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ABSTRACT

We study an ordinal rank on the class of Banach spaces with bases that

quantifies the distortion of the norm of a given Banach space. The rank

AD(·), introduced by P. Dodos, uses the transfinite Schreier families and

has the property that AD(X) < ω1 if and only if X is arbitrarily dis-

tortable. We prove several properties of this rank as well as some new

results concerning higher order �1 spreading models. We also compute

this rank for several Banach spaces. In particular, it is shown that the

class of Banach spaces (Xωξ

0,1
)ξ<ω1

, which each admit �1 and c0 spreading

models hereditarily, and were introduced by S. A. Argyros, the first and

third author, satisfy AD(Xωξ

0,1
) = ωξ + 1. This answers some questions of

Dodos.

1. Introduction

Let (X, ‖·‖) be a Banach space with a Schauder basis (ei)i∈N and t > 1. We say

that X is t-distortable if there is an equivalent norm | · | on X so that for each

normalized block sequence (xn) of (ei) there is a finite set F ⊂ N and vectors

x, y ∈ span{xn : n ∈ F} so that

‖x‖ = ‖y‖ = 1 and
|x|
|y| > t.

A space is arbitrarily distortable if it is t-distortable for each t > 1.

In the 1960s, R. C. James [12] proved that �1 and c0 are not t-distortable

for any t > 1. In 1994, E. Odell and Th. Schlumprecht [17] famously proved

that the spaces �p, for 1 < p < ∞, are arbitrarily distortable. Whether there

is a space that is distortable for some t > 1 but not arbitrarily distortable is a

central open problem in Banach space theory [10]. Other important results on

distortion can be found in the references [2, 15, 16, 24]

In the current paper we study distortion in Banach spaces from a different

point of view. Instead of asking whether a given space is t-distortable, we

consider the problem of quantifying, by using the transfinite Schreier families,

the complexity of the distortion. In particular, we would like to know how

‘difficult’ it is to find the finite set F that witnesses the distortion in the above

definition. Following P. Dodos [7], if we consider a collection G of finite subsets

of N we say that a space X with a basis is t-G distortable if the set F , in the

definition of t-distortable, can be chosen as an element of G. If for any G a space

is t-G distortable it must be t-distortable. A space is G arbitrarily distortable
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if it is t-G distortable for all t > 1. We study the cases where G is a Schreier

family Sξ for some countable ordinal ξ. This naturally gives rise to an ordinal

rank on a space, namely, the minimum ξ so that X is t-Sξ distortable.

In this paper we record the definition of this ordinal rank and some facts

concerning it (see Proposition 2). In particular, we prove that a space X with

a basis is arbitrarily distortable if and only if there is a countable ordinal ξ so

that X is Sξ arbitrarily distortable. We also answer some natural questions

raised by P. Dodos [7]. In particular, we prove the following:

Theorem A: For each countable ordinal ξ there is a reflexive space Xωξ

0,1
so

that for every block subspace X of Xωξ

0,1
we have AD(X) = ωξ + 1. Moreover,

every subspace of this space contains a c0 and an �ω
ξ

1 spreading model.

The spaces Xωξ

0,1
are introduced in a recent paper of S. A. Argyros and the

first and third author [4]. We prove several of the properties of these spaces in

the final section of the paper.

As a step towards showing that AD(Xωξ

0,1
) > ωξ we prove the following result

concerning �ω
ξ

1 that we believe is of independent interest.

Theorem B: Let X be a Banach space, ξ < ω1. If X contains an �ω
ξ

1 spreading

model, then for any ε > 0, X contains a (1+ε)-�ω
ξ

1 spreading model. Moreover,

the same result holds replacing �ω
ξ

1 with cω
ξ

0

Theorem B is analogous to a result concerning block indices proved by Judd

and Odell [13] and extends Remark 6.6 (iii) found in this paper. We also

compute certain distortion indices for several other Banach space including

Tsirelson space and Schlumprecht space [23]. Our computations rely heavily on

the presence of �1 and c0 structure in our spaces and uses James’ well-known

blocking arguments. Consequently, our methods do not allow us to compute

lower bounds for spaces lacking this type of structure.

