddings. There exists a wide plethora of examples that 
demonstrate deep connections between each of the aforementioned topics and asymptotic 
properties. A Banach space that is boundedly distortable must contain an asymptotic-�p
subspace [28], properties of spreading models can be manipulated to construct reflexive 
Banach spaces on which every bounded linear operator has a non-trivial closed invari-
ant subspace [10,11], and reflexive asymptotic-c0 spaces provide the first known class of 
Banach spaces into which there is no coarse embedding of the Hilbert space [14]. There 
exists plenty of motivation to further understand asymptotic notions and to work on 
problems in the theory defined by them. It is highly likely that such understanding may 
play a crucial role in solving open problems in other branches of the theory.

One of the main goals of this article is to answer an old open problem regarding the 
relationship between spreading models and asymptotic-�p spaces: if X admits a unique 
spreading model with a uniform constant, must X contain an asymptotic-�p subspace? 
It was first formulated by E. Odell in [29] and it was reiterated in [30] as well as in 
[22]. We construct a Banach space Xiw that serves as a counterexample to this question. 
At the same time it reveals information regarding the relationship between asymptotic 
properties at a deeper level than the one suggested by the question of Odell.

A property (P) of Banach spaces is called hereditary if whenever X has (P) then all 
of its infinite dimensional closed subspaces have (P) as well. We discuss two degrees in 
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which two asymptotic, and more generally hereditary, properties of Banach spaces can 
be distinct.

Definition. Let (P) and (Q) be two hereditary properties of Banach spaces and assume 
that (P) implies (Q).

(i) If (Q)�(P), i.e., there exists a Banach space X satisfying (Q) and failing (P) then 
we say that (P) is separated from (Q).

(ii) If there exists a Banach space X satisfying (Q) and every infinite dimensional closed 
subspace Y of X fails (P) then we way that (P) is completely separated from (Q) 
and write (Q) �⇒←↩ (P).

For example, if (P) is super-reflexivity and (Q) is reflexivity then (Q) �⇒←↩ (P). Indeed, 
Tsirelson space from [34] is reflexive, yet it contains no super-reflexive subspaces. In 
this paper we mainly consider properties that are classified into the following three 
categories: the sequential asymptotic properties, the array asymptotic properties, and 
the global asymptotic properties. For expository purposes in this introduction we shall 
assume that all Banach spaces are reflexive. Although this in general not a necessary 
restriction, it allows for more elegant definitions. More details on this can be found in 
Section 2.

Sequential asymptotic properties are related to the spreading models generated by 
sequences in a space. Recall that a sequence (xj)j in a Banach space X generates a 
sequence (ej)j in another Banach space E as a spreading model if for any a1, . . . , an ∈ R

we have

lim
j1→∞

· · · lim
jn→∞

∥∥∥ n∑
i=1

aixji

∥∥∥ =
∥∥∥ n∑

i=1
aiei

∥∥∥. (1)

This concept describes the asymptotic behavior of a single sequence (xj)j in a Banach 
space. It was introduced in [16] and it has been an integral part of Banach space theory 
ever since. We say that a Banach space has a unique spreading model if any two spreading 
models generated by normalized weakly null sequences in X are equivalent and we say 
that X has a uniformly unique spreading model if the same as before holds with the 
additional assumption that the equivalence occurs for a uniform C. By the proof of 
Krivine’s theorem from [25], uniform uniqueness of a spreading model implies that it has 
to be equivalent to the unit vector basis of �p, for some 1 ≤ p < ∞, or c0.

The array asymptotic properties concern the asymptotic behavior of arrays of se-
quences (x(i)

j )j , i ∈ N, in a space. Two tools used for this purpose are the asymptotic 
models and the joint spreading models introduced in [20] and [5] respectively. An infinite 
array of sequences (x(i)

j )j , i ∈ N, in a Banach space X generates a sequence (ej)j in 
another Banach space E as an asymptotic model if for any a1, . . . , an ∈ R we have
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lim
j1→∞

· · · lim
jn→∞

∥∥∥ n∑
i=1

aix
(i)
ji

∥∥∥ =
∥∥∥ n∑

i=1
aiei

∥∥∥. (2)

We say that a Banach space has a unique asymptotic model if any two asymptotic models 
generated by arrays of normalized weakly null sequences in X are equivalent. Because we 
consider infinite arrays it follows that the equivalence must be uniform. Joint spreading 
models are a similar notion that were used in [13] to show that the class of reflexive 
asymptotic-c0 Banach spaces is coarsely rigid and in [5] to show that whenever a Banach 
space has a unique joint spreading model then it satisfies a property concerning its space 
of bounded linear operators, called the UALS. Although asymptotic models and joint 
spreading models are not identical they are strongly related. A Banach space has a unique 
asymptotic model if and only if it has a unique joint spreading model and then it has to 
be equivalent to the unit vector basis of �p, for some 1 ≤ p < ∞, or c0. Another concept 
related to array asymptotic properties is that of asymptotically symmetric spaces from 
[22].

Global asymptotic properties describe the behavior of weakly null trees of finite height 
in a Banach space. Trees of vectors have been used in many contexts within Banach 
space theory (see, e.g., [24], [23], [33], [21]). For n ∈ N let [N]≤n = {A ⊂ N : #A ≤ n}. 
A weakly null tree of height n ∈ N in a Banach space X is a collection of vectors 
{xA : A ∈ [N]≤n} so that for each A ∈ [N]≤n−1 the sequence (xA∪{j})j>max(A) is 
weakly null. For 1 ≤ p ≤ ∞, a Banach space X is called an asymptotic-�p space (or an 
asymptotic-c0 space if p = ∞) if there exists C > 0 so that every normalized weakly 
null tree of height n has a maximal branch x{a1}, x{a1,a2}, . . . , x{a1,a2,...,an} that is C-
equivalent to the unit vector basis of �np . This definition was introduced in [28] and 
[27].

A noteworthy remark is that sequential asymptotic properties and array asymptotic 
properties of a Banach space X can sometimes be interpreted as properties of special 
weakly null trees. A tree {xA : A ∈ [N]≤n} is said to originate from a sequence (xj)j if 
for all A = {a1, . . . , ai} we have xA = xai

. Similarly, a tree {xA : A ∈ [N]≤n} is said to 
originate from an array of sequences (x(i)

j )j , 1 ≤ i ≤ n, if for all A = {a1, . . . , ai} we have 

xA = x
(i)
ai . Then, X has a unique �p spreading model if and only if there exists C > 0

so that every tree {xA : A ∈ [N]≤n} originating from a normalized weakly null sequence 
(xj)j in X has a maximal branch that is C-equivalent to the unit vector basis of �np . 
Similarly, X has a unique �p asymptotic model if the same can be said about all trees 
originating from normalized weakly null arrays in X. For more details see [13, Remark 
3.11].

Given an X we will mainly focus on the properties in the following list. Here, 1 ≤ p ≤
∞ and whenever p = ∞ then �p should be replaced with c0.

(a)p The space X is asymptotic-�p.
(b)p The space X admits a unique �p asymptotic model.
(c)p The space X admits a uniformly unique �p spreading model.
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(d)p The space X admits a unique �p spreading model.

After the preceding discussion, the following implications are fairly straightforward for 
all 1 ≤ p ≤ ∞: (a)p ⇒ (b)p ⇒ (c)p ⇒ (d)p. Whether the corresponding converse 
implications hold depends on p. In the case 1 ≤ p < ∞ none of them is true: (d)p �

(c)p, 1 ≤ p < ∞ is easy whereas (c)p � (b)p, 1 ≤ p < ∞ and (b)p � (a)p, 1 < p < ∞
were shown in [13]. It was also shown in that paper that (c)∞ � (b)∞ and in [6] it 
was shown that (b)1 � (a)1. However, it was proved in [2] that (c)∞ ⇔ (d)∞ and a 
remarkable recent result from [19] states that (b)∞ ⇔ (a)∞.

The problem of Odell that was mentioned earlier in the introduction can be formulated 
in the language of this paper as follows: is there 1 ≤ p ≤ ∞ so that (c)p �⇒←↩ (a)p? We 
actually prove something deeper, namely that (c)p �⇒←↩ (b)p for all 1 ≤ p ≤ ∞. We also 
prove (d)1 �⇒←↩ (c)1, although the same argument works for 1 < p < ∞ (as it was mentioned 
earlier (c)∞ ⇔ (d)∞). To achieve these results we present three constructions of Banach 
spaces. Let us describe the properties of these spaces one by one and later give an outline 
of how they are defined. The first construction yields (c)1 �⇒←↩ (b)1.

Theorem A. There exists a reflexive Banach space Xiw that has a 1-unconditional basis 
and the following properties:

(i) every normalized weakly null sequence in Xiw has a subsequence that generates a 
spreading model that is 4-equivalent to the unit vector basis of �1 and

(ii) every infinite dimensional subspace of Xiw contains an array of normalized weakly 
null sequences that generate the unit vector basis of c0 as an asymptotic model.

That is, (c)1 �⇒←↩ (b)1 and in particular (c)1 �⇒←↩ (a)1.

Additionally, we prove (Corollary 7.6) that the set [1, ∞] is a stable Krivine set of 
Xiw, i.e., it is a Krivine set of every block subspace of Xiw. This property was first shown 
to be satisfied by a space constructed by Odell and Th. Schlumprecht in [31].

The second construction is a variation of the first one and it yields (c)p �⇒←↩ (b)p, 
1 < p < ∞.

Theorem B. For every 1 < p < ∞ there exists a reflexive Banach space with a 1-
unconditional basis that has the following properties.

(i) Every normalized weakly null sequence in Xp
iw has a subsequence that generates a 

spreading model that is 8-equivalent to the unit vector basis of �p.
(ii) Every infinite dimensional subspace of Xp

iw contains an array of normalized weakly 
null sequences that generate the unit vector basis of c0 as an asymptotic model.

That is, (c)p �⇒←↩ (b)p and in particular (c)p �⇒←↩ (a)p.
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We also prove (Corollary 8.7) that Xp
iw has [p, ∞] as a stable Krivine set. This is the 

first known example of a space with this property. Recall that in [15] for every increasing 
sequence (pn) in [1, ∞] a space is constructed with stable Krivine set the closure of 
{pn : n ∈ N}.

The fact (c)∞ �⇒←↩ (b)∞ is not achieved via a separate construction.

Theorem C. The space X∗
iw has the following properties.

(i) Every normalized weakly null sequence has a subsequence that generates a spreading 
model that is 4-equivalent to the unit vector basis of c0.

(ii) Every infinite dimensional subspace of X∗
iw contains an array of normalized weakly 

null sequences that generate the unit vector basis of �1 as an asymptotic model.

That is, (c)∞ �⇒←↩ (b)∞ and in particular (c)∞ �⇒←↩ (a)∞.

We additionally observe that the spaces Xiw and X∗
iw are asymptotically symmetric 

and obtain a negative answer to [22, Problem 0.2].

Corollary D. There exist Banach spaces that are asymptotically symmetric and have no 
asymptotic-�p or c0 subspaces.

A stronger version of the above corollary was obtained in [26] where it was shown that 
there exists an asymptotically symmetric Banach space with no subspace that admits a 
unique spreading model. The final construction yields (d)1 �⇒←↩ (c)1.

Theorem E. There exists a reflexive Banach space X̃iw that has a 1-unconditional basis 
and the following properties.

(i) Every normalized weakly null sequence has a subsequence that generates a spreading 
model that is equivalent to the unit vector basis of �1.

(ii) In every infinite dimensional subspace of X̃iw and for every C ≥ 1 there exists a 
normalized weakly null sequence that generates a spreading model that is not C-
equivalent to the unit vector basis of �1.

That is, (d)1 �⇒←↩ (c)1.

It is also possible to construct for each 1 < p < ∞ a variation X̃p
iw of X̃iw that yields 

(d)p �⇒←↩ (c)p. In contrast to X∗
iw, the space X̃∗

iw does not have a unique c0 spreading 
model.

Each of the aforementioned spaces are constructed with the use of a saturated norming 
set. We use the general scheme of saturation under constraints, which was first used 
in [31] and [32] and later refined in [10], [3], [11], and others. These aforementioned 
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papers use Tsirelson-type constructions in which functionals in the norming set can only 
be constructed using very fast growing sequences of averages of elements in the same 
norming set. We shall refer to this particular version of the scheme as saturation under 
constraints with growing averages. In this paper we introduce a method that we call 
saturation under constraints with increasing weights. In this method the construction of 
functionals in the norming set is allowed only using sequences of functionals from the 
same norming set that have weights that increase sufficiently rapidly. The constraint 
applied to weights of functionals instead of sizes of averages yields relatively easily that 
the space Xiw has a uniformly unique �1 spreading model. With some work it is then 
shown that finite arrays of sequences of so-called exact vectors with appropriate weights 
generate an asymptotic model equivalent to the unit vector basis of c0. The spaces Xp

iw
are defined as appropriate modifications of Xiw using the �p norm whereas the space 
X̃iw is in fact a simpler construction.

We remind basic notions such as Schreier families and special convex combinations. 
Given two non-empty subsets of the natural numbers A and B we shall write A < B if 
max(A) < min(B) and given n ∈ N we write n ≤ A if n ≤ min(A). We also make the 
convention ∅ < A and A < ∅ for all A ⊂ N. We denote by c00(N) the space of all real 
valued sequences (ci)i with finitely many non-zero entries. We denote by (ei)i the unit 
vector basis of c00(N). In some cases we shall denote it by (e∗i )i. For x = (ci)i ∈ c00(N), 
the support of x is defined to be the set supp(x) = {i ∈ N : ci �= 0} and the range 
of x, denoted by ran(x), is defined to be the smallest interval of N containing supp(x). 
We say that the vectors x1, . . . , xk in c00(N) are successive if supp(xi) < supp(xi+1) for 
i = 1, . . . , k − 1. In this case we write x1 < · · · < xk. Given n ∈ N and x ∈ c00(N) we 
also write n ≤ x if n ≤ min supp(x). A (finite or infinite) sequence of successive vectors 
in c00(N) is called a block sequence.

2. Asymptotic structures

In this lengthy section we remind, compare, and discuss different types of asymptotic 
notions in Banach space theory. We state known examples that separate these notions 
in various ways and we discuss how the present paper is an advancement in this topic.

2.1. Sequential asymptotic notions

We remind the definition of spreading models, which was introduced in [16].

Definition 2.1. Let (xi)i be a sequence in a seminormed vector space (E, |||·|||) and m ∈ N

(i) A set s = {j1, . . . , jm} ∈ [N] will be called a spread of I = {1, . . . , m}.
(ii) If x =

∑m
i=1 aixi and s = {j1, . . . , jm} is a spread of {1, . . . , m} then we call the 

vector s(x) =
∑m

i=1 aixji a spread of the vector x.
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(iii) The sequence (xi)i will be called spreading if for every m ∈ N, every s ∈ [N]m, and 
every x =

∑m
i=1 aixi we have |||x||| = |||s(x)|||.

Definition 2.2. Let X be a Banach space and (xi)i be a sequence in X. Let also E be a 
vector space with a Hamel basis (ei)i endowed with a seminorm |||·|||. We say that the 
sequence (xi)i generates (ei)i as a spreading model if for every m ∈ N and any vector 
x =

∑m
i=1 aixi we have

lim
min(s)→∞
s∈[N]m

‖s(x)‖ =

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

m∑
i=1

aiei

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣.

Given a subset A of X we shall say that A admits (ei)i as a spreading model if there 
exists a sequence in A that generates (ei)i as a spreading model.

The spreading model (ei)i of a sequence (xi)i is always a spreading sequence. The 
above definition was given by Brunel and Sucheston in [16] where it was also proved 
that every bounded sequence in a Banach space has a subsequence that generates some 
spreading model.

2.2. Array asymptotic notions

We remind the notion of joint spreading models from [5] and the one of asymptotic 
models from [20]. We compare these similar notions later in Subsection 2.4.

Definition 2.3. Let k, l ∈ N, and M ∈ [N]∞. A plegma is a sequence (si)li=1 in [M ]k
satisfying

(i) si1(j1) < si2(j2) for i1 �= i2 in {1, . . . , l} and j1 < j2 in {1, . . . , k} and
(ii) si1(j) ≤ si2(j) for i1 < i2 in {1, . . . , l} and j ∈ {1, . . . , k}.