Finally, we note that W. T. Gowers asked if �2 is t-S1 distortable for any t > 1

[7]. As he noted here, this problem can be interpreted as a distortion variant of

the strengthened Finite Ramsey Theorem. All proofs of the strengthened finite

Ramsey Theorem use the infinite Ramsey Theorem and, indeed, the strength-

ened finite Ramsey Theorem is unprovable in Peano Arithmetic [21]. On the

other hand, Gowers showed in [11] that the infinite Ramsey Theorem is false
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in the Banach space setting and, consequently, this problem is likely to be very

difficult or perhaps, in an extreme case, undecidable.

This paper is organized as follows. In section 2 we set our notation, give

basic definitions and facts concerning Schreier families. Section 3 contains the

precise definition of the distortion index and some general facts concerning this

index. In section 4 the second theorem listed above is proved. The technique for

this proof is then used to prove corresponding results concerning the distortion

indices for spaces admitting �ω
ξ

1 or cω
ξ

0 spreading models. It is also shown that

admitting no �ω
ξ

1 spreading model is a three space property. In section 5 we

use the results from section 4 to compute some distortion indices for certain

spaces. We conclude the paper with an appendix that contains some previously

unpublished facts about the spaces Xωξ

0,1
which first appeared in [4] and are

needed to prove that AD(Xωξ

0,1
) = ωξ + 1.

2. Notation, Schreier families, basic facts

2.1. Notation and terminology. We will often begin with a Banach space

X having norm ‖ · ‖ and consider an equivalent norm | · | on X . If we write

SX or refer to normalization of a vector without specifying a norm, it is with

respect to the norm ‖ · ‖.
Throughout, if M is any subset of N, we let [M ]<ω and [M ] denote the

finite and infinite subsets of M , respectively. We will identify subsets of the

natural numbers in the obvious way with strictly increasing sequences of natural

numbers. We write E < F if maxE < minF , n < F if n < minF , and n � F

if n � minF . We follow the convention that min∅ = ω, max∅ = 0. If (Ei)

is a (finite or infinite) sequence in [N]<ω satisfying Ei < Ei+1 for all i ∈ N, we

call the sequence (Ei) successive. If E ∈ [N]<ω and x ∈ �∞, we let Ex be the

restriction of x to E.

If (mi)i∈I , (ni)i∈I are (finite or infinite) strictly increasing subsequences in N

with the same length so that mi � ni for all i ∈ I, we say (ni)i∈I is a spread of

(mi)i∈I . We say a subset F ⊂ [N]<ω is spreading if it contains all spreads of its

members. We say F is hereditary if it contains all subsets of its members. We

let S denote the set of all non-empty, spreading, hereditary subsets of [N]<ω.
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If E ∈ [N]<ω and M = (mi) ∈ [N], we let M(E) = (mi : i ∈ E). If F ⊂ [N]<ω,

we let F(M) = {M(E) : E ∈ F}. If F ,G ⊂ [N]<ω, we let

F [G] =
{ n⋃

i=1

Ei : E1 < · · · < En, Ei ∈ G ∀i, (minEi)
n
i=1 ∈ F

}
.

It is easily checked that (F ,G) �→ F [G] defines an associative operation from

S2 into S.

If (ei) is a Schauder basic sequence with coordinate functionals (e∗i ) and if

x ∈ [en] := span{en : n ∈ N}, we let supp(ei) x = (i : e∗i (x) 	= 0). When the

basis is understood, we will write suppx in place of supp(ei) x. If x, y ∈ [ei] are

such that supp(ei) x < supp(ei) y, we write x < y.

2.2. Schreier families. We define for each ξ < ω1 the Schreier family [1]

Sξ ∈ S. The purpose of these families is to measure complexity, which will be

made precise below. We let

S0 ={∅} ∪ {(n) : n ∈ N},
S1 ={E : |E| � minE},

Sξ+1 =S1[Sξ],

and if Sζ has been defined for each ζ < ξ, ξ < ω1 a limit ordinal, we choose

ξn ↑ ξ and let

Sξ = {E : ∃n � E ∈ Sξn}.
One can easily show by induction that in the limit ordinal case, the sequence

ξn ↑ ξ can be chosen so that for each i, Sξi ⊂ Sξi+1 . It will be convenient for us

to proceed with this assumption. Note that S1 ⊂ Sξ for all ξ � 1.

For each natural number n, we let

An = {E ∈ [N]<ω : |E| � n}.
We will use the following facts about the Schreier families, which are related

to or contained in [20]:

Proposition 1: (i) If ξ � ζ, there exists n ∈ N so that if n � E ∈ Sξ,

E ∈ Sζ .

(ii) For any 0 � ξ, ζ < ω1 and M ∈ [N], there exists L ∈ [M ] so that

Sξ(L)[Sζ ] ⊂ Sζ+ξ.

The above inclusion holds if we replace L by any spread of L.
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(iii) If ξ, ζ < ω1, there exists L ∈ [N] so that Sξ[Sζ ](L) ⊂ Sζ+ξ, and this

inclusion holds if we replace L by any spread of L.

(iv) For 0 � ξ, ζ < ω1 and a successive sequence (Fi) of members of Sζ ,

there exists N ∈ [N] so that if E ∈ Sξ(N),⋃
i∈E

Fi ∈ Sζ+ξ.

Items (i) and (iii) are contained in [20]. To the best of our knowledge, item

(ii) has not appeared in the literature. The proof of item (ii) is similar to the

proof of item (iii), however, since it is new and a somewhat complicated, we

include it for completeness.

Proof. (i) This item is contained in [20].

(ii) First, we note that if L ∈ [M ] has been chosen so that

Sξ(L)[Sζ ] ⊂ Sζ+ξ,

we can replace L with any L′ ∈ [L] and still have the desired containment.

We fix ζ and prove the result by induction on ξ. Since

S0(L)[Sζ ] = {E ∈ Sζ : minE ∈ L} ⊂ Sζ ,

we can take L = M in the base case.

Suppose M ∈ [N] is given and L ∈ [M ] is such that Sξ(L)[Sζ ] ⊂ Sζ+ξ. Then

Sξ+1(L)[Sζ ] ⊂ Sζ+ξ+1. To see this, take

E =

n⋃
i=1

Ei ∈ Sξ+1(L)[Sζ ],

where E1 < · · · < En, Ei ∈ Sζ for each i, and A = (minEi)
n
i=1 ∈ Sξ+1(L). Let

B ∈ Sξ+1 be such that L(B) = A. Write

B =
k⋃

j=1

Bj ,

where B1 < · · · < Bk, Bj ∈ Sξ for each j, and k � B. Let

Ij = (i � n : minEi ∈ L(Bj))

and Fj =
⋃

i∈Ij
Ei. Note that (minFi)i∈Ij = L(Bj) ∈ Sξ(L), so

Fj ∈ Sξ(L)[Sζ ] ⊂ Sζ+ξ.
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Moreover, F1 < · · · < Fk and

minF1 = minE � minB � k,

so

E =

k⋃
j=1

Fj ∈ Sζ+ξ+1.

Last, suppose the result holds for each γ < ξ, ξ < ω1 a limit ordinal. Note

that ζ + ξ is also a limit ordinal. Let ξn ↑ ξ, γn ↑ ζ + ξ be the ordinals

used to define Sξ and Sζ+ξ, respectively. Recall that we have selected these

so that Sξn ⊂ Sξn+1 for all n ∈ N. First choose natural numbers kn so that

ζ + ξn < γkn for each n ∈ N. Next, choose natural numbers rn � kn so that

if rn � E ∈ Sζ+ξn , then E ∈ Sγkn
. Define L0 = M and choose recursively

L1, L2, . . . so that Ln ∈ [Ln−1], rn � Ln, and Sξn(Ln)[Sζ ] ⊂ Sζ+ξn for each

n ∈ N. Let Ln = (�ni )i and let �n = �nn. Note that �1 < �2 < · · · , and let

L = (�n). Fix

E =
k⋃

i=1

Ei ∈ Sξ(L)[Sζ ],

E1 < · · · < Ek, Ei ∈ Sζ , A = (minEi)
k
i=1 ∈ Sξ(L). Choose B ∈ Sξ so that

L(B) = A and set n = minB. Then B ∈ Sξn . Let

L′ = (�n1 , . . . , �
n
n, �n+1, . . .)

and note that L′ ∈ [Ln]. Moreover, A = L(B) = L′(B), so

E ∈ Sξn(L
′)[Sζ ] ⊂ Sξn(Ln)[Sζ ] ⊂ Sζ+ξn .