If additionally the set s1, . . . , sl are pairwise disjoint then we say that (si)li=1 is a strict 
plegma. Let Plml([M ]k) denote the collection of all plegmas in [M ]k and let S-Plml([M ]k)
denote the collection of all strict plegmas in [M ]k.

A plegma (si)li=1 can also be described as follows

s1(1) ≤ s2(1) ≤ · · · ≤ sl(1) < s1(2) ≤ s2(2) ≤ · · · ≤ sl(2) < · · ·
· · · < s1(k) ≤ s2(k) ≤ · · · ≤ sl(k)

whereas in a strict plegma all inequalities are strict.

Definition 2.4. Let l ∈ N and (x(i)
j )j , 1 ≤ i ≤ l, be an array of sequences in a seminormed 

vector space (E, |||·|||).
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(i) For m ∈ N let π = {1, . . . , l} × {1, . . . , m}. Given a plegma s̄ = (si)li=1 in [M ]∞, 
the set s̄(π) = {(i, si(j)) : (i, j) ∈ π} will be called a plegma shift of π.

(ii) If x =
∑l

i=1
∑k

j=1 ai,jx
(i)
j and s̄ ∈ Plml([N])k we call the vector s̄(x) =∑l

i=1
∑k

j=1 ai,jx
(i)
si(j) a plegma shift of the vector x.

(iii) The array (x(i)
j )j , 1 ≤ i ≤ l, will be called plegma spreading if for every k ∈ N, 

every s̄ ∈ Plml[N]k, and every x =
∑l

i=1
∑k

j=1 ai,jx
(i)
j we have |||x||| = |||s̄(x)|||.

Definition 2.5. Let X be a Banach space, l ∈ N, and (x(i)
j )j , 1 ≤ i ≤ l, be an array of 

sequences in X. Let also E be a seminormed vector space and let (e(i)
j )j , 1 ≤ i ≤ l, be 

an array of sequences in E. We say that (x(i)
j )j , 1 ≤ i ≤ l, generates (e(i)

j )j , 1 ≤ i ≤ l, 
as a joint spreading model if for every k ∈ N and any vector x =

∑l
i=1

∑k
j=1 ai,jx

(i)
j we 

have

lim
min(s1)→∞

s̄∈S-Plml([N]k)

‖s̄(x)‖ =

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣

l∑
i=1

k∑
j=1

ai,je
(i)
j

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣.

Given a subset A of X we shall say that A admits (e(i)
j )j , 1 ≤ i ≤ l, as a joint spreading 

model if there exists an array (x(i)
j )j , 1 ≤ i ≤ l, in A that generates (e(i)

j )j , 1 ≤ i ≤ l as 
a joint spreading model.

The above notion was introduced in [5] and it was shown that every finite array (x(i)
j )j , 

1 ≤ i ≤ l, of normalized Schauder basic sequences in a Banach space X has a subarray 
(x(i)

kj
)j that generates some joint spreading model (e(i)

j )j , 1 ≤ i ≤ l, which has to be a 
plegma spreading sequence.

Joint spreading models are a similar notion to that of asymptotic models, from [20], 
which was introduced and studied earlier. We modify the definition to make the connec-
tion to the above notions more clear.

Definition 2.6. Let X be a Banach space, (x(i)
j )j , i ∈ N be an infinite array of normalized 

sequences in a Banach space X and (ei)i be a sequence in a seminormed space E. We say 
that (x(i)

j )j , j ∈ N generates (ei)i as an asymptotic model if for any l ∈ N and vector 
x =

∑l
i=1 aix

(i)
1 we have

lim
min(s1)→∞

s̄∈S-Plml([N]1)

‖s̄(x)‖ =

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

l∑
i=1

aiei

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣.

It was proved in [20] that any array (x(i)
j )j , i ∈ N of normalized sequences that are all 

weakly null have a subarray (x(i)
jk

)k, i ∈ N that generates a 1-suppression unconditional 
asymptotic model (ei)i.
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2.3. Global asymptotic notions

We first remind the definition of an asymptotic-�p Banach space with a basis, intro-
duced by V. D. Milman and N. Tomczak-Jaegermann in [28], and then we remind a 
coordinate free version of this definition from [27].

Definition 2.7. Let X be a Banach spaces with a Schauder basis (ei)i and 1 ≤ p < ∞. We 
say that the Schauder basis (ei)i of X is asymptotic-�p if there exist positive constants 
D1 and D2 so that for all n ∈ N there exists N(n) ∈ N so that whenever N(n) ≤ x1 <

· · · < xn are vectors in X then

1
D1

(
n∑

i=1
‖xi‖p

)1/p

≤
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ ≤ D2

(
n∑

i=1
‖xi‖p

)1/p

.

Specifically we say that (ei)i is D-asymptotic-�p for D = D1D2. The definition of an 
asymptotic-c0 space is given similarly.

The classical examples of non-trivial asymptotic-�p spaces are Tsirelson’s original Ba-
nach space from [34] that is asymptotic-c0 and the space constructed in [18] (nowadays 
called Tsirelson space) that is asymptotic-�1.

To define the coordinate free version [27, Subsection 1.7] (see also [30]) we require a 
game of two players. For each n ∈ N there is a version of this game that takes place in n
consecutive turns. In each turn k of the game player (S) chooses a co-finite dimensional 
subspace Yk of X and then player (V) chooses a normalized vector yk ∈ Yk. The resulting
sequence (yk)nk=1 is called the outcome of this run of the n-turn game.

Definition 2.8. Let X be a Banach space.

(i) Given n ∈ N, the n’th asymptotic structure of X, denoted by {X}n, is the set of 
all pairs (E, (ei)ni=1), where E is an n-dimensional normed space and (ei)ni=1 is a 
normalized basis of E, with the property that for every ε > 0 player (V) has a 
winning strategy to force the outcome of the n-turn game to be (1 + ε)-equivalent 
to (ei)ni=1.

(ii) Given 1 ≤ p < ∞, the space X is called asymptotic-�p (or asymptotic-c0 if p = ∞) 
if there exists C so that for all n ∈ N and (E, (ei)ni=1) in {X}n, the sequence (ei)ni=1
is C-equivalent to the unit vector basis of �np .

Remark 2.9. An equivalent formulation for being asymptotic-�p is that there exists C
so that for every n ∈ N player (S) has a wining strategy to force the outcome of the 
n-turn game to be C-equivalent to the unit vector basis of �np . That this is equivalent to 
Definition 2.8 (ii) follows from [27, Subsection 1.5]. Using this definition it is easy to show 
that if X has a Schauder basis that is asymptotic-�p then X is asymptotic-�p. It also 



S.A. Argyros, P. Motakis / Advances in Mathematics 362 (2020) 106962 11
follows fairly easily that if a space X is asymptotic-�p then it contains an asymptotic-�p
sequence. In particular, a Banach space contains an asymptotic-�p subspace if and only 
if it contains an asymptotic-�p sequence.

2.4. Uniqueness of asymptotic notions

The main purpose of this section is to discuss the property of a Banach space to 
exhibit a unique behavior with respect to the various asymptotic notions. Of particular 
interest to us is the question as to whether uniqueness with respect to one notion implies 
uniqueness with respect to another.

Throughout this subsection we let F denote one of two collections of normalized 
Schauder basic sequences in a given Banach space X, namely either F0, i.e., the collection 
of all normalized weakly null Schauder basic sequences, or Fb, i.e. the collection of all 
normalized block sequences, if X is assumed to have a basis.

Definition 2.10. Let X be a Banach space and F = F0 or F = Fb.

(i) We say that X admits a unique spreading model with respect to F if any two 
spreading models generated by sequences in F are equivalent.

(ii) We say that X admits a uniformly unique spreading model with respect to F if 
there exists C ≥ 1 so that any two spreading models generated by sequences in F
are C-equivalent.

The following is an open problem (see e.g. [29, (Q8) on page 419]).

Problem 1. Let X be a Banach space and F = F0 or F = Fb. Assume that X admits 
a unique spreading model with respect to F . Is this spreading model equivalent to the 
unit vector basis of some �p, 1 ≤ p < ∞, or c0?

It is well known that if the spreading model is uniformly unique then the answer is 
affirmative. This follows from an argument mentioned in [27, Subsection 1.6.3].

Definition 2.11. Let X be a Banach space and F = F0 or F = Fb. We say that X
admits a unique joint spreading model with respect to F if there exists a constant C so 
that for any l ∈ N and any two l-arrays generated as joint spreading models by l-arrays 
in F are C-equivalent.

The existence of a uniform constant is included in the definition of unique joint spread-
ing models. The reason for this is to separate uniqueness of spreading models from 
uniqueness of joint spreading models. If one assumes that X admits a unique spreading 
model with respect to F then it follows that all l-joint spreading models generated by 
weakly null l-arrays in F are equivalent as well.
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We remind that it was proved in [5] that if a Banach space X admits a unique joint 
spreading model with respect to F then X satisfies a property called the uniform ap-
proximation on large subspace. This is a property of families of bounded linear operators 
on X.

Definition 2.12. Let X be a Banach space and F = F0 or F = Fb. We say that X
admits a unique asymptotic model with respect to F if any two asymptotic models 
generated by arrays of sequences in F are equivalent.

It can be seen that if X has a unique asymptotic model with respect to F then there 
must exist a C so that any two asymptotic models generated by arrays of sequences in 
F are C-equivalent. This is because asymptotic models are generated by infinite arrays.

As it was mentioned in passing in [5] uniqueness of joint spreading models and unique-
ness of asymptotic models are equivalent. We briefly describe a proof.

Proposition 2.13. Let X be a Banach space and F = F0 or F = Fb. Then X ad-
mits a unique joint spreading model with respect to F if and only if it admits a unique 
asymptotic model with respect to F .

Proof. If X admits a unique asymptotic model then, as it was mentioned above, it does 
so for a uniform constant C. We start with two l-arrays (x(i)

j )j , (y(i)
j )j , 1 ≤ i ≤ l, 

generating joint spreading models (e(i)
j )j , (d(i)

j ), 1 ≤ i ≤ l, which we will show that they 

are equivalent. Define the infinite arrays (x̃(i)
j ), (ỹ(i)

j ), i ∈ N given by x̃(ml+i)
j = x

(i)
j and 

ỹ
(ml+i)
j = y

(i)
j for m ∈ N ∪ {0}, 1 ≤ i ≤ l, and j ∈ N. Any asymptotic model (ei)i

generated by a subarray of (x̃(i)
j )j , i ∈ N, is isometrically equivalent to (e(i)

j )j , 1 ≤ i ≤ l

by mapping eml+i to e(i)
l , for m ∈ N ∪{0}, 1 ≤ i ≤ l. We can make a similar observation 

about any asymptotic model (di)i generated by a subarray of (ỹ(i)
j ), i ∈ N. As (ei)i and 

(di)i are C-equivalent we deduce that the same is true for (e(i)
j )j , (d(i)

j ), 1 ≤ i ≤ l. The 
inverse implication is slightly easier. If we assume that there is C so that for any l ∈ N

any l-joint spreading models admitted by l-arrays in F then it is almost straightforward 
that the first l elements of any two asymptotic models generated by arrays in F are 
C-equivalent. �

If a space admits a unique asymptotic model, and hence also spreading model, then 
it has to be equivalent to the unit vector basis of �p or c0. This follows, e.g., from the 
uniform uniqueness of the spreading model.

We now compare uniqueness of the various asymptotic notions. Here, 1 ≤ p ≤ ∞ and 
whenever p = ∞ then �p should be replaced with c0. The implications presented in the 
next statement are fairly obvious.

Proposition 2.14. Let 1 ≤ p ≤ ∞, X be a Banach space, and F = F0 or F = Fb. 
Consider the following properties.
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(a1)p The space X is coordinate free asymptotic-�p.
(a2)p The space X has a basis that is asymptotic-�p.
(b)p The space X admits a unique �p asymptotic model with respect to F .
(c)p The space X admits a uniformly unique �p spreading model with respect to F .
(d)p The space X admits a unique �p-spreading model with respect to F .

Then (a1)p∨(a2)p ⇒(b)p ⇒(c)p ⇒(d).

The question as to whether any inverse implications hold is somewhat less straightfor-
ward. We can divide this problem into questions of separation and complete separation 
(see Definition on page 3). We discuss this topic starting with the bottom of the list and 
moving upwards.

Question 1. Let X be a Banach space and F = F0 or F = Fb. If X admits a unique 
spreading model with respect to F does it also admit a uniformly unique spreading 
model with respect to F?

In other words, can property (c) be separated from (d). This can be answered fairly 
easily. Fix 1 < p < ∞ and consider for each n ∈ N a norm on �p given by ‖x‖n =
‖x‖∞ ∨ (n−1‖x‖�p). The space X = (

∑
n ⊕(�p, ‖ · ‖n))�p admits a unique �p-spreading 

model with respect to F0 but not a uniformly unique �p-spreading model with respect 
to F0. A slightly less trivial example can be given for p = 1 by using e.g. a norm ‖x‖n
defined on T and taking a T -sum. Interestingly it is not possible to do this for c0. It 
follows from [2, Proposition 3.2] that if a space X admits a unique c0 spreading model 
with respect to F0 then this has to happen uniformly. The, more interesting, complete 
separation analogue of the above question is the following.

Question 2. Let X be a Banach space and F = F0 or F = Fb. If X admits a unique 
spreading model with respect to F does X have a subspace Y that admit a uniformly 
unique spreading model with respect to F?

This is less obvious. For example, if one considers X = (
∑

n ⊕(�2, ‖ · ‖n))�2 then �2
is a subspace of X. To answer this question, in Section 10 we construct a Banach space 
X̃iw with a unique �1 spreading model with respect to F0 so that in every subspace of 
X̃iw one can find normalized weakly null sequences generating a spreading model with 
an arbitrarily “bad” equivalence to the unit vector basis of �1.

Question 3. Let X be a Banach space and F = F0 or F = Fb. If X admits a uniformly 
unique spreading model with respect to F does X admit a uniformly unique asymptotic 
model with respect to F?

The answer to the above question is negative in all cases of unique spreading models 
(which have to be some �p, 1 ≤ p < ∞, or c0). It was observed in [13] that the space 
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T ∗(T ∗) admits c0 as a uniformly unique spreading model whereas the space admits the 
unit vector basis of T ∗ as an asymptotic model. Proposition 3.12 of [13] can also be 
used to show that T (T ) admits a uniformly unique �1-spreading model, yet T (T ) admits 
the unit vector basis of T as an asymptotic model. We can replace T with Tp, the p-
convexification of T , for 1 < p < ∞. It follows, again from, [13, Proposition 3.12] that 
Tp(Tp) has a uniformly unique �p spreading model. Is also easy to see that Tp(Tp) admits 
the unit vector basis of Tp as an asymptotic model.

Question 4. Let X be a Banach space and F = F0 or F = Fb. If X admits a uni-
formly unique spreading model with respect to F does X have a subspace that admits 
a uniformly unique asymptotic model with respect to F?

We prove in this paper that the answer to the above question is conclusively negative, 
regardless of the assumption on the unique spreading model. We construct a Banach 
space Xiw that admits a uniformly unique �1-spreading mode so that every block sub-
space of Xiw admits a c0 asymptotic model. We also prove that X∗

iw admits a uniformly 
unique c0-spreading model and that every block subspace of Xiw admits an �1 asymptotic 
model. We also describe, for 1 < p < ∞, the construction of a space Xp

iw that admits 
a uniformly unique �p-spreading mode so that every block subspace of Xiw admits a c0
asymptotic model.

We remind that according to Remark 2.9 a Banach space contains an asymptotic-�p
subspace with a basis if and only if it contains a coordinate free asymptotic-�p subspace.

Question 5 (E. Odell (Q7) [29] & page 66 [30] and M. Junge, D. Kutzarova, E. Odell 
Problem 1.2 [22]). Let X be a Banach space that admits a uniformly unique spreading 
model with respect to F . Does X have an asymptotic-�p or asymptotic-c0 subspace?

The spaces Xiw, X∗
iw, and Xp

iw, 1 < p < ∞, provide a negative answer to the above 
question for all possible assumptions on the unique spreading model.

Question 6. Let X be a Banach space and F = F0 or F = Fb. If X admits a unique 
asymptotic model with respect to F is X asymptotic-�p or asymptotic-c0 in the coordi-
nate free sense of [27]?