Furthermore,

minE � minLn � rn � kn,

so

E ∈ Sζ+ξn ∩ [rn,∞)<ω ⊂ Sγkn
∩ [kn,∞)<ω ⊂ Sζ+ξ.

(iii) This follows from (ii). Let M = N and choose L ∈ [M ] to satisfy the

conclusion of (ii). Then

Sξ[Sζ ](L) ⊂ Sξ(L)[Sζ ] ⊂ Sζ+ξ.

The containment still holds if we replace L by any spread L′ of L, since in this

case the elements of Sξ[Sζ ](L
′) are spreads of elements of Sξ[Sζ ](L) and Sζ+ξ

is spreading.
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(iv) Let

mi = minFi and M = (mi).

Choose L = (mni) ∈ [M ] so that Sξ(L)[Sζ ] ⊂ Sζ+ξ. We claim N = (ni) satisfies

the conclusion. If E = N(F ) ∈ Sξ(N),

(minFi)i∈E = (mi)i∈E = (mni)i∈F = L(F ) ∈ Sξ(L).

Then ⋃
i∈F

Fi ∈ Sξ(L)[Sζ ] ⊂ Sζ+ξ.

3. Distortion indices

Recall that if t > 1, we say a Banach space X with basis (ei) is t-distortable if

there exists an equivalent norm | · | on X so that for any block sequence (xi) in

X there exists F ∈ [N]<ω and x, y ∈ [xi]i∈F with ‖x‖ = ‖y‖ = 1 and |x|/|y| > t.

It is easy to see that if a Banach space with a basis is t-distortable with this

definition, then it is (t− δ)-distortable for each δ using the usual definition. We

say X is arbitrarily distortable if it is t-distortable for all t > 1.

Let F ∈ S, t � 1. If X is a Banach space with basis (ei), we will say an

equivalent norm | · | on X is a t-F distortion of X , if for all normalized blocks

(xi) of (ei), there exists E ∈ F and x, y ∈ [xi]i∈E with ‖x‖ = ‖y‖ = 1 and

|x|/|y| > t. We say X is t-F distortable if there exists a t-F distortion of X .

We say X is F arbitrarily distortable if it is t-F distortable for every t � 1.

We let

Dt(X) = min{ξ < ω1 : X is t-Sξ distortable}
if this set is non-empty, and Dt(X) = ω1 otherwise. We let

AD(X) = min{ξ < ω1 : X is Sξ arbitrarily distortable}
if this set is non-empty, and AD(X) = ω1 otherwise. Though the AD index

ostensibly depends on the basis from which it is defined, it is easy to see that

the definition is actually independent of the choice of basis. Indeed, this follows

from the fact that whenever (en) and (zn) are two bases for X and (xn) is a

block basic sequence of (en), then a difference sequence dn = xk2n+1 − xk2n

can be made almost isometric to a block of (zn). Furthermore, one can define

the AD index for spaces without bases by replacing the condition that one

can find vectors supported on arbitrary normalized block sequences with the
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condition that one can find vectors supported on arbitrary normalized basic

sequences. Using similar arguments as described above, this AD index is seen

to be equivalent to the previously mentioned indices in the case that the space

has a basis. In addition, a simple modification of the proof of Proposition

2 shows that if X is separable, the AD index defined using normalized basic

sequences is countable on X if and only if X is arbitrarily distortable.

In the next proposition we record some relevant facts concerning this index.

In particular, we observe that a space X is arbitrarily distortable if and only if

AD(X) < ω1. P. Dodos makes this observation in [7].

Proposition 2: Let X be a Banach space with basis (ei) and let t > 1.

(i) The space X is not t-distortable if and only if Dt(X) = ω1.

(ii) If Dt(X) = ξ < ω1 for some t, then X is t-ζ distortable for any

ξ < ζ < ω1.

(iii) AD(X) = supn∈N Dn(X).

(iv) X is arbitrarily distortable if and only if AD(X) < ω1.

Proof. (i) Suppose X is not t-distortable. Let | · | be any equivalent norm on X .

Then by definition, there must exist a block sequence (xi) in X so that for each

E ∈ [N]<ω and each x, y ∈ [xi]i∈E with ‖x‖ = ‖y‖ = 1, |x|/|y| � t. Then for

any ξ < ω1, the sequence (xi) witnesses the fact that X is not t-Sξ distortable.

In the reverse direction, suppose Dt(X) = ω1. Let | · | be any equivalent norm

on X . For each ξ < ω1 there exists a normalized block (xξ
i )i so that for E ∈ Sξ

and x, y ∈ [xξ
i ]i∈E with ‖x‖ = ‖y‖ = 1, |x|/|y| � t. Let

T = {(xi)
n
i=1 ⊂ SX : x1 < · · · < xn, |x|‖y‖ � t|y|‖x‖ ∀x, y ∈ [xi]

n
i=1}.

One easily checks that (k1, . . . , kn) �→ (xξ
ki
)ni=1 is a tree isomorphism of Sξ \ (∅)

with a subtree of T . This means the order o(T ) = ω1. Since X is separable

and T is clearly a closed tree, using Bourgain’s version of the Kunen–Martin

Theorem [6], there must exist an infinite branch, say (xi). Clearly Y = [xi] is

so that if x, y ∈ SY , |x|/|y| � t.

(ii) Suppose | · | is a t-Sξ distortion on X . Let (xi) be a normalized block

sequence in X . By Proposition 1 (i), there exists n so that if n � E ∈ Sξ,

E ∈ Sζ . We apply the definition of t-Sξ distortion to the block sequence (xi+n)i

to deduce the existence of E ∈ Sξ and x, y ∈ [xi+n]i∈E so that ‖x‖ = ‖y‖ = 1

and |x|/|y| > t. Then letting F = (i + n : i ∈ E) ∈ Sζ , we deduce that x, y

witness the fact that | · | is also a t-Sζ distortion on X .
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(iii) Clearly AD(X) � supDn(X). If Dn(X) = ω1 for some n, the result is

clear. So assume Dn(X) < ω1 for each n and let ξ = supDn(X) < ω1. Then

by (ii), X is n-Sξ distortable for each n, and AD(X) � ξ.

(iv) This is clear from (i)–(iii).

4. Higher order spreading models and distortion

As previously mentioned, it is a classical result of R. C. James that neither

c0 nor �1 is t-distortable for any t > 1 [12]. In this section, we aim to show

that certain types of �1 or c0 structure in a Banach space provide a similar

non-distortability result with respect to the notion of Sξ distortion.

Let F ∈ S. If X is a Banach space, K � 1, and p � 1, we say a basic

sequence (xi) in X is a K-�Fp spreading model if there exist c, C > 0 so that

cC � K and, for any E ∈ F and any scalars (ai)i∈E ,

c−1

(∑
i∈E

|ai|p
)1/p

�
∥∥∥∥
∑
i∈E

aixi

∥∥∥∥ � C

(∑
i∈E

|ai|p
)1/p

.

We define K-cF0 spreading models analogously. If F = Sξ, we write �ξp in place

of �
Sξ
p .

For 1 � p � ∞, we will say (yi) is a p-absolutely convex blocking of

(xi) if there exists a successive sequence (Ei) ⊂ [N]<ω and scalars (aj) so that

(aj)j∈Ei ∈ S�p and yi =
∑

j∈Ei
ajxj for all i ∈ N. We will say (yi) is a p-F -

absolutely convex blocking of (xi) if it is a p-absolutely convex blocking of

(xi) and the sets (Ei) can be taken to lie in F .

We record, without proof, the following collection of remarks concerning �Fp
and cF0 spreading models.

Remark 3: Let F ,G ∈ S, K � 1.

(i) Any subsequence of a K-�Fp or K-cF0 spreading model is one as well.

(ii) If F ⊂ G and (xi) is a K-�Gp spreading model, it is a K-�Fp spreading

model.

(iii) If (xi) is a K-�
F [G]
p spreading model and (yi) is a p- G-absolutely convex

blocking of (xi), then (yi) is a K-�Fp spreading model.

The search for �Fp or cF0 spreading models in a Banach space X is typically

not impeded by the requirement from the definition that the sequence be basic.