Interestingly, for this question the type of unique spreading model makes a difference 
to the result. It was proved in [19] that if a separable Banach space X contains no 
copy of �1 and X has a unique c0 asymptotic model with respect to F0 then X is 
asymptotic-c0 (in the sense of [27]). Replacing c0 with �p, for 1 < p < ∞, completely 
changes the situation. In [13, Subsection 7.2], for each 1 < p < ∞ a reflexive Banach 
space is presented all asymptotic models of which are isometrically equivalent to the unit 
vector basis of �p, yet the space is not asymptotically-�p, in the sense of [27]. A slightly 
different approach to the same question is based on a construction in [33, Example 4.2]. 
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One can consider an infinite hight countably branching and well founded tree T . Then, 
for 1 < p < ∞, define a norm on c00(T ) as follows. If x =

∑
λ∈T cλeλ then set

‖x‖ = sup

⎧⎪⎨⎪⎩
⎛⎝ m∑

i=1

⎛⎝∑
λ∈βi

|cλ|

⎞⎠p⎞⎠1/p

: (βi)mi=1 are disjoint segments of T

⎫⎪⎬⎪⎭ .

One can show, using [13, Proposition 3.12] and induction on the hight of T , that the 
completion of this space has only the unit vector basis of �p as an asymptotic model and 
it is not asymptotically-�p.

The Definition from [13, Subsection 7.2] also yields a non-reflexive Banach space with 
an unconditional Schauder basis that admits the unit vector basis of �1 as a unique 
asymptotic model with respect to all arrays of block sequences of the basis yet the space 
is not asymptotic-�1. In fact, this space is a Schur space. The first example of a reflexive 
non-asymptotic-�1 space with a unique �1 asymptotic model was first given in [6].

The following open question is the remaining implication from the list and it first 
appeared in [20, Problem 6.1].

Problem 2. Let 1 ≤ p < ∞ and X be a Banach space not containing �1 so that every 
asymptotic model generated by a weakly null array in X is equivalent to the unit vector 
basis of �p. Does X contain an asymptotic-�p-subspace?

2.5. Finite block representability

In this part of this section we recall the notion of finite block representability and the 
Krivine set of a space.

Definition 2.15. Let X be a Banach space with a Schauder basis (ei)i and let also Y be 
a finite dimensional Banach space with a Schauder basis (yi)ni=1. We say that (yi)ni=1 is 
block representable in X if for every ε > 0 there exists a block sequence (xi)ni=1 in X
that is (1 + ε)-equivalent to (yi)ni=1. Given an infinite dimensional Banach space Z with 
a Schauder basis (zi)i we say that (zi)i is finitely block representable in X if for every 
n ∈ N the sequence (zi)ni=1 is block representable in X.

Given a Banach space X with a basis the Krivine set K(X) of X is the set of all 
p ∈ [1, ∞] so that the unit vector basis of �p (or of c0 in the case p = ∞) is finitely 
block representable in X. It was proved by J-L Krivine in [25] that this set is always 
non-empty. It is observed in [27, Subsection 1.6.3] that a stronger result holds, namely 
that there is p ∈ [1, ∞] so that for all ε > 0 and n ∈ N there exists a block sequence 
(xi)∞i=1 so that for all k1 < · · · < kn the sequence (xki

)ni=1 is (1 + ε)-equivalent to the 
unit vector basis of �np . We shall refer to the set of all such p’s as the strong Krivine set of 
X and denote it by K̃(X). Clearly, K̃(X) ⊂ K(X). It is clear that if X is asymptotic-�p, 
for some 1 ≤ p ≤ ∞ then K(X) = K̃(X) = {p}.
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Question 7. Let X be a Banach space with a basis. Does there exist a block subspace Y
of X so that K(Y ) = K̃(Y )?

We answer with question negatively by showing that for every block subspace Y of 
Xiw we have K̃(Y ) = {1} � [1, ∞] = K(Y ). We also point out that for every 1 < p < ∞
and every block subspace Y of Xp

iw we have K̃(Y ) = {p} � [p, ∞] = K(Y ).
We additionally show that all 1-unconditional sequences are finitely block repre-

sentable in every block subspace Y of Xiw. To show this we use a result from [31]
where it was observed that there is a family of finite unconditional sequences that is 
universal for all unconditional sequences.

Proposition 2.16 ([31]). Let n ∈ N and Xn be the finite dimensional space spanned by 
the sequence (ei,j)ni,j=1 ordered lexicographically and endowed with the norm∥∥∥∥∥∥

n∑
i=1

n∑
j=1

ai,jei,j

∥∥∥∥∥∥ = max
1≤j≤n

n∑
i=1

|ai,j |.

If X is a Banach space with a Schauder basis (xi)i so that for each n ∈ N the sequence 
(ei,j)ni,j=1 is block representable in X, then every 1-unconditional basic sequence is finitely 
block representable in X.

2.6. Asymptotically symmetric spaces

This is the final part of this section and we remind the notion of an asymptotically 
symmetric Banach space. It was introduced in [22] and the motivation stems from the 
theory of non-commutative Lp spaces.

Definition 2.17. A Banach space X is called asymptotically symmetric if there exists 
C > 0 so that for all l ∈ N, all bounded arrays of sequences (x(i)

j )j , 1 ≤ i ≤ l in X, and 
all permutations σ of {1, . . . , l} we have

lim
j1→∞

· · · lim
jl→∞

∥∥∥ l∑
i=1

x
(i)
ji

∥∥∥ ≤ C lim
jσ(1)→∞

· · · lim
jσ(l)→∞

∥∥∥ l∑
i=1

x
(i)
ji

∥∥∥ (3)

provided that both iterated limits exist.

This is a notion that is weaker than the one of stable Banach spaces. It also follows 
from the discussion leading up to [22, Proposition 1.1] that a reflexive asymptotic-�p
space is asymptotically symmetric. It was also observed there that Lp provides a coun-
terexample to the converse.

Question 8 (Junge, D. Kutzarova, E. Odell Problem 0.2 [22]). Let X be an asymptotically 
symmetric Banach space. Does X contain an asymptotic-�p (or asymptotic-c0) subspace?



S.A. Argyros, P. Motakis / Advances in Mathematics 362 (2020) 106962 17
It turns out that the spaces Xiw and X∗
iw are asymptotically symmetric and therefore 

each of them provides a negative answer to the above question. This is an immediate 
consequence of the next result, which follows easily from [22]. We include a proof for 
completeness.

Proposition 2.18. Let X be a reflexive Banach space that satisfies one of the following 
conditions.

(i) The space X has a Schauder basis (ei)i and it admits a uniformly unique �1 spreading 
model with respect to Fb.

(ii) The space X is separable and it admits a unique c0 spreading model with respect to 
F0.

Then X is asymptotically symmetric.

Proof. The statement of [22, Theorem 2.3] is that if a (not necessarily reflexive) Banach 
space satisfies (i) then it is block asymptotically symmetric, i.e., it satisfies (3) for ar-
rays of bounded block sequences in X. The statement of [22, Theorem 1.1 (c)] is that 
when X is reflexive with a basis then being asymptotic symmetric is equivalent to being 
block asymptotic symmetric. Similarly, [22, Theorem 2.4] yields that any Banach space 
satisfying (ii) is weakly asymptotically symmetric and once more [22, Theorem 1.1 (c)]
states that for reflexive spaces this is equivalent to being asymptotically symmetric. �
3. Definition of the space Xiw

We define the space Xiw by first defining a norming set Wiw. This is a norming 
set of the mixed-Tsirelson type with certain constraints applied to the weights of the 
functionals used in the construction.

3.1. Schreier sets

The Schreier families form an increasing sequence of families of finite subsets of the 
natural numbers, which first appeared in [1]. It is inductively defined in the following 
manner. Set

S0 =
{
{i} : i ∈ N

}
and S1 = {F ⊂ N : #F � min(F )}

and if Sn has been defined and set

Sn+1 =
{
F ⊂ N : F = ∪d

i=1Fi, where F1 < · · · < Fd ∈ Sn

and d � min(F )
}
.
1
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For each n, Sn is a regular family. This means that it is hereditary, i.e. if F ∈ Sn

and G ⊂ F then G ∈ Sn, it is spreading, i.e. if F = {i1 < · · · < id} ∈ Sn and 
G = {j1 < · · · < jd} with ip � jp for p = 1, . . . , d, then G ∈ Sn and finally it is compact, 
if seen as a subset of {0, 1}N . For each n ∈ N we also define the regular family

An = {F ⊂ N : #F ≤ n}.

For arbitrary regular families A and B we define

A ∗ B =
{
F ⊂ N : F = ∪k

i=dFi, where F1 < · · · < Fd ∈ B
and {min(Fi) : i = 1, . . . , d} ∈ A

}
,

then it is well known [4] and follows easily by induction that Sn ∗ Sm = Sn+m. Of 
particular interest to us is the family Sn ∗ Am, that is the family of all sets of the form 
F = ∪d

i=1Fi with F1 < · · · < Fd with #Fi ≤ m for 1 ≤ i ≤ d and {min(Fi) : 1 ≤ i ≤
d} ∈ Sn. From the spreading property of Sn it easily follows that such an F is the union 
at most m sets in Sn. Given a regular family A a sequence of vectors x1 < · · · < xk in 
c00(N) is said to be A-admissible if {min supp(xi) : i = 1, . . . , k} ∈ A.

3.2. Norming set

We fix a pair of strictly increasing sequences of natural numbers (mj)j , (nj)j with 
m1 = 2 and n1 = 1 satisfying the growth conditions

(i) for all C > 1 we have lim
j

Cnj

mj
= ∞,

(ii) lim
j

mj

mj+1
= 0, and

(iii) nj+1 > nj1 + · · · + njl + 1 for all l ∈ N and 1 ≤ j1, . . . , jl ≤ j with the property 
mj1 · · ·mjl < m2

j+1.

These properties can be achieved by taking any strictly increasing sequence of natural 
numbers (mj)j , with m1 = 2, satisfying (ii) and afterwards choosing any strictly increas-
ing sequence of natural numbers (nj)j , satisfying n1 = 1 and so that nj+1 > nj log(m2

j+1)
for all j ∈ N.

Notation. Let G be a subset of c00(N).

(i) Given j1, . . . , jl ∈ N and Snj1+···+njl
admissible functionals f1 < · · · < fd in G we 

call a functional of the form

f = 1
mj1 · · ·mjl

d∑
fq
q=1
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a weighted functional of G of weight w(f) = mj1 · · ·mjl and vector weight �w(f) =
(j1, . . . , jl). For all i ∈ N, we also call f = ±e∗i a weighted functional of weight 
w(f) = ∞ and in this case we do not define �w(f).

(ii) A (finite or infinite) sequence f1 < f2 < · · · < fq < · · · of weighted functionals of G
is called very fast growing if w(fq) > max supp(fq−1) for q > 1.

Note that if (fq)q is a sequence of very fast growing weighted functionals then any of 
the fq’s may be of the form ±e∗i for i ∈ N. Furthermore, the weight and vector weight 
of a functional may not be uniquely defined but this causes no problems.

Definition 3.1. Let Wiw be the smallest subset of c00(N) that satisfies the following two 
conditions.

(i) ±e∗i is in Wiw for all i ∈ N and
(ii) for every j1, . . . , jl ∈ N, and every Snj1+···+njl

-admissible and very fast growing 
sequence of weighted functionals (fq)dq=1 in Wiw the functional

f = 1
mj1 · · ·mjl

d∑
q=1

fq

is in Wiw.

We define a norm on c00(N) given by ‖x‖ = sup{f(x) : x ∈ Wiw} and we set Xiw to be 
the completion of (c00(N), ‖ · ‖).

Remark 3.2. Alternatively the set Wiw can be defined to be the increasing union of a 
sequence of sets (Wn)∞n=0 where W0 = {±ei : i ∈ N} and

Wn+1 = Wn ∪
{

1
mj1 · · ·mjl

d∑
q=1

fq : j1, . . . , jl ∈ N, and (fq)dq=1 is an

Snj1+···+njl
admissible and very fast growing sequence

of weighted functionals in Wn

}
.

Remark 3.3. By induction on n it easily follows that each set Wn is closed under changing 
signs and under taking projections onto subsets, hence the same holds for Wiw. This 
yields that the unit vector basis of c00(N) forms a 1-unconditional basis for the space 
Xiw.

Remark 3.4. It is easy to check by induction on the construction of Wiw that for every 
f ∈ Wiw each of it coordinates is either zero or of the form 1/d for some non-zero integer 
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d. As Wiw is closed under projections onto arbitrary subsets, we deduce that for every 
k ∈ N the set Wiw|k of all f ∈ Wiw with max supp(f) ≤ k is compact in the topology 
of point-wise convergence. This yields that for every x ∈ Xiw with supp(x) finite there 
is f ∈ Wiw with f(x) = ‖x‖.

4. The spreading model of block sequences in Xiw

We prove that every normalized block sequence in Xiw has a subsequence that gen-
erates a 4-�1 spreading model. This is unusual for constructions using saturations under 
constraints where typically at least two different spreading models appear (see, e.g., [10]). 
As it will be shown later the constraints impose a variety of asymptotic models and local 
block structure in Xiw.

Proposition 4.1. Let (xi)i be a normalized block sequence in Xiw. Then there exists L ∈
[N]∞ so that for every j0 ∈ N, every F ⊂ L with (xi)i∈F being Snj0

-admissible, and 
every scalar (ci)i∈F we have ∥∥∥∥∥∑

i∈F

cixi

∥∥∥∥∥ ≥ 1
2mj0

∑
i∈F

|ci|.

In particular, every normalized block sequence in Xiw has a subsequence that generates 
a spreading model that is 4-equivalent to the unit vector basis of �1.

Proof. We quickly observe that the second statement quickly follows from the first one 
and m1 = 2, n1 = 1. We now proceed to prove the first statement. For every k ∈ N

choose fk ∈ Wiw with fk(xk) = 1 so that ran(fk) ⊂ ran(xk). We distinguish two cases, 
namely the one in which lim supk w(fk) is finite and the one in which it is infinite.

In the first case, take an infinite subset L of N and j1, . . . , jl ∈ N so that for all k ∈ N

we have �w(fk) = mj1 · · ·mjl . For each k ∈ L write

fk = 1
mj1 · · ·mjl

dk∑
q=1

fk
q

where each sequence (fk
q )dk

q=1 is Snj1+···+njl
admissible and very fast growing with 

min supp(xk) ≤ max supp(fk
1 ) < w(fk

2 ), which implies that the sequence ((fk
q )dk

q=2)k∈L, 
enumerated in the natural way, is very fast growing. Also, for every k1 < · · · < kd in 
L so that (xk)k∈F is Snj0

-admissible the functionals ((fki
q )dk

q=2)ni=1 are Snj1+···+njl
+nj0

admissible and it follows that the functional

f = 1
mj1 · · ·mjlmj0

n∑ dki∑
fki
q is in Wiw.
i=1 q=2
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As for each k ∈ N the functional fk
1 ∈ Wiw we have fk

1 (xk) ≤ 1 and therefore

1
mj1 · · ·mjl

dk∑
q=2

fk
q (xk) ≥ f(xk) −

1
mj1 · · ·mjl

fk
1 (xk) ≥ 1 − 1/2 = 1/2. (4)

For any k1 < · · · < kn in L so that (xk)k∈F is Snj0
-admissible and scalars a1, . . . , an we 

conclude

∥∥∥∥∥
n∑

i=1
aixki

∥∥∥∥∥ =

∥∥∥∥∥
n∑

i=1
|ai|xki

∥∥∥∥∥ ≥ 1
mj1 · · ·mjlmj0

n∑
i=1

dki∑
q=2

fki
q

⎛⎝ n∑
j=1

|aj |xkj

⎞⎠
= 1

mj0

n∑
i=1

|ai|
1

mj1 · · ·mjl

dki∑
q=2

fki
q (xki

)

≥ 1
mj0

n∑
i=1

1
2 |ai| = 1

2mj0

n∑
i=1

|ai|.

In the second case we may choose an infinite subset of L so that (fk)k∈L is very fast 
growing. As m1 = 2 and n1 = 1 we deduce that for any k1 < · · · < kn in L so that 
(xk)k∈F is Snj0

-admissible the functional

f = 1
mj0

n∑
i=1

fki

is in Wiw. As before, for every k1 < · · · < kn in L so that (xk)k∈F is Snj0
-admissible and 

scalars a1, . . . , an we conclude that ‖ 
∑n

i=1 aixki
‖ ≥ (1/mj0) 

∑n
i=1 |ai|. �

An easy consequence of the above result is the following.