For �Fp , p > 1, or cF0 spreading models we easily observe the following.
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Remark 4: Suppose F ∈ S contains sets of arbitrarily large cardinality and all

singletons. Suppose (xi)i, c, C are such that

c−1

(∑
i∈E

|ai|p
)1/p

�
∥∥∥∥
∑
i∈E

aixi

∥∥∥∥ � C

(∑
i∈E

|ai|p
)1/p

,

for all E ∈ F , scalars (ai)i∈E , and p > 1. Then we can find a successive

sequence (Ei) in F with |Ei| = i. If M ∈ [N], then∥∥∥∥
∑

j∈M(Ei)

i−1xj

∥∥∥∥ � Ci1/p/i →
i→∞

0,

hence (xi) is weakly null. Since F contains all singletons, the sequence must

be seminormalized, and therefore some subsequence of (xi) is basic. This sub-

sequence is a K-�Fp spreading model. The K-cF0 spreading model is handled

similarly. These hypotheses on F will be satisfied whenever F = Sξ for ξ > 0.

For �ξ1 spreading models we observe the following.

Remark 5: Let ξ > 0. An easy induction argument shows that if M = (2n)n∈N,

then Sξ[A2](M) ⊂ Sξ. If (xi) ⊂ X , c, C > 0 are so that for all E ∈ Sξ and

scalars (ai)i∈E ,

c−1
∑
i∈E

|ai| �
∥∥∥∥
∑
j∈E

ajxj

∥∥∥∥ � C
∑
j∈E

|aj |,

then (xi) satisfies the same inequalities with Sξ replaced by Sξ[A2](M). By

passing to the subsequence (xi)i∈M , we can assume the sequence itself satisfies

these inequalities when E ∈ Sξ[A2].

If some subsequence of the sequence (xi) is equivalent to the unit vector basis

of �1, this subsequence is clearly basic. Otherwise we can use Rosenthal’s �1

theorem [22], pass to a subsequence, and assume (xi) is weakly Cauchy. Then

yi = (x2i − x2i+1)/2 defines an A2-absolutely convex blocking of (xi), and (yi)

is weakly null. Therefore some subsequence of (yi) is basic and hence a K-�ξ1
spreading model.

The following proof is a transfinite analogue of a well-known argument due

to James [12] and a sharpening of a result of Judd and Odell [13, Lemma 6.5].

Theorem 6: Let X be a Banach space, ξ < ω1. If X contains an �ω
ξ

1 spreading

model, then for any ε > 0, X contains a (1 + ε)-�ω
ξ

1 spreading model. More
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precisely, if (xi) ⊂ X is an �ω
ξ

1 spreading model, we can find a blocking (yi) of

(xi) which is a (1 + ε)-�ω
ξ

1 spreading model so that for each F ∈ Sωξ ,⋃
i∈F

supp(xj) yi ∈ Sωξ .

Proof. We prove the result for ξ > 0. The result for ξ = 0 is somewhat simpler,

and involves using An in place of Sξn , where ξn ↑ ωξ is the sequence of ordinals

used to define Sωξ . Note that if (xi) is a K-�ω
ξ

1 spreading model, and if c, C > 0

are as in the definition of a K-�ω
ξ

1 spreading model, we can replace xi by C−1xi

and assume (xi) ⊂ BX , c = K, and C = 1. We will assume this. We will

prove by induction on m ∈ N that if (x0
i ) ⊂ BX is a K-�ω

ξ

1 that there exist a

blocking (xm
i ) ⊂ BX of (x0

i ) and an ordinal ζm < ωξ so that (xm
i ) is a blocking

of (xm−1
i ), (xm

i ) is a K1/2m-�ω
ξ

1 spreading model, and supp(x0
j)
xm
i ∈ Sζm . Of

course, the base case m = 0 is the hypothesis.

Suppose we have found the blocking (xm−1
i ) and the ordinal ζm−1 < ωξ. We

say a sequence (yi) in X has property Pn if for each E ∈ Sξn with n � E and

for all scalars (ai)i∈E ,

K1/2m
∥∥∥∥
∑
i∈E

aiyi

∥∥∥∥ �
∑
i∈E

|ai|.

Note that if (yi) has property Pn and if (zi) is a sequence in X so that zi = yi

for all i � n, then (zi) also has property Pn. Also, by the spreading property

of the Schreier families, any subsequence of a sequence with property Pn also

has property Pn. We consider two cases.