Corollary 4.2. The strong Krivine set of Xiw is K̃(Xiw) = {1}.

5. The auxiliary space

For every N we define an auxiliary space that is defined by a norming set WN
aux very 

similar to Wiw. The reason for which we define an infinite family of auxiliary spaces is 
because we are interested in the almost isometric representation of finite unconditional 
sequences as block sequences in Xiw. To define this norming set we slightly alter the 
notions of weighted functionals and very fast growing sequences. In this case, given a 
subset G of c00(N) we will call a functional f an auxiliary weighted functional of weight 
w(f) = mj1 · · ·mjl and vector weight �w(f) = (mj1 , . . . , mjl), for j1, . . . , jn ∈ N, if it is 
of the form
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f = 1
mj1 · · ·mjl

d∑
q=1

fq

where the functionals (fq)dq=1 are in G and they are Snj1+···+njl
∗ A3 admissible. For 

all i ∈ N we will also say that f = ±e∗i is an auxiliary weighted functional of weight 
w(f) = ∞ and we do not define �w(f) in this case. A sequence of auxiliary weighted 
functionals (fq)q will be called N -sufficiently large if w(fq) > N for q ≥ 2. There is no 
restriction on w(f1).

Definition 5.1. For N ∈ N let WN
aux be the smallest subset of c00(N) that satisfies the 

following to conditions.

(i) ±e∗i is in WN
aux for all i ∈ N and

(ii) for every j1, . . . , jl ∈ N and every Snj1+···+njl
∗ A3 admissible sequence of N -

sufficiently large auxiliary weighted functionals (fq)dq=1 in WN
aux the functional

f = 1
mj1 · · ·mjl

d∑
q=1

fq

is in WN
aux.

We define a norm ‖ · ‖aux,N on c00(N) by setting ‖x‖aux,N = sup{f(x) : f ∈ WN
aux} for 

x ∈ c00(N).

Remark 5.2. As in Remark 3.2 the set WN
aux can be defined as an increasing union of 

sets (WN
n )∞n=0 where WN

0 = {±ei : i ∈ N} and for each n ∈ N the set WN
n+1 is defined 

by using N -sufficiently large Snj1+···+njl
∗ A3 admissible sequences in WN

n .

The purpose of the two lemmas in this section is to bound the norm of linear combi-
nations of certain vectors in the auxiliary spaces from above. The final estimate of this 
section is (10) which will be used to bound the norm of appropriately chosen vectors in 
Xiw. We first need to recall the notion of special convex combinations, (see [4], [7], [12]).

Definition 5.3. Let x =
∑

i∈F ciei be a vector in c00(N), n ∈ N, and ε > 0. The vector x
is called a (n, ε)-basic special convex combination (or a (n, ε)-basic s.c.c.) if the following 
are satisfied:

(i) F ∈ Sn, ci � 0 for i ∈ F and 
∑

i∈F ci = 1,
(ii) for any G ⊂ F with G ∈ Sn−1 we have that 

∑
i∈G ci < ε.

We will use the following simple remark in the forthcoming lemma.
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Remark 5.4. Let n ∈ N, ε > 0, and x =
∑

i∈F ciei be a (n, ε) special convex combination. 
If k, m ∈ N with k < n and G ⊂ F with G ∈ Sk ∗ Am then 

∑
i∈G ci < mε.

Lemma 5.5. Let j0 ∈ N, ε > 0, x =
∑

r∈F crer be a (nj0 − 1, ε) basic s.c.c., and 
x̃ = mj0x. Let also j1, . . . , jl ∈ N with max1≤i≤l ji �= j0, G ∈ Snj1+···+njl

∗ A3 and 
f = (mj1 · · ·mjl) 

∑
i∈G e∗i . Then

|f(x)| ≤ max
{

2εmj0 ,
mj0

mj0+1
,

1
mj0

}
. (5)

Proof. If max1≤i≤l ji > j0 then ‖f‖∞ ≤ 1/(mj0+1) which yields

|f(x̃)| ≤ ‖f‖∞‖x̃‖1 ≤ mj0

mj0+1
. (6)

If max1≤i≤l ji < j0 we distinguish two cases, namely whether nj1 + · · · + njl < nj0 − 1
or otherwise. In the first case, as G ∈ Snj1+···+njl

∗ A3 we obtain

|f(x̃)| ≤ mj0

mj1 · · ·mjl

∑
i∈G∩F

ci ≤
mj0

2 3ε. (7)

If on the other hand max1≤i≤l ji < j0 and nj1 + · · · + njl ≥ nj0 − 1, by property (iii) of 
the sequences (mj)j , (nj)j we obtain mj1 · · ·mjl ≥ m2

j0
which gives ‖f‖∞ ≤ 1/m2

j0
. We 

conclude

|f(x̃)| ≤ ‖f‖∞‖x̃‖1 ≤ mj0

m2
j0

= 1
mj0

. (8)

The result follows from combining (6), (7), and (8). �
Lemma 5.6. Let N, k, l ∈ N, ε > 0, (ti)ki=1 be pairwise different natural numbers and 
(xi,j)1≤i≤k,1≤j≤l be vectors in c00(N) so that for each i, j the vector xi,j is of the form

xi,j = mti x̃i,j , where x̃i,j =
∑

r∈Fi,j

ci,jr er is a (nti − 1, ε) basic s.c.c. (9)

Then, for any scalars (ai,j)1≤i≤k,1≤j≤l and f ∈ WN
aux we have∣∣∣∣∣∣f

⎛⎝ l∑
j=1

k∑
i=1

ai,jxi,j

⎞⎠∣∣∣∣∣∣ ≤ (1 + δ) max
1≤i≤k

l∑
j=1

|ai,j |, (10)

for any δ satisfying

δ ≥
k∑

max
{

12εmti , 12 1
mt

, 6 1
N

mti , 6
mti

mt +1

}
. (11)
i=1 i i
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Remark 5.7. We point out that the vectors xi,j, 1 ≤ i ≤ k, 1 ≤ j ≤ l, are not required to 
have successive or disjoint supports.

Proof of Lemma 5.6. The proof is performed by induction on m = 0, 1, . . . by showing 
that (10) holds for every f ∈ WN

m . For m = 0 the result easily follows from the fact that 
for all n ∈ N and 1 ≤ i ≤ k, 1 ≤ j ≤ l we have |e∗n(xi,j)| ≤ mtiε which yields

∣∣∣∣∣∣e∗n
⎛⎝ l∑

j=1

k∑
i=1

ai,jxi,j

⎞⎠∣∣∣∣∣∣ ≤
(
ε

k∑
i=1

mti

)
max
1≤i≤k

l∑
j=1

|ai,j |.

Assume that the conclusion holds for every f ∈ WN
m and let f ∈ WN

m+1 \WN
m . Write

f = 1
mj1 · · ·mja

d∑
q=1

fq

where j1, . . . , ja ∈ N and (fq)dq=1 is an N -sufficiently large and Snj1+···+nja
∗ A3-

admissible sequence of functionals in WN
m . We define b = max{j1, . . . , ja}. The inductive 

assumption yields

∣∣∣∣∣∣f1

⎛⎝ l∑
j=1

k∑
i=1

ai,jxi,j

⎞⎠∣∣∣∣∣∣ ≤ (1 + δ) max
1≤i≤k

l∑
j=1

|ai,j |. (12)

Set B = {2 ≤ q ≤ d : fq = ±e∗n for some n ∈ N} and C = {2, . . . , d} \B. Define

g1 = 1
mj1 · · ·mja

f1, g2 = 1
mj1 · · ·mja

∑
q∈B

fq, and g3 = 1
mj1 · · ·mja

∑
q∈C

fq.

Clearly, f = g1 + g2 + g3. It follows from the definition of N -sufficiently large that 
‖g3‖∞ ≤ 1/(Nmj1 · · ·mja) which implies that for all 1 ≤ i ≤ k, 1 ≤ j ≤ l we have 
|g3(xi,j)| ≤ mti/(Nmj1 · · ·mja) and hence

∣∣∣∣∣∣g3

⎛⎝ l∑
j=1

k∑
i=1

ai,jxi,j

⎞⎠∣∣∣∣∣∣ ≤
(

1
Nmj1 · · ·mja

k∑
i=1

mti

)
max
1≤i≤k

l∑
j=1

|ai,j |

≤ δ

6 max
1≤i≤k

l∑
j=1

|ai,j |.

(13)

Lemma 5.5 yields that if we set D = {1 ≤ i ≤ k : ti �= b} then
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∣∣∣∣∣∣g2

⎛⎝ l∑
j=1

n∑
i∈D

ai,jxi,j

⎞⎠∣∣∣∣∣∣ ≤
l∑

j=1

∑
i∈D

|ai,j |max
{

2εmti ,
mti

mti+1
,

1
mti

}

≤ δ

6 max
1≤i≤k

l∑
j=1

|ai,j |,

whereas an easy computation yields that if there is 1 ≤ i0 ≤ k with b = ti0 then for all 
1 ≤ j ≤ l we have |g2(xi0,j)| ≤ 1 and hence

∣∣∣∣∣∣g2

⎛⎝ l∑
j=1

ai0,jxi0,j

⎞⎠∣∣∣∣∣∣ ≤
l∑

j=1
|ai0,j | ≤ max

1≤i≤k

l∑
j=1

|ai0,j |. (14)

We now have all the necessary components to complete the inductive step. We consider 
two cases, namely one in which such an i0 does not exist (i.e. when D = {1, . . . , k}) and 
one in which such an i0 exists (i.e. b = ti0 for some 1 ≤ i0 ≤ k). In the first case we 
obtain∣∣∣∣∣∣f

⎛⎝ l∑
j=1

k∑
i=1

ai,jxi,j

⎞⎠∣∣∣∣∣∣
≤

∣∣∣∣∣∣g1

⎛⎝ l∑
j=1

k∑
i=1

ai,jxi,j

⎞⎠∣∣∣∣∣∣ +

∣∣∣∣∣∣g2

⎛⎝ l∑
j=1

k∑
i=1

ai,jxi,j

⎞⎠∣∣∣∣∣∣ +

∣∣∣∣∣∣g3

⎛⎝ l∑
j=1

k∑
i=1

ai,jxi,j

⎞⎠∣∣∣∣∣∣
=

∣∣∣∣∣∣g1

⎛⎝ l∑
j=1

k∑
i=1

ai,jxi,j

⎞⎠∣∣∣∣∣∣ +

∣∣∣∣∣∣g2

⎛⎝ l∑
j=1

∑
i∈D

kai,jxi,j

⎞⎠∣∣∣∣∣∣ +

∣∣∣∣∣∣g3

⎛⎝ l∑
j=1

k∑
i=1

ai,jxi,j

⎞⎠∣∣∣∣∣∣
≤

(
1 + δ

mj1 · · ·mja

+ δ

6 + δ

6

)
max
1≤i≤k

l∑
j=1

|ai,j | ≤ (1 + δ) max
1≤i≤k

l∑
j=1

|ai,j |.

In the second case∣∣∣∣∣∣f
⎛⎝ l∑

j=1

k∑
i=1

ai,jxi,j

⎞⎠∣∣∣∣∣∣
≤

∣∣∣∣∣∣g1

⎛⎝ l∑
j=1

k∑
i=1

ai,jxi,j

⎞⎠∣∣∣∣∣∣ +

∣∣∣∣∣∣g2

⎛⎝ l∑
j=1

k∑
i=1

ai,jxi,j

⎞⎠∣∣∣∣∣∣ +

∣∣∣∣∣∣g3

⎛⎝ l∑
j=1

k∑
i=1

ai,jxi,j

⎞⎠∣∣∣∣∣∣
=

∣∣∣∣∣∣g1

⎛⎝ l∑
j=1

k∑
i=1

ai,jxi,j

⎞⎠∣∣∣∣∣∣ +

∣∣∣∣∣∣g2

⎛⎝ l∑
j=1

∑
ai,jxi,j

⎞⎠∣∣∣∣∣∣ +

∣∣∣∣∣∣g2

⎛⎝ l∑
j=1

ai0,jxi0,j

⎞⎠∣∣∣∣∣∣
i∈D
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+

∣∣∣∣∣∣g3

⎛⎝ l∑
j=1

k∑
i=1

ai,jxi,j

⎞⎠∣∣∣∣∣∣ (use mj1 · · ·mja ≥ mti0
)

≤
(

1 + δ

mti0

+ δ

6 + 1 + δ

6

)
max
1≤i≤k

l∑
j=1

|ai,j | (use δ ≥ 6/mti0
)

≤
(

1 + 3δ6 + δ

2

)
max
1≤i≤k

l∑
j=1

|ai,j |.

The proof is complete �
6. Rapidly increasing sequences and the basic inequality

Rapidly increasing sequences appear in every HI-type construction and this case is 
no different as the definition below follows the line of classical examples such as [8]. 
The basic inequality on such sequences is the main tool used to bound the norm of 
such vectors from above by the norm of vectors in the auxiliary spaces. To achieve the 
isometric representation of unconditional sequences as block sequences in subspaces of 
Xiw we give a rather tight estimate in the basic inequality (15).

Definition 6.1. Let C ≥ 1, I be an interval of N and (ji)i∈I be a strictly increasing 
sequence of natural numbers. A block sequence (xi)i∈I is called a (C, (ji)i∈I) rapidly 
increasing sequence (RIS) if the following are satisfied.

(i) For all i ∈ I we have ‖xi‖ ≤ C,
(ii) for i ∈ I \ {min(I)} we have max supp(xi−1) <

√
mji , and

(iii) |f(xi)| ≤ C/w(f) for every i ∈ I and f ∈ Wiw with w(f) < mji .

Proposition 6.2 (basic inequality). Let (xi)i∈I be a (C, (ji)i∈I)-RIS, (ai)i∈I be a sequence 
of scalars, and N < min{mjmin(I) , min supp(xmin(I))} be a natural number. Then, for 
every f ∈ Wiw there exist h ∈ {±e∗i : i ∈ N} ∪ {0} and g ∈ WN

aux with w(f) = w(g) so 
that if ti = max supp(xi) for i ∈ I then we have∣∣∣∣∣f

(∑
i∈I

aixi

)∣∣∣∣∣ ≤ C

(
1 + 1

√
mji0

)∣∣∣∣∣(h + g)
(∑

i∈I

aieti

)∣∣∣∣∣ . (15)

Proof. We use Remark 3.2 to prove the statement by induction on n = 0, 1, . . . for every 
f ∈ Wn and every RIS. We shall also include in the inductive assumption that supp(h)
and supp(g) are subsets of {ti : i ∈ I} as well as the following:

(i) either h = 0,
(ii) or h is of the form ±e∗t for some i1 ∈ I, ti1 < min supp(g), and w(f) > N .
i1
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For n = 0 the result is rather straightforward so let us assume that the conclusion 
holds for every f ∈ Wn and let f ∈ Wn+1. Let

f = 1
ms1 · · ·msl

d∑
q=1

fq

with (fq)dq=1 being an Sns1+···+nsl
admissible and very fast growing sequence of weighted 

functionals in Wn. By perhaps omitting an initial interval of the fq’s we may assume 
that max supp(f1) ≥ min supp(x1). This means that for all 1 < q ≤ d we have w(fq) >
max supp(f1) > N . We shall use this near the end of the proof. Define

i0 = max {i ∈ I : ms1 · · ·msl ≥ mji} ,

if such an i0 exists (we will treat the case in which such an i0 does not exist slightly 
further below). In this case w(f) = ms1 · · ·msl ≥ mji0

> N . Choose min(I) ≤ i1 ≤ i0
that maximizes the quantity |ai| for i in {min(I), . . . , i0} and set h = sign(f(ai1xi1))e∗i1 . 
If i0 > min(I) it is straightforward to check ‖ 

∑
i<i0

aixi‖∞ ≤ C|ai1 | and we use this to 
show∣∣∣∣∣∣f

⎛⎝∑
i≤i0

aixi

⎞⎠∣∣∣∣∣∣ ≤ max supp(xi0−1)

∥∥∥∥∥∑
i<i0

aixi

∥∥∥∥∥
∞

1
w(f) + |f(ai0xi0)|

≤ C
max supp(xi0−1)

mji0

|ai1 | + C|ai1 | ≤ C

(
1 + 1

√
mji0

)
|ai1 |

= C

(
1 + 1

√
mji0

)∣∣∣∣∣h
(∑

i∈I

aieti

)∣∣∣∣∣ .
(16)

If i0 = min(I) we simply obtain |f(
∑

i≤i0
aixi)| ≤ C|ai1 |. In either case estimate (16)

holds.
If such an i0 does not exist (i.e. when w(f) < mjmin(I)) then set h = 0 and we have 

no lower bound for w(f). This is of no concern as such a restriction is not included in 
the inductive assumption when h = 0.

Depending on whether the above i0 exists or not define Ĩ = {i ∈ I : i > i0} or Ĩ = I. 
It remains to find g ∈ WN

aux with w(g) = w(f) and supp(g) ⊂ {ti : i ∈ Ĩ} so that 
|f(

∑
i∈Ĩ aixi)| ≤ C(1 + 1/mj0)|g(

∑
i∈Ĩ aieti)|. Define

A =
{
i ∈ Ĩ : there exists at most one q with ran(xi) ∩ ran(fq) �= ∅

}
,

Iq = {i ∈ A : ran(fq) ∩ ran(xi) �= ∅} for 1 ≤ q ≤ d,

D = {1 ≤ q ≤ d : Iq �= ∅} and

B = Ĩ \A.
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Observe that the Iq’s are pairwise disjoint intervals. Apply the inductive assumption for 
each fq with q ∈ D and the (C, (mji)i∈Iq ) RIS (xi)i∈Iq to find hq ∈ {±e∗ti : i ∈ Iq} ∪ {0}
and gq ∈ WN

aux satisfying the inductive assumption, in particular∣∣∣∣∣∣fq
⎛⎝∑

i∈Iq

aixi

⎞⎠∣∣∣∣∣∣ ≤ C

(
1 + 1√

mjiq0

)∣∣∣∣∣∣(hq + gq)

⎛⎝∑
i∈Iq

aieti

⎞⎠∣∣∣∣∣∣ .
Using the above it is not hard to see that h and

g = 1
ms1 · · ·msl

(∑
i∈B

sign(f(aixi))e∗ti +
d∑

q=1
hq +

d∑
q=1

gq

)

satisfy (15). To complete the proof it remains to show that the vectors
(e∗ti)i∈B

�(hq)q∈D
�(gq)q∈D can be ordered to form an Sns1+···+nsl

∗ A3 admissible and 
N -sufficiently large sequence.

For each 1 ≤ q ≤ d we shall define a collection of at most three functionals Fq (it may 
also be empty) with the following properties:

(a) for each φ ∈ Fq we have min supp(fq) ≤ min supp(φ) and if 1 ≤ q < d the 
max supp(φ) < min supp(fq+1)

(b) ∪1≤q≤dFq = {e∗ti : i ∈ B} ∪ {hq : q ∈ D} ∪ {gq : q ∈ D}

For each i ∈ B set qi = max{1 ≤ q ≤ d : min supp(fq) ≤ max supp(xi)}. Note that 
the correspondence i → qi is strictly increasing. For each q for which there is i so that 
q = qi set Fq = {hq, gq, e∗ti}. Depending on whether q ∈ D and whether hq = 0, some of 
the functionals hq, gq may be omitted. For q for which there is no i with q = qi define 
Fq = {hq, gq}, omitting if necessary any of hq or gq. Properties (a) and (b) are not very 
hard to show.

It now follows from (a) and the spreading property of the Schreier families that the 
set {min supp(h) : h ∈ ∪1≤q≤dFq} is Sns1+···+nsl

∗ A3 admissible. It follows from (b) 
that ordering the functionals in (e∗ti)i∈B

�(hq)q∈D
�(gq)q∈D according to the minimum 

of their supports they are Sns1+···+nsl
∗ A3 admissible.

We now show that the sequence is N sufficiently large. Recall now that for all q > 1 we 
have w(fq) > N and hence if gq is defined we have w(gq) > N . It remains to show that 
if g1 is defined and it does not appear first in the enumeration above then w(g1) > N . 
For this to be the case, the set F1 must contain the functional h1 �= 0. By the inductive 
assumption this means w(g1) = w(f1) > N and the proof is complete. �
6.1. Existence of rapidly increasing sequences

As is the case in past constructions, rapidly increasing sequences are given by spe-
cial convex combinations of normalized block vectors that are bounded from below. To 
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achieve the desired isometric representation we show that this lower bound may be cho-
sen arbitrarily close to one. We then show that such sequences can be chosen to be C-RIS 
for any C > 1.

Proposition 6.3. Let Y be a block subspace of X. Then for every n ∈ N, ε, and δ > 0
there exists a (n, ε) s.c.c. x =

∑m
i=1 cixi with ‖x‖ > 1/(1 + δ) where x1, . . . , xm are in 

the unit ball of Y .

Proof. Towards a contradiction assume that the conclusion is false. That is, for all Sn-
admissible vectors (xi)mi=1 in the unit ball of Y so that the vector x =

∑m
i=1 cixi is a 

(n, ε) s.c.c. we have ‖x‖ ≤ 1/(1 + δ).
Start with a normalized block sequence (xi)i in Y and take a subsequence (x0

i )i that 
satisfies the conclusion of Proposition 4.1. Using the properties of (mj), (nj)j fix j ∈ N

with nj ≥ n and (
(1 + δ)

1
n

)nj

mj
≥ 2(1 + δ). (17)

Define inductively block sequences (xk
i )i for 0 ≤ k ≤ �nj/n� satisfying.

(i) for each i, k there is a subset F k
i of N so that (xk−1

m )m∈Fk
i

is Sn admissible and 
coefficients (ck−1

m )m∈Fk
i

so that x̃k
i =

∑
m∈Fk

i
ck−1
m xk−1

m is a (n, ε) s.c.c.
(ii) for each i, k we set xk

i = (1 + δ)x̃k
i .

Using the negation of the desired conclusion, it is straightforward to check by induction 
that ‖xk

i ‖ ≤ 1 and that for k ≤ �nj/n� each vector xk
i can be written in the form

xk
i = (1 + δ)k

∑
m∈Gk

i

dkmx0
m

for some subset Gk
i of N so that (x0

m)m∈Gk
i

is Snk admissible and the coefficients satisfy ∑
m∈Gk

i
dkm = 1. As the sequence satisfies the conclusion of Proposition 4.1 we deduce 

that for k = �nj/n� we have nj − n < kn ≤ nj

1 ≥ ‖xk
i ‖ ≥ (1 + δ)k

2mj
>

(1 + δ)
nj
n

2mj
,

and therefore by (17) 1 ≥ 1 + δ which is absurd. �
Proposition 6.4. Let x =

∑m
i=1 cixi be a (n, ε) s.c.c. with ‖xi‖ ≤ 1 for 1 ≤ i ≤ m and 

f ∈ Wiw with �w(f) = (j1, . . . , jl) so that nj1 + · · · + njl < n. Then we have

|f(x)| ≤ 1 + 2εw(f)
.

w(f)
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Proof. Let f = (1/mj1 · · ·mjl) 
∑d

q=1 fq with (fq)dq=1 Snj1+···+njl
-admissible. Consider 

the subset of {1, . . . , m}

A = {i : there is at most one 1 ≤ q ≤ d with ran(xi) ∩ ran(fq) �= ∅} (18)

and observe that for each i ∈ A we have |f(xi)| ≤ 1/(mj1 · · ·mjl) and hence

∣∣∣∣∣f
(

m∑
i=1

cixi

)∣∣∣∣∣ ≤ 1
mj1 · · ·mjl

∑
i∈A

ci +
∑
i/∈A

ci. (19)

Set B = {1, . . . , m} \ A. By the shifting property of the Schreier families it follows 
that the vectors (xi)i∈B\{min(B)} are Snj1+···+njl

admissible. As the singleton {x1} is S1

admissible we conclude that 
∑

i∈B ci < 2ε. Applying this to (19) immediately yields the 
desired conclusion. �
Corollary 6.5. Let Y be a block subspace of X and C > 1. Then there exists an infinite 
(C, (ji)i)-RIS (xi)i in Y with ‖xi‖ ≥ 1 for all i ∈ N.

Proof. We define the sequence (xi)i inductively as follows. Fix δ > 0 with 1 + δ < C

and having chosen x1, . . . , xi−1 choose ji with 
√
mji > max supp(xi−1), choose a natural 

number ki with the property that for all s1, . . . , sl ∈ N that satisfy ms1 · · ·msl < mji

we have ns1 + · · · + nsl < ki, and choose εi > 0 with (1 + δ)(1 + 2εimi) ≤ C. Use 
Proposition 6.3 to find an (ki, εi) s.c.c. (yi) in Y with min supp(yi) > max supp(xi) and 
1/(1 + δ) ≤ ‖yi‖ ≤ 1 and set xi = (1 + δ)yi. Proposition 6.4 yields that (xi)i is the 
desired vector. �
7. Hereditary asymptotic structure of Xiw

This section is devoted to the study of the asymptotic behavior of subspaces of Xiw. 
As it was shown in Section 4 the space Xiw only admits spreading models 4-equivalent 
to the unit vector basis of �1. We show that the joint behavior of arrays of sequences 
does not retain this uniform behavior. In fact, c0 is an asymptotic model of every sub-
space of Xiw and every 1-unconditional sequence is block finitely representable in every 
block subspace of Xiw. These results in particular yield that Xiw does not have an 
asymptotic-�p subspace.

We need to recall some further details regarding special convex combinations. The 
next result is from [9]. For a proof see [12, Chapter 2, Proposition 2.3].

Proposition 7.1. For every infinite subset of the natural numbers M , any n ∈ N, and 
ε > 0 there exist F ⊂ M and non-negative real numbers (ci)i∈F so that the vector 
x =

∑
i∈F ciei is a (n, ε)-basic s.c.c.
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Definition 7.2. Let x1 < · · · < xd be vectors in c00(N) and ψ(i) = min supp(xi), for 
i = 1, . . . , d. If the vector 

∑m
i=1 cieψ(i) is a (n, ε)-basic s.c.c. for some n ∈ N and ε > 0

then the vector x =
∑m

i=1 cixi is called a (n, ε)-special convex combination (or (n, ε)-
s.c.c.).

The following simple remark will be used in the proof of the next Proposition.

Remark 7.3. Let n ∈ N, ε > 0, and x =
∑

i∈F ciei be a (n, ε) special convex combination. 
If F = {t1 < · · · < td} we can write x =

∑d
i=1 c̃ieti . If G ⊂ N is of the form G = {s1 <

· · · < sd} with ti ≤ si for 1 ≤ i ≤ d and si ≤ ti+1 for 1 ≤ i < d then the vector 
x =

∑d
i=1 c̃iesi is a (n, 2ε) special convex combination. In particular, if x =

∑m
i=1 cixi

is a (n, ε)-s.c.c. and φ(i) = max supp(xi) for 1 ≤ i ≤ d then the vector 
∑d

i=1 cieφ(i) is a 
(n, 2ε)-basic s.c.c.

Proposition 7.4. Let Y be a block subspace of Xiw and ε > 0. Then there exists an array 
of block sequences (x(i)

j )j, i ∈ N, in Y so that for any k, l ∈ N, scalars (ai,j)1≤i≤k,1≤j≤l, 
and plegma family (si)ki=1 in [N]l with min(s1) ≥ max{k, l} we have

max
1≤i≤k

l∑
j=1

|ai,j | ≤

∥∥∥∥∥∥
k∑

i=1

l∑
j=1

ai,jx
(i)
si(j)

∥∥∥∥∥∥ ≤ (1 + ε) max
1≤i≤k

l∑
j=1

|ai,j |. (20)

Proof. Fix 1 < C < min{(1 + ε)1/4, 2} and 0 < δ ≤ ((1 + ε)1/2 − 1)/2. Using the 
properties of the sequences (mj)j , (nj)j from Section 3.2, page 18 we fix a sequence of 
pairwise different natural numbers (ti)∞i=1 satisfying for i ∈ N

1
mti

≤ δ

12 · 2i and mti

mti+1
≤ δ

6 · 2i . (21)

For each k ∈ N fix ε̄k > 0 and Nk ∈ N so that for 1 ≤ i ≤ k

ε̄k ≤ δ

12mti2i
and mti

Nk
≤ δ

6 · 2i . (22)

Observe that for any k ∈ N we have that δ, Nk, ε̄k, and (mti)ki=1 satisfy (11).
Use Corollary 6.5 to find an infinite (C, (j̄s)s)-RIS (ys)s in Y with ‖ys‖ ≥ 1 for all 

s ∈ N. By perhaps passing to a subsequence we may assume that for all s ∈ N we have

1
√
mj̄s

≤ (1 + ε)1/4 − 1,

Ns ≤ mj̄s
, and min supp(ys) ≥ max

1≤i≤s
{nti , Ni, 6/ε̄i}.

(23)

For each s find fs in Wiw with supp(fs) ⊂ supp(ys) and fs(ys) = ‖ys‖ ≥ 1. Note that for 
all s we have w(fs) ≥ mj̃ , otherwise by Property (iii) of Definition 6.1 we would have 
s
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1 ≤ fs(ys) ≤ C/w(fs) < 2/w(fs) ≤ 1 (because m1 = 2) which is absurd. Hence, using 
Property (ii) of Definition 6.1, for all s > 1 we have w(fs) ≥ mj̃s

≥ (max supp(ys−1))2 ≥
(max supp(fs−1))2 > max supp(fs−1), i.e. (fs)s is very fast growing.

Choose disjoint finite subsets of N, F (i)
j , i, j ∈ N, so that for each i, j ∈ N we have 

F
(i)
j < F

(i)
j+1 and {min supp(ys) : s ∈ F

(i)
j } is a maximal Snti

−1 set. Using Proposition 7.1
find coefficients (ci,js )

s∈F
(i)
j

so that the vector x̃i,j =
∑

s∈F
(i)
j

ci,js ys is an (nji − 1, ̄εj/2)
s.c.c. Note that by Remark 7.3 if φs = max supp(ys) then the vector z̃i,j =

∑
s∈F

(i)
j

ci,js eφs

is a (nji − 1, ̄εj) basic s.c.c. Hence, for any k, l ∈ N and k ≤ si(1) < · · · < si(l), for 
1 ≤ i ≤ k the vectors z(i)

si(j) = mti z̃i,si(j), 1 ≤ i ≤ k 1 ≤ j ≤ l satisfy (10) of Lemma 5.6
with the δ, Nk, ε̄k chosen above.

Define x(i)
j = mti x̃i,j for i, j ∈ N. We will show that this is the desired sequence and 

to that end let k, l ∈ N and let (si)ki=1 be a plegma in [N]l with min(s1) ≥ max{k, l}. 
For the upper inequality, Proposition 6.2 yields that for any scalars (ai,j)1≤i≤k,1≤j≤l we 
have

∥∥∥∥∥∥
l∑

j=1

k∑
i=1

ai,jx
(i)
si(j)

∥∥∥∥∥∥ ≤

≤ C

(
1 + 1

√
mj̄1

)⎛⎝ max
1≤i≤k
1≤j≤l

max
s∈F

(i)
j

(
mti |ai,j |ci,js

)
+

∥∥∥∥∥∥
l∑

j=1

k∑
i=1

ai,iz
(i)
si(j)

∥∥∥∥∥∥
aux,Nk

⎞⎠

≤ (1 + ε)1/4 (1 + ε)1/4
⎛⎝ max

1≤i≤k
1≤j≤l

(mti |ai,j |ε̄k) +

∥∥∥∥∥∥
l∑

j=1

k∑
i=1

ai,iz
(i)
si(j)

∥∥∥∥∥∥
aux,Nk

⎞⎠

≤ (1 + ε)1/2
⎛⎝δ max

1≤i≤k

l∑
j=1

|ai,j | +

∥∥∥∥∥∥
l∑

j=1

k∑
i=1

ai,iz
(i)
si(j)

∥∥∥∥∥∥
aux,Nk

⎞⎠

≤ (1 + ε)1/2
⎛⎝δ max

1≤i≤k

l∑
j=1

|ai,j | + (1 + δ) max
1≤i≤k

l∑
j=1

|ai,j |

⎞⎠ (from (10))

≤ (1 + ε)1/2(1 + 2δ) max
1≤t≤n

n∑
s=1

|as,t| ≤ (1 + ε) max
1≤t≤n

n∑
s=1

|as,t|.

For the lower inequality we observe that for fixed 1 ≤ i0 ≤ n the functionals 
((fs)s∈F

(i0)
si0 (j)

)lj=1 are very fast growing and for each 1 ≤ j ≤ l the functionals (fs)s∈F
(i0)
si0 (j)

are Snti0
−1 admissible. It follows from (23) that ((fs)s∈F

(i0)
si0 (j)

)lj=1 is Snti0
-admissible and 

hence f = (1/mti0
) 
∑l

j=1
∑

s∈F
(i0)
i0,j

fs is in Wiw. It follows that f(x(i0)
si0 (j)) ≥ 1 for all 

1 ≤ j ≤ l which means that for any coefficients (ai,j)1≤i≤k,1≤j≤l we have
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∥∥∥∥∥∥
l∑

j=1

k∑
i=1

ai,jx
(i)
j

∥∥∥∥∥∥ =

∥∥∥∥∥∥
l∑

j=1

k∑
i=1

|ai,j |x(i)
j

∥∥∥∥∥∥ ≥ f

⎛⎝ l∑
j=1

k∑
i=1

|ai,j |x(i)
j

⎞⎠
= f

⎛⎝ l∑
j=1

|ai0,j |x
(i0)
j

⎞⎠ ≥
l∑

j=1
|ai0,j |. �

Theorem 7.5. Let Y be a block subspace of Xiw.

(a) For every ε > 0 there exists an array of block sequences in Y that generates an 
asymptotic model that is (1 + ε)-equivalent to the unit vector basis of c0.

(b) For every ε > 0 and k ∈ N there exists a k-array of block sequences in Y that 
generates a joint spreading model (1 + ε)-equivalent to the basis of �k∞(�1).

In particular, X does not contain an asymptotic-�1 subspace.

Proof. Let (x(i)
j )j , i ∈ N be the infinite array given by Proposition 7.4, for some fixed 

ε > 0. Then, it easily follows that this infinite array generates the unit vector basis of c0
as a spreading model. This is because the asymptotic model is witnessed by taking one 
vector from each sequence. It is entirely immediate by the definition of joint spreading 
models that the first k sequences in the array generate the basis of �k∞(�1) as a joint 
spreading model. �
Corollary 7.6. Let Y be a block subspace of Xiw. Every 1-unconditional basic sequence 
is finitely block representable in Y . In fact, for every k ∈ N every k-dimensional space 
with a 1-unconditional basis is an asymptotic space for Y , in the sense of [27].

Proof. By Proposition 2.16 it is sufficient to show that the sequence (ei,j)ni,j=1 mentioned 
in the statement of that result, with the lexicographical order, is an asymptotic space 
for Y . Fix ε > 0 and let (x(i)

j )j , i ∈ N be the infinite array given by Proposition 7.4. 
It is an easy observation that for a sufficiently sparsely chosen strict plegma (sj)nj=1 in 

[N]n that the sequence (x(j)
sj(i))

n
i,j=1 is a block sequence with the lexicographical order. 

Moreover, if min(s1) ≥ n then (x(j)
sj(i))

n
i,j=1 is (1 + ε)-equivalent to (ei,j)ni,j=1. �

Corollary 7.7. Let Y be a block subspace of Xiw. Then K(Y ) = [1, ∞] � {1} = K̃(Y ). 
Furthermore, �1 and c0 don’t embed into Xiw, hence Xiw is reflexive.

Reflexivity and Proposition 2.18 yield the following (see Definition 2.17).

Corollary 7.8. The space Xiw is asymptotically symmetric.
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8. The spaces Xp
iw, 1 < p < ∞

We describe how the construction of Xiw can be modified to obtain a space with a 
uniformly unique �p-spreading model, where 1 < p < ∞, and a c0-asymptotic model 
in every subspace. We give the steps that need to be followed in order to reach the 
conclusion but we omit most proofs as they are in the spirit of Xiw.

We fix a p ∈ (1, ∞) and we denote by p∗ its conjugate. Given a subset G of c00(N), 
j1, . . . , jl ∈ N, real numbers (λq)dq=1 with 

∑d
q=1 |λq|p

∗ ≤ 1, and f1 < · · · < fd in G that 
are Snj1+···+njl

-admissible we call a functional of the form

f = 1
mj1 · · ·mjl

λq

d∑
q=1

fq

a weighted functional of G of weight w(f) = mj1 · · ·mjl and vector weight �w(f) =
(j1, . . . , jl). For all i ∈ N, we also call f = ±e∗i a weighted functional of weight w(f) = ∞. 
We define very fast growing sequences as in Section 3.2. We then let W p

iw be the smallest 
subset of c00(N) that satisfies the following two conditions.

(i) ±e∗i is in W p
iw for all i ∈ N and

(ii) for every j1, . . . , jl ∈ N, real numbers (λq)dq=1 with 
∑d

q=1 |λq|p
∗ ≤ 1, and ev-

ery Snj1+···+njl
-admissible and very fast growing sequence of weighted functionals 

(fq)dq=1 in W p
iw the functional

f = 1
mj1 · · ·mjl

d∑
q=1

λqfq

is in W p
iw.

Set Xp
iw to be the space defined by this norming set.

The following is similar to [17, Proposition 2.9] and [15, Proposition 4.2]. We give a 
short proof.

Proposition 8.1. Let (xi)ni=1 be a normalized block sequence in Xp
iw. Then for any scalars 

c1, . . . , cn we have

∥∥∥∥∥
n∑

i=1
aixi

∥∥∥∥∥ ≤ 2
(

n∑
i=1

|ai|p
)1/p

(24)

Proof. This is proved by induction on m with W p
iw = ∪∞

m=0Wm. Assume that for every 
f ∈ Wm, every normalized block vectors x1 < · · · < xn, and every scalar c1, . . . , cn with 
(
∑

|cj |p)1/p ≤ 1 we have |f(c1x1+· · ·+cnxn)| ≤ 2. Let now f = (1/mj · · ·mjl) 
∑d

q=1 λqfq
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be in Wm+1 with f1, . . . , fd ∈ Wm, (xj)nj=1 be a normalized block sequence, and (cj)lj=1
be scalars with (

∑
|cj |p)1/p ≤ 1. Set x =

∑n
i=1 cixi. Define the sets

Dj = {i : supp(fi) ∩ supp(xj) �= ∅}, for j = 1, . . . , n

Ej = {i ∈ Dj : j = min{j′ : i ∈ Dj′}}, for j = 1, . . . , n,

Fj = Dj \ Ej , for j = 1, . . . , n, and

Gi = {j : i ∈ Fj}, for i = 1, . . . , d.

Observe that the sets (Ej)nj=1 are pairwise disjoint and the sets (Gi)di=1 are pairwise 
disjoint as well. For j = 1, . . . , n set Λj = (

∑
i∈Ej

|λi|p
∗)1/p∗ and for i = 1, . . . , d set 

Ci = (
∑

j∈Gi
|cj |p)1/p. Then,

|f(x)| =

∣∣∣∣∣∣
m∑
j=1

cjΛj

⎛⎝ 1
mj · · ·mjl

∑
i∈Ej

λi

Λj
fi

⎞⎠(xj) + 1
mj · · ·mjl

n∑
j=1

cj
∑
i∈Fj

λifi(xj)

∣∣∣∣∣∣
≤

⎛⎝ n∑
j=1

|cj |p
⎞⎠1/p⎛⎝ n∑

j=1
Λp∗

j

⎞⎠1/p∗

+ 1
2

d∑
i=1

|λi|

∣∣∣∣∣∣fi
⎛⎝∑

j∈Gi

cjxj

⎞⎠∣∣∣∣∣∣
≤ 1 + 1

2

d∑
i=1

|λi|2Ci ≤ 1 +
(

d∑
i=1

|λi|p
∗

)1/p∗(
d∑

i=1
Cp

i

)1/p

≤ 2. �

The proof of the following Proposition is practically identical to the proof of Propo-
sition 4.1

Proposition 8.2. Let (xi)i be a normalized block sequence in Xp
iw. Then there exists L ∈

[N]∞ so that for every j0 ∈ N, every F ⊂ L with (xi)i∈F being Snj0
-admissible, and 

every scalar (ci)i∈F we have

∥∥∥∥∥∑
i∈F

cixi

∥∥∥∥∥ ≥ 1
2mj0

(∑
i∈F

|ci|p
)1/p

.

In particular, every normalized block sequence in Xiw has a subsequence that generates 
a spreading model that is 8-equivalent to the unit vector basis of �p.

The auxiliary spaces are each defined via collection of norming sets W p,N
aux , N ∈ N. 

For each N ∈ N the set W p,N
aux contains all

f = 21/p∗

mji · · ·mjl

d∑
λqfq,
q=1
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where (fq)dq=1 is a sequence of Snj1+···+njl
∗ A3-admissible functionals in W p,N

aux so that 
for q ≥ 2 we have w(fq) > N and (λq)dq=1 satisfy 

∑d
q=1 |λq|p

∗ ≤ 1. The factor 21/p∗ is 
necessary to prove the basic inequality and it also appears in [17, Section 3].

Recall from [17, Section 3] that a vector x =
∑

i∈F aiei is called a (n, ε) basic special 
p-convex combination (or basic s.p-c.c.) if ai ≥ 0, for i ∈ F , and 

∑
i∈F api ei is a (n, εp)

basic s.c.c. The proof of the following is in the spirit of the proof of Lemma 5.5 and 
Lemma 5.6

Lemma 8.3. Let δ > 0. Then there exists M ∈ N so that for any k ∈ N, any pairwise 
different natural numbers (ti)ki=1 with ti ≥ M , for any l ∈ N and ε > 0, there exists 
N ∈ N, so that for any vectors (xi,j)1≤i≤k,1≤j≤l of the form

xi,j = mti

21/p∗ x̃i,j , where x̃i,j =
∑

r∈Fi,j

ci,jr er is a (nti , ε) basic s.p-c.c., (25)

1 ≤ i ≤ k, 1 ≤ j ≤ l, any scalars (ai,j)1≤i≤k,1≤j≤l, and any f ∈ W p,N
aux we have

∣∣∣∣∣∣f
⎛⎝ l∑

j=1

k∑
i=1

ai,jxi,j

⎞⎠∣∣∣∣∣∣ ≤ (1 + δ) max
1≤i≤k

⎛⎝ l∑
j=1

|ai,j |p
⎞⎠1/p

. (26)

RIS are defined exactly like Definition 6.1. The basic inequality is slightly different to 
Proposition 6.2.

Proposition 8.4. Let (xi)i∈I be a (C, (ji)i∈I)-RIS, (ai)i∈I be a sequence of scalars, and 
N < min{mjmin(I) , min supp(xmin(I))} be a natural number. Then, for every f ∈ W p

iw
there exist h ∈ {±e∗i : i ∈ N} ∪ {0}, g ∈ W p,N

aux with w(f) = w(g), and λ, μ with 
|λ|p∗ + |μ|p∗ ≤ 1, so that if ti = max supp(xi) for i ∈ I then we have∣∣∣∣∣f

(∑
i∈I

aixi

)∣∣∣∣∣ ≤ C

(
1 + 1

√
mji0

)∣∣∣∣∣(λh + μg)
(∑

i∈I

aieti

)∣∣∣∣∣ . (27)

Using Proposition 8.1 and Proposition 8.2 one can perform an argument similar to 
that in the proof of Proposition 6.3 to show that every block sequence in Xp

iw has a 
further block sequence, with norm at least (1 − δ), that is a (2 + ε)-RIS. The next result 
is similar to Proposition 7.4.

Proposition 8.5. Let Y be a block subspace of Xp
iw. Then there exists an array of block 

sequences (x(i)
j )j, i ∈ N, in Y so that for any k, l ∈ N, scalars (ai,j)1≤i≤k,1≤j≤l, and 

plegma family (si)ki=1 in [N]l with min(s1) ≥ max{k, l} we have

1
21/p∗ max

1≤i≤k

⎛⎝ l∑
j=1

|ai,j |p
⎞⎠1/p

≤

∥∥∥∥∥∥
k∑

i=1

l∑
j=1

ai,jx
(i)
si(j)

∥∥∥∥∥∥ ≤ 3 max
1≤i≤k

⎛⎝ l∑
j=1

|ai,j |p
⎞⎠1/p

. (28)
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The main result of this section follows in the same manner as Theorem 7.5

Theorem 8.6. Let Y be a block subspace of Xp
iw.

(a) There exists an array of block sequences in Y that generate an asymptotic model that 
is 6-equivalent to the unit vector basis of c0.

(b) For every k ∈ N there exists a k-array of block sequences in Y that generate a joint 
spreading model 6-equivalent to the basis of �k∞(�p).

In particular, X does not contain an asymptotic-�p subspace.

It is not true that all unconditional bases are finitely block representable in every 
subspace of Xp

iw. However the following is true.

Corollary 8.7. For every block subspace Y of Xp
iw the Krivine set of Y is K(Y ) = [p, ∞]. 

In fact, for every q ∈ [p, ∞] the unit vector basis of �kq is and asymptotic space for Y .

Proof. The inclusion K(Y ) ⊂ [p, ∞] is an immediate consequence of Proposition 8.1. 
To show the inverse inclusion we observe that by Theorem 8.6 (ii) for every n ∈ N the 
sequence (ei,j)nj=1, with the lexicographical order, endowed with the norm

∥∥∥∥∥∥
∑
i,j

ai,jei,j =

∥∥∥∥∥∥ max
1≤i≤k

⎛⎝ l∑
j=1

|ai,j |p
⎞⎠1/p

is an asymptotic space for Y , up to a constant 6.
A proof similar to Proposition 2.16 gives that for any ε > 0, k ∈ N, and p ≤ q ≤ ∞

there is n ∈ N so that the unit vector basis of �kq is (1 +ε)-block representable in (ei,j)nj=1. 
To see this one needs to use the fact that for p < q < ∞ if we set r = (qp)/(q − p) then

(
k∑

i=1
|ai|q

)1/q

= sup

⎧⎨⎩
(

k∑
i=1

|aibi|p
)1/p

:
(

k∑
i=1

|bi|r
)1/r

≤ 1

⎫⎬⎭ .

The above follows from a simple application of Hölder’s inequality. �
Remark 8.8. Because Xp

iw has a uniformly unique �p-spreading model the strong Krivine 
set of every block subspace of Xp

iw is the singleton {p}.

9. The space X∗
iw

In this section we study the space X∗
iw. We prove that every normalized block sequence 

in X∗
iw has a subsequence that generates a spreading model that is 4-equivalent to the 
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unit vector basis of c0. In addition, every block subspace of X∗
iw admits the unit vector 

basis of �1 as an asymptotic model and hence X∗
iw does not have an asymptotic-c0

subspace.

Lemma 9.1. Let j0 ∈ N, (gk)mk=1 be an Snj0
-admissible sequence in co(Wiw) and assume 

the following: each gk has the form gk =
∑dk

j=1 c
k
j f

k
j , where dk ∈ N and fk

j ∈ Wiw, for 
1 ≤ k ≤ m, so that

min{w(fk
j ) : 1 ≤ j ≤ dk} > max supp(gk−1), for 2 ≤ k ≤ m,

then we have that (1/mj0) 
∑m

k=1 gk is in co(Wiw).

Proof. By repeating some entries we may assume that dk = d and ckj = cj for each 

1 ≤ k ≤ m. That is, for each 1 ≤ k ≤ m, we may assume gk =
∑d

j=1 cjf
k
j , where perhaps 

some fk
j ’s are repeated and perhaps some are the zero functional. We can also assume 

that supp(fk
j ) ⊂ supp(gk), for 1 ≤ k ≤ m and 1 ≤ j ≤ d. We conclude that for 1 ≤ j ≤ d

the sequence (fk
j )mk=1 is an Snj0

-admissible and very fast growing sequence in Wiw, so 

fj = (1/mj0) 
∑m

k=1 f
k
j is in Wiw. We conclude that (1/mj0) 

∑m
k=1 gk =

∑d
j=1 cjfj is in 

co(Wiw). �
Lemma 9.2. Let j0 ∈ N, (gk)mk=1 be an Snj0

-admissible sequence in co(Wiw) and assume 

the following: there is (j1, . . . , jl) ∈ N<∞ so that each gk has the form gk =
∑dk

j=1 c
k
j f

k
j , 

where dk ∈ N and fk
j ∈ Wiw, for 1 ≤ k ≤ m, so that �w(fk

j ) = (j1, . . . , jl) and if

fk
j = 1

mj1 · · ·mjl

∑
r∈Fk

j

hk,j
r ,

with (hk,j
r )r∈Fk

j
being Snj1+···+njl

-admissible and very fast growing, then

min{w(hk,j
r ) : r ∈ F k

j } > max supp(gk−1), for 2 ≤ k ≤ m,

then we have that (1/mj0) 
∑m

k=1 gk is in co(Wiw).

Proof. As in the proof of Lemma 9.1 we may assume that there are d and c1, . . . , cd
so that gk =

∑d
j=1 cjf

k
j where perhaps some fk

j ’s are repeated and perhaps some are 
the zero functional. It follows that for fixed 1 ≤ j ≤ d the sequence ((hk,j

r )r∈Fk
j
)mk=1

is Snj1+···+njl
+nj0

-admissible and very fast growing. This means that fj = (1/mj1 · · ·
mjlmj0) 

∑m
k=1

∑
r∈Fk

j
hk,j
r is in Wiw. We conclude that (1/mj0) 

∑m
k=1 gk =

∑d
j=1 cjfj is 

in co(Wiw). �
Lemma 9.3. Let (fk)k be a block sequence in co(Wiw) and let ε > 0. Then there exists 
L ∈ [N]∞ and a sequence (gk)k∈L in co(Wiw) with supp(gk) ⊂ supp(fk) for all k ∈ L, 
so that for all j0 ∈ N and all F ⊂ L so that (fk)k∈F is Snj

-admissible we have that

0
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∥∥∥∥∥∑
k∈F

(
fk − 1

2gk
)∥∥∥∥∥ ≤ mj0 + ε.

Proof. Let each fk =
∑

r∈Fk
ckrf

k
r , where fk

r ∈ Wiw and supp(fk
r ) ⊂ supp(fk) for all 

r ∈ Fk and k ∈ N. Without loss of generality we may assume that 
∑

r∈Fk
ckr = 1 for all 

k ∈ N. Define

N<∞
N = {�j = (j1, . . . , jl) ∈ N<∞ : mj1 · · ·mjl ≤ N},

F�j,k = {r ∈ Fk : �w(fk
r ) = �j}, ν�j,k =

∑
r∈Fk

ckr for all �j ∈ N<∞ and k ∈ N,

FN,k = ∪�j∈N<∞
N

F�j,k and GN,k = Fk \GN,k, for all k,N ∈ N.

By passing to a subsequence of (fk)k we may assume that for all �j ∈ N<ω the limits 
limk ν�j,k = ν�j exists. Define λ =

∑
�j∈N<∞ ν�j , which is in [0, 1]. Fix a sequence of positive 

real numbers (εi)i, with 
∑

i εi < ε, and recursively pick strictly increasing sequences 
(ki)i and (Ni)i so that the following are satisfied:∣∣∣∣∣∣∣λ−

∑
�j∈N<∞

Ni

ν�j

∣∣∣∣∣∣∣ < εi/3 and if i > 1 then Ni > max supp(fki−1), (29a)

∑
�j∈N<∞

Ni

∣∣∣ν�j,ki
− ν�j

∣∣∣ < εi/3. (29b)

Define then for each i ∈ N the number μi =
∑

r∈GNi,ki
cki
r and note that (29a) and (29b)

yield

|μi − (1 − λ)| =

∣∣∣∣∣∣∣λ−
∑

�j∈N<∞
Ni

ν�j,ki

∣∣∣∣∣∣∣
≤

∑
�j∈N<∞

Ni

∣∣∣ν�j − ν�j,ki

∣∣∣ +
∑

�j∈N<∞\N<∞
Ni

ν�j

<
2εi
3 .

(29c)

For each i ∈ N, using the convection 1/0 = 0, define

f�j,ki
=

∑
r∈F�j,ki

cki
r

ν�j,ki

fki
r , for �j ∈ N<∞

Ni
, and fiw,ki

=
∑

r∈GNi,ki

cki
r

μi
fki
r .

Clearly, all the above functionals are in co(Wiw) and a quick inspection reveals that
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fki
=

∑
�j∈N<∞

Ni

ν�j,ki
f�j,ki

+ μifiw,ki
, with

∑
�j∈N<∞

Ni

ν�j,ki
+ μi = 1. (30)

By (29a) we observe that if j0 ∈ N and F ⊂ N is such that (fki
)i∈F is Snj0

admissible, 
then by Lemma 9.1 we have that

1
mj0

∑
i∈F

fiw,ki
∈ co(Wiw). (31)

In the next step, for each i ∈ N and �j ∈ N<∞
Ni

, if �j = (j1, . . . , jl), write for each 
r ∈ F�j,ki

fki
r = 1

mj1 · · ·mjl

dki
r∑

t=1
hr,i
t ,

with (hr,i
t )d

ki
r

t=1 being Snj1+···+njl
-admissible and very fast growing, and define gki

r =
2

mj1 ···mjl
hr,i

1 , which is in co(Wiw). Define for each i ∈ N and �j ∈ N<∞
Ni

the functional

g�j,ki
=

∑
r∈F�j,ki

cki
r

ν�j,ki

gki
r ,

which is in co(Wiw) and make the following crucial observations:

f�j,ki
− 1

2g�j,ki
=

∑
r∈F�j,ki

cki
r

ν�j,ki

(
fki
r − 1

2g
ki
r

)
,

fki
r − 1

2g
ki
r = 1

mj1 ···mjl

∑dki
r

t=2 h
r,i
t ,

with (hr,i
t )d

ki
r

t=2 Snj1+···+njl
-admissible and very fast growing so that

min{w(hr,i
t ) : 2 ≤ r ≤ dki

r } > min supp(fki
).

(32)

Now, Lemma 9.2 and (32) yield that if we fix �j ∈ N<∞ then we can deduce that if 
j0 ∈ N and F ⊂ N is such that (fki

)i∈F is Snj0
-admissible then, if F�j = {i : �j ∈ N<∞

Ni
}, 

we have that

1
mj0

∑
i∈F�j

(
f�j,ki

− 1
2g�j,ki

)
∈ co(Wiw). (33)

Once we made this observation we set for all i ∈ N

gki
=

∑
�j∈N<∞

Ni

ν�jg�j,ki
,

which is in co(Wiw) and supp(gki
) ⊂ supp(fki

).
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We next wish to show that the conclusion is satisfied for (gki
)i∈N . That is, if j0 ∈ N

and (fki
)i∈F is Snj0

-admissible, then

∥∥∥∥∥∑
i∈F

(
fki

− 1
2gki

)∥∥∥∥∥ ≤ mj0 + ε.

Define for each i ∈ N the functional

f̃ki
=

∑
�j∈N<∞

Ni

ν�jf�j,ki
+ (1 − λ)fiw,ki

,

which is in co(W ). By (29b), (29c), and (30) we obtain ‖fki
− f̃ki

‖ < εi. By this, it is 
now sufficient to prove that, if (fki

)i∈F is Snj0
-admissible, then

f = 1
mj0

∑
i∈F

(
f̃ki

− 1
2gki

)
∈ co(Wiw) (34)

because this will imply ‖f‖ ≤ 1. The conclusion will then follow from a simple application 
of the triangle inequality. We are now ready to dissect f . Set N0 = maxi∈F Ni and for 
each �j ∈ N<∞ Fj = {i ∈ F : �j ∈ N<∞

Ni
}. Write

f = 1
mj0

∑
i∈F

⎛⎜⎝
⎛⎜⎝ ∑

�j∈N<∞
Ni

ν�j

(
f�j,ki

− 1
2g�j,ki

)⎞⎟⎠ + (1 − λ)fiw,ki

⎞⎟⎠

=

⎛⎜⎝ ∑
�j∈N<∞

N0

νj

⎛⎝ 1
mj0

∑
i∈F�j

(
f�j,ki

− 1
2g�j,ki

)⎞⎠
⎞⎟⎠ + (1 − λ) 1

mj0

∑
i∈F

fiw,ki
.

Finally, by (31) and (33), f is a convex combination of elements of co(Wiw) and hence 
it is in co(Wiw). �
Proposition 9.4. Let (fk)k be a block sequence in the unit ball of X∗

iw. Then for any 
ε > 0 there exists L ∈ [N]∞ so that for any j0 ∈ N and F ⊂ N with (fk)k∈F being 
Snj0

-admissible we have

∥∥∥∥∥∑
k∈F

fk

∥∥∥∥∥ ≤ 2mj0 + ε.

Proof. By reflexivity we have that the unit ball of X∗
iw is the closed convex hull of Wiw. 

Actually, a compactness argument yields that every finitely supported vector in the unit 
ball of X∗

iw must be in co(Wiw). Set (f (0)
k )k = (fk)k and apply Lemma 9.3 inductively to 
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find infinite sets L1 ⊃ L2 ⊃ · · · ⊃ Lq ⊃ · · · and, for each q ∈ N, (f (q)
k )k∈Lq

in co(Wiw)
so that for all j0 ∈ N and F ⊂ Lq with (f (q−1)

k )k∈Lq
being Snj0

we have that

∥∥∥∥∥∑
k∈F

(
f

(q−1)
k − 1

2f
(q)
k

)∥∥∥∥∥ ≤ mj0 + ε

4 .

Pick q0 ∈ N with 1/2q0−1 < ε/2 and then pick an infinite subset of Lq0 L = {�i : i ∈ N}
so that for all q ≥ q0 and i ≥ q we have �i ∈ Lq. Let now j0 ∈ N and F ⊂ L so 
that (f (0)

k )k∈F is Snj0
-admissible. If F = {k1, . . . , kN}, define for q = 0, 1, . . . , q0 the set 

Fq = {k1, . . . , kN} and for q = q0 + 1, . . . , n the set Fq = {kq, . . . , kN}. Observe that 
Fq ⊂ Lq and (f (q−1)

k )k∈Fq
is Snj0

-admissible. Then,

∥∥∥∥∥∑
k∈F

f
(0)
k

∥∥∥∥∥ =

∥∥∥∥∥∥
∑
k∈F

f
(0)
k +

N∑
q=1

1
2q

∑
k∈Fq

(f (q)
k − f

(q)
k )

∥∥∥∥∥∥
=

∥∥∥∥∥∥
N∑
q=1

⎛⎝ 1
2q−1

∑
k∈Fq−1

f
(q−1)
k − 1

2q
∑
k∈Fq

f
(q)
k

⎞⎠ + 1
2N f

(N)
kN

∥∥∥∥∥∥
≤

q0∑
q=1

1
2q−1

∥∥∥∥∥
N∑
r=1

f
(q−1)
kr

− 1
2f

(q)
kr

∥∥∥∥∥
+

N∑
q=q0+1

1
2q−1

(∥∥∥f (q−1)
kq−1

∥∥∥ +

∥∥∥∥∥
N∑
r=q

f
(q−1)
kr

− 1
2f

(q)
kr

∥∥∥∥∥
)

+ 1
2N

∥∥∥f (N)
kN

∥∥∥
≤

N∑
q=1

1
2q−1

(
mj0 + ε

4

)
+

N∑
q=q0

1
2q ≤ 2mj0 + ε. �

Corollary 9.5. Every normalized block sequence in X∗
iw has a subsequence that generates 

a spreading model 4-equivalent to the unit vector basis of c0.

Proof. Let (fk)k be a normalized block sequence in the unit ball of X∗
iw and apply 

Proposition 9.4, for some ε > 0, and relabel to assume that conclusion holds for the 
whole sequence. By 1-unconditionality we deduce that for any F ⊂ N so that (fk)k∈F is 
Sn1 -admissible we have that (fk)k∈F is (2m1 + ε)-equivalent to the unit vector basis of 
c0. Recall that m1 = 2 and n1 = 1. �

Reflexivity of Xiw, the above stated corollary, and Proposition 2.18 yield the next 
result.

Corollary 9.6. The space X∗
iw is asymptotically symmetric.
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For n ∈ N we shall say that a finite block sequence (fk)dk=1 in X∗
iw is maximally 

Sn-admissible if {min supp(fk) : 1 ≤ k ≤ d} is a maximal Sn-set.

Proposition 9.7. Let Y be a block subspace of X∗
iw. Then for every n ∈ N and δ > 0 there 

exists a sequence (fk)dk=1 that is maximally Sn-admissible with ‖fk‖ ≥ 1 for k = 1, . . . , d
and ‖ 

∑d
k=1 fk‖ ≤ 1 + δ.

Proof. The proof goes along the lines of the proof of Proposition 6.3. Start with a 
normalized sequence (fi)i, to which we apply Proposition 9.4, and assume that the 
conclusion fails in the linear span of this sequence. We can then find for every j ∈ N

with j ≥ n an integer dj with nj−n ≤ djn ≤ nj and an Fj so that (fk)k∈Fj
is maximally 

Sdjn-admissible with

2mj + ε ≥

∥∥∥∥∥∥
∑
i∈Fj

fi

∥∥∥∥∥∥ ≥ (1 + δ)dj+1 ≥ (1 + δ)nj/n .

This implies that lim supj((1 + δ)1/n)nj/mj ≤ 2 which contradicts the first property of 
the sequences (mj)j , (nj)j (see Section 3.2). �
Corollary 9.8. Let Y be a block subspace of X∗

iw and let C > 1. Then there exist a block 
sequence (y∗n)n in Y and a block sequence (yn)n in Xiw so that the following hold.

(i) 1 ≤ ‖yn‖ and ‖y∗n‖ ≤ C for all n ∈ N,
(ii) supp(yn) = supp(y∗n) and y∗n(yn) = 1, and
(iii) (yn)n is a C-RIS.

Proof. Fix C > 1 and apply Lemma 9.7 to find a block sequence (y∗n)n so that for all 
n ∈ N we have ‖w∗

n‖ ≤ (1 +
√
C)/2, min supp(w∗

n) ≥ (6n)/(
√
C−1), and yn is of the form 

w∗
n =

∑
i∈Fn

fi with fi in Y , ‖fi‖ ≥ 1, for all i ∈ N, (fi)i∈N is maximally Sn-admissible. 
Pick for each n ∈ N and i ∈ N a normalized vector xi with supp(xi) ⊂ supp(fi) and 
fi(xi) ≥ 1. For each n ∈ N we may perturb each vector xi to assume that supp(xi) =
supp(fi). By scaling we can ensure that all the aforementioned properties are retained, 
only perhaps increasing the upper bound of ‖w∗

n‖ to ‖w∗
n‖ ≤

√
C.

Because, for each n ∈ N, (xi)i∈Fn
is maximally Sn-supported, by [12, Proposition 

2.3], we can find coefficients (ci)i∈Fn
so that the vector wn =

∑
i∈Fn

cixi is a (n, ε)-s.c.c. 
with ε ≤ 3/ min supp(w∗

n) ≤ (
√
C − 1)/(2n). By Proposition 6.4 we have that for every 

f ∈ Wiw, with w(f) = (j1, . . . , jl) and n1+· · ·+nl < n the estimate |f(wn)| ≤
√
C/w(f). 

It follows that (wn)n has a subsequence (wkn
)n that is a 

√
C-RIS.

Note that w∗
kn

(wkn
) =

∑
i∈Fkn

cifi(xi) = 1, hence 1 ≥ ‖wkn
‖ ≥ 1/‖w∗

kn
‖ ≥ 1/

√
C. 

Thus, the sequence (yn)n = (
√
Cwkn

)n is a C-RIS with ‖yn‖ ≥ 1 for all n ∈ N and the 
sequence (y∗n)n = (w∗

k /
√
C)n satisfies ‖y∗n‖ ≤ C and y∗n(yn) = 1 for all n ∈ N. �
n
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Theorem 9.9. Let Y be a block subspace of X∗
iw. Then Y contains an array of normalized 

block sequences (f (i)
j )j, i ∈ N, that generates an asymptotic model equivalent to the unit 

vector basis of �1.

Proof. The proof of this result follows the proof of Proposition 7.4. Fixing ε > 0, choose 
C > 1 and a sequence (ji)i as in the aforementioned proof. Apply Corollary 9.8 to find a 
C-RIS (ys)s and a sequence (y∗s)s in Y with properties (i), (ii), and (iii) in the statement 
of that result. Pass to common subsequences, by applying Proposition 9.4, so that for any 
j0 ∈ N and any F ⊂ N so that (ys)s∈F is Snj0

-admissible we have ‖ 
∑

s∈F ys‖ ≤ 3mj0 .
Following the proof of Proposition 7.4 define an array of block sequences (x(i)

j )j , i ∈ N, 
that satisfies (20), so that each vector x(i)

j is of the form x(i)
j = mji

∑
s∈F

(i)
j

ci,js ys, with 

(ys)s∈F
(i)
j

Snji
−1-admissible and 

∑
s∈F

(i)
j

ci,js = 1. Also, the sets (F (i)
j )j , i ∈ N are all 

pairwise disjoint. If we then define f (i)
j =

∑
s∈F

(i)
j

yi, for i, j ∈ N, we have that ‖f (i)
j ‖ ≤ 3, 

and f (i)
j (x(i)

j ) = 1, and f (i)
j (x(i′)

j′ ) = 0 if (i, j) �= (i′, j′). For every n ≤ j1 < · · · < jn the 

sequence (x(i)
ji

) has a (1 + ε)-upper c0-estimate which yields that (f (i)
ji

) has a 1/(1 + ε)-
lower �1 estimate and therefore it is 3(1 +ε)-equivalent to the unit vector basis of �1. �
Remark 9.10. A slightly a more careful version of the above proof yields that in every 
block subspace Y of X∗

iw, for every m ∈ N one can find a array (f (i)
j )j , 1 ≤ i ≤ m that 

generates a joint spreading model 3-equivalent to the unit vector basis of �m1 (c0). It is not 
clear what the asymptotic spaces of Y are. Although K̃(Y ) = {∞} all we know about 
the set K(Y ) is {1, ∞} ⊂ K(Y ).

10. The space X̃iw

The purpose of this section is to simplify the definition of the space Xiw to obtain 
a new space X̃iw. This new space also has the property that every normalized block 
sequence in X̃iw has a subsequence generating a spreading model equivalent to the unit 
vector basis of �1 without containing a subspace where all spreading models of normalized 
block sequences are uniformly equivalent to �1.

10.1. Definition of X̃iw

We simplify the definition of the norming set Wiw of Xiw by only considering func-
tionals of the form (1/mj) 

∑d
q=1 fj .

Definition 10.1. Let W̃iw be the smallest subset of c00(N) that satisfies the following to 
conditions.

(i) ±e∗i is in W̃iw for all i ∈ N and
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(ii) for every j ∈ N and every Snj
very fast growing sequence of weighted functionals 

(fq)dq=1 in W̃iw the functional

f = 1
mj

d∑
q=1

fq

is in W̃iw.

We define a norm on c00(N) given by |||x||| = sup{f(x) : x ∈ W̃iw} and we set X̃iw to be 
the completion of (c00(N), |||·|||).

Definition 10.2. For each j ∈ N we define the norm ‖ · ‖�1,j on �1(N) given by∥∥∥∥∥
∞∑
k=1

akek

∥∥∥∥∥
�1,j

= max
{

max
k

|ak|,
mj

mj+1

∞∑
k=1

|ak|
}
. (35)

Clearly, this norm is equivalent to the usual norm of �1, however this equivalence is 
not uniform in j ∈ N. This can be seen by taking, e.g., the vector xj =

∑mj+1
k=1 ek in 

which case ‖xj‖�1,j = mj whereas ‖xj‖�1 = mj+1. We will see that every block subspace 
of X̃iw for every j ∈ N contains a block sequence that generates a spreading model 
isometrically equivalent to the unit vector basis of �1(N) endowed with ‖ · ‖�1,j .

10.2. The auxiliary space for X̃iw

The auxiliary spaces are almost identical as those for the space Xiw, the difference 
being the lack of the factors 1/2l.

Definition 10.3. For N ∈ N let W̃N
aux be the smallest subset of c00(N) that satisfies the 

following to conditions.

(i) ±e∗i is in Waux for all i ∈ N and
(ii) for every j ∈ N and every Snj

∗ A3 admissible sequence of N -sufficiently large 

auxiliary weighted functionals (fq)dq=1 in W̃aux the functional

f = 1
mj

d∑
q=1

fq

is in W̃aux.

We define a norm |||·|||aux,N on c00(N) by defining for all x ∈ c00(N) the quantity 
|||x|||aux,N = sup{f(x) : f ∈ WN

aux}.
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Lemma 10.4. Let n, j0, N ∈ N with N ≥ 2mj0 , (εk)nk=1 be a sequence of real numbers 
with 0 < εk < 1/(6mj0) for 1 ≤ k ≤ n and (xk)nk=1 be vectors in c00(N) so that for each 
1 ≤ k ≤ n the vector xk is of the form

xk = mj0 x̃k, where x̃k =
∑
r∈Fk

ckrer is a (nj0 , εk) basic s.c.c. (36)

Then, for any scalars (ak)nk=1 and f ∈ W̃N
aux, we have∣∣∣∣∣f

(
n∑

k=1

akxk

)∣∣∣∣∣ ≤ (1 + δ) max
{

max
1≤k≤n

|ak|,
mj0

mj0+1

n∑
k=1

|ak|
}
, (37)

for any δ satisfying

δ ≥ max
{

2mj0+1

N
, 6

n∑
k=2

max supp(xk−1)εk, 6mj0

n∑
k=2

εk

}
. (38)

Proof. We perform an induction on m = 0, 1, . . . to show that for all f ∈ W̃N
m and for 

all 1 ≤ k ≤ n we have |f(xk)| ≤ 1 as well as that (37) holds for f . The step m = 0 is 
trivial so let m ∈ N, assume that the inductive assumption holds for all f ∈ W̃N

m and 
let f ∈ W̃N

m+1 \ W̃N
m . Let f = (1/mj) 

∑d
q=1 fq where (fq)dq=1 is Snj

admissible and N
sufficiently large. If j > j0 then an elementary calculation yields |f(xk)| ≤ mj0/mj0+1
for 1 ≤ k ≤ n and hence (37) easily follows. Therefore, we may assume that j ≤ j0.

Set Mk = max supp(xk) for 1 ≤ k ≤ n, k0 = min{k : min supp(f) ≤ Mk}, if such 
a k0 exists, and set q0 = min{q : max supp(fq) ≥ min supp(xk0)}. For simplicity let us 
assume q0 = 1. Set f̃ = (1/mj) 

∑d
q=2 fq, G = {2 ≤ q ≤ d : fq = ±e∗i for some i ∈ N}, 

D = {2, . . . , d} \G, and

g1 = 1
mj

∑
q∈G

fq, g2 = 1
mj

∑
q∈D

fq.

As the sequence (fq)dq=1 is N -sufficiently large we obtain w(fq) ≥ N for all q ∈ D which 
easily implies∣∣∣∣∣g2

(
n∑

k=k0+1

akxk

)∣∣∣∣∣ ≤ mj0

mjN

n∑
k=k0+1

|ak| ≤
(mj0+1

2N

) mj0

mj0+1

n∑
k=k0+1

|ak|

≤ δ

4
mj0

mj0+1

n∑
k=k0+1

|ak|
(39)

We now estimate the quantity g1(
∑n

k=k0+1 akxk) and we distinguish cases depending 
on the relation of mj and mj0 . We first treat the case j = j0. As {min supp(fq) : 1 ≤ q ≤
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d} is in Snj0
∗ A3 it follows that l ≤ Mk0 and there are G1 < · · · < Gl in Snj0−1 ∗ A3 so 

that G = ∪l
p=1Gp. If we set hp = (1/mj0) 

∑
s∈Gp

fs then for 1 ≤ p ≤ l and k0 < k ≤ n

we have |hp(xk)| ≤ (1/mj0)3εk which yields

∣∣∣∣∣g1

(∑
k>k0

akxk

)∣∣∣∣∣ ≤ 1
mj0

l∑
p=1

∣∣∣∣∣hp

(∑
k>k0

akxk

)∣∣∣∣∣ ≤ Mk0

mj0

∑
k>k0

3εk max
k0<k≤n

|ak|

≤
(

3
2

n∑
k=2

Mk−1εk

)
max

1≤k≤n
|ak|.

In the second case j < j0 and we use a simpler argument to show that∣∣∣∣∣g1

(
n∑

k=k0+1

akxk

)∣∣∣∣∣ ≤ mj0

mj

n∑
k=2

3εk max
k0<k≤n

|ak| ≤
(

3mj0

2

n∑
k=2

εk

)
max

1≤k≤n
|ak|.

We conclude that in either case we have∣∣∣∣∣g1

(
n∑

k=k0+1

akxk

)∣∣∣∣∣ ≤ δ

4 max
1≤k≤n

|ak|. (40)

Before showing that f satisfies (37) we quickly show that |f(xk)| ≤ 1 for 1 ≤ k ≤ n

(there is a more classical proof that depends on the properties of the sequences (mj)j
and (nj)j however the constraints make the proof faster). If j = j0 this is easy. Otherwise 
j < j0 and arguments very similar to those above yield

|f(xk)| ≤
1
mj

|f1(xk)| + |g1(xk)| + |g2(xk)| ≤
1
mj

+ mj0

mj
3εk + mj0

mjN

≤ 1
2 + 1

4 + 1
4 = 1.

Set

L = max
{

max
1≤k≤n

|ak|,
mj0

mj0+1

n∑
k=1

|ak|
}
.

We now distinguish cases concerning the support of f1 in relation to the support of xk0 . 
If max supp(f1) > max supp(xk0) then∣∣∣∣∣f

(
n∑

k=1

akxk

)∣∣∣∣∣ ≤ 1
mj0

∣∣∣∣∣f1

(
n∑

k=1

akxk

)∣∣∣∣∣ +

∣∣∣∣∣(g1 + g2)
(

n∑
k=k0+1

akxk

)∣∣∣∣∣
≤ 1 (1 + δ)L + 2δ

L ≤
[
1 +

(
1 + 2

)
δ

]
L ≤ (1 + δ)L.
mj0 4 2 2 4
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If max supp(f1) ≤ max supp(xk0) then

∣∣∣∣∣f
(

n∑
k=1

akxk

)∣∣∣∣∣ ≤ |f (ak0xk0)| +
∣∣∣∣∣(g1 + g2)

(
n∑

k=k0+1

akxk

)∣∣∣∣∣
≤ L + 2δ

4 L ≤
(

1 + 2δ
4

)
L ≤ (1 + δ)L.

The inductive step is complete and so is the proof. �
10.3. The spreading models of X̃iw

We observe that all spreading models of normalized block sequences in X̃iw are equiva-
lent to �1 and we construct in every subspace a block sequence that generates a spreading 
model equivalent to �1 but with arbitrarily bad isomorphism constant.

Proposition 10.5. Let (xi)i be a normalized block sequence in X̃iw. Then there exist L ∈
[N]∞ of (xi)i and K0 ∈ N ∪ {0} so that for every j, k ∈ N with k ≤ nj − K0, every 
F ⊂ L with (xi)i∈F Sk admissible, and every scalar (ci)i ∈ F we have

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∑
i∈F

cixi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≥ 1

mj

∑
i∈F

|ci|.

In particular, every normalized block sequence in X̃iw has a subsequence that generates 
a spreading model equivalent to the unit vector basis of �1.

Proof. Take a sequence of functionals (fi)i in Wiw with ran(fi) ⊂ ran(xi) and fi(xi) = 1
for all i ∈ N. We consider two cases, namely the one in which lim supk w(fk) is finite 
and the one in which it is infinite.

We shall only treat the first case as the second one is simpler and it follows for K0 = 0. 
By passing to an infinite subset of N and relabeling there is j0 ∈ N with w(fi) = mj0

for all i ∈ N. Define K0 = nj0 . Write each fi as

fi = 1
mj0

di∑
q=1

f i
q

with (f i
q)

di
q=1 being SK0 -admissible and very fast growing. Arguing as in (4) it follows 

that for all i we have 
∑di

q=2 f
i
q(xi) ≥ (1/2)mj0 ≥ 1 and passing to a subsequence and 

relabeling we have that ((f i
q)

di
q=2)i is very fast growing.

We can conclude that for any j, k ∈ N and any F ⊂ N so that (xi)i∈F is Sk-admissible 
with k ≤ nj−K0, the sequence ((f i

q)
di
q=2)q∈F is Snj

admissible because Sk ∗SK0 = Sk+K0
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and k+K0 ≤ nj . Hence, fF = (1/mj) 
∑

i∈F

∑di

q=2 f
i
q is in W̃iw. This means that for any 

scalars (ci)i∈F we have∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∑
i∈F

cixi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∑
i∈F

|ci|xi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≥ fF

(∑
i∈F

|ci|xi

)
≥ 1

mj

∑
i∈F

|ci|. � (41)

Proposition 10.6. Let Y be a block subspace of X̃iw. Then for every j0 ∈ N there exists 
a sequence (xk)k in Y that generates a spreading model isometrically equivalent to the 
unit vector basis of (�1, ‖ · ‖�1,j0).

Before proving the above statement we point out that RIS sequences in X̃iw are 
defined identically as in Definition 6.1 and Proposition 6.2 is also true by taking the set 
W̃N

aux. Furthermore all results of subsection 6.1 are true for the space X̃iw and the proofs 
are very similar. In particular Corollary 6.5 is true in X̃iw and this is proved by using 
Proposition 10.5.

Proof of Proposition 10.6. For a sequence of positive numbers (Ck)k decreasing strictly 
to one apply Corollary 6.5 to find a sequence (yi)i in Y so that for all k ∈ N the 
sequence (yi)i≥k is (Ck, (ji)i≥k)-RIS with ‖yi‖ ≥ 1 for all i ∈ N (this is possible via a 
minor modification of the proof of Corollary 6.5 in which δ is replaced by δi). Inductively 
build a sequence (xk)k so that for all k ∈ N the vector xk is of the form xk = mj0 x̃k where 
x̃k =

∑
i∈Fk

cki yi a (nj0 , εk/2) s.c.c. with εk+1 < (2k max supp(xk))−1 for all k ∈ N. As 
in the proof of Proposition 7.4 we can find for all k ∈ N a sequence of very fast growing 
and Snj0

admissible functionals (fi)i∈Fk
in W̃iw with supp(fi) ⊂ supp(yi) for all i ∈ Fk

so that if fk = (1/mj0) 
∑

i∈Fk
fi ∈ W̃iw then fk(xk) = 1 and so that the sequence 

((fi)i∈Fk
)k enumerated in the obvious way is very fast growing. We deduce that for all 

natural numbers n ≤ k1 < · · · < kn the functionals ((fi)i∈Fkl
)nl=1 are Snj0+1 admissible. 

This means that they are also Snj0+1 admissible i.e. f = (1/mj0+1) 
∑n

l=1
∑

i∈Fkl
fi =

(mj0/mj0+1) 
∑n

l=1 fkl
is in W̃iw. We conclude that for any scalars (al)nl=1 we have

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

n∑
l=1

alxkl

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

n∑
l=1

|al|xkl

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≥ f

(
n∑

l=1

|al|xkl

)
≥ mj0

mj0+1

n∑
l=1

|al|

and also ∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

n∑
l=1

alxkl

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

n∑
l=1

|al|xkl

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≥ max

1≤l≤n
fkl

(
n∑

l=1

|al|xkl

)
= max

1≤l≤n
|al|.

For the upper inequality, Proposition 6.2 and Lemma 10.4 imply that there is a null 
sequence of positive numbers δn so that for all natural numbers n ≤ k1 < · · · < kn and 
scalars (al)nl=1 we have
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∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

n∑
l=1

alxkl

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤ (1 + δn)max

{
max
1≤l≤n

|al|,
mj0

mj0+1

n∑
l=1

|al|
}
. �

Remark 10.7. It can be shown that the space X̃iw satisfies the conclusions of Theorem 7.5
and Corollary 7.6. Note also that unlike K̃(Xiw), the set K̃(X̃iw) contains {1, ∞}. It is 
unclear whether K̃(X̃iw) contains any p’s in (1, ∞).

As it was shown in Section 9 the space X∗
iw admits only the unit vector basis of c0 as 

a spreading model. This is false for the space X̃∗
iw.

Proposition 10.8. The space X̃∗
iw admits spreading models that are not equivalent to the 

unit vector basis of c0.

Proof. [2, Proposition 3.2] yields that if a space has the property that every spreading 
model generated by a normalized weakly sequence in that space is equivalent to the unit 
vector basis of c0, then there must exist a uniform constant C so that this equivalence is 
always with constant C. We point out that this conclusion only works for the spacial case 
p = ∞ and not for other p’s, because the unit vector basis of c0 is the minimum norm 
with respect to domination. By duality we would obtain that every spreading model 
generated by a normalized block sequence in X̃iw is C-equivalent to the unit vector basis 
of �1. This would contradict the statement of Proposition 10.6. �
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