In the first case, for all n ∈ N and for allM ∈ [N], there existsN ∈ [M ] so that

(xm−1
i )i∈N has property Pn. In this case, we let M0 = N and choose recursively

M1,M2, . . . so that Mn ∈ [Mn−1] and so that (xm−1
i )i∈Mn has property Pn.

Moreover, since property Pn is invariant under redefining the first n−1 elements

of a sequence, we can assume that the first n− 1 elements of Mn are the same

as the first n− 1 elements of Mn−1. If we write Mn = (mn
i ), we let mn = mn

n

and M = (mn). Since M ∈ [Mn] for all n ∈ N, (xm−1
i )i∈M ⊂ has property Pn

for all n ∈ N. We let xm
i = xm−1

mi
and ζm = ζm−1. This is clearly the desired

sequence.

In the second case, there exist M ∈ [N] and n ∈ N so that no subsequence

of (xm−1
i )i∈M has property Pn. By relabeling, we can assume M = N. Let

ζm = ζm−1 + ξn. Choose by Proposition 1 (iii) some N = (ni) ∈ [N] so that

Sωξ [Sξn ](N) ⊂ Sξn+ωξ = Sωξ .
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Let

Fi = supp(x0
j)
xm−1
ni

∈ Sζm−1 .

Since (xm−1
i ) is a K1/2m−1

-�ω
ξ

1 spreading model, (xm−1
i )i∈N is a K1/2m−1

-

�
S
ωξ [Sξn ]

1 spreading model. Choose by Proposition 1 (iv) some L ∈ [N] so that

if E ∈ Sξn(L), then ⋃
i∈E

Fi ∈ Sζm−1+ξn = Sζm .

Since no subsequence of (xm−1
ni

)i∈L has property Pn, we can find E1 < E2 < · · · ,
Ei ∈ Sξn and non-zero scalars (aj) so that for each i,∥∥∥∥

∑
j∈L(Ei)

ajx
m−1
nj

∥∥∥∥ < K−1/2m and
∑

j∈L(Ei)

|aj | = 1.

Then yi =
∑

j∈L(Ei)
ajx

m−1
nj

is a Sξn absolutely convex blocking of (xm−1
ni

),

which is a K1/2m−1

-�
S
ωξ [Sξn ]

1 spreading model, (yi) is a K1/2m−1

-�ω
ξ

1 spread-

ing model. Then by homogeneity, (xm
i ) = (K1/2myi) ⊂ BX is a K1/2m-�ω

ξ

1

spreading model. This finishes the inductive step.

We next choose n0 ∈ N so that K1/2n0
< 1 + ε and (�i) = L according to

Proposition 1 (iv) so that if E ∈ Sωξ(L),⋃
i∈E

supp(x0
j)
xn0

i ∈ Sζn0+ωξ = Sωξ .

The announced sequence is (xn0

�i
).

The proof for cω
ξ

0 spreading models is similar, except we reverse the inequal-

ities. Given (x0
i ), we can assume c = 1, C = K, and ‖x0

i ‖ � 1 for all i ∈ N. We

find successive blockings (xm
i ) and ordinals ξm < ωξ so that ‖xm

i ‖ � 1, for all

E ∈ Sωξ and scalars (ai)i∈E ,∥∥∥∥
∑
i∈E

aix
m
i

∥∥∥∥ � K1/2m max
i∈E

|ai|,

and so that supp(x0
j)
xm
i ∈ Sξm . Suppose n0 ∈ N is chosen so thatK1/2n0

< 1+δ,

where δ ∈ (0, 1) is so small that (1 + δ)/(1 − δ) < 1 + ε. Choose E ∈ Sωξ and

scalars (ai)i∈E so that maxi∈E |ai| = 1. We assume there exists j ∈ E so that

aj = 1. Let w =
∑

i∈E aix
n0

i and let w′ = ajx
n0

j −∑
i∈E\(j) aix

n0

i . Then

2 � 2‖xn0

j ‖ = ‖w + w′‖ � ‖w‖+ ‖w′‖ � 1 + δ + ‖w′‖,
whence ‖w′‖ � 1− δ. This implies (xn0

i ) is a (1+ ε)-cω
ξ

0 spreading model.
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Remark: We observe that for any 1 < p < ∞, we can replace 1-absolutely

convex blockings with p-absolutely convex blockings in the first argument to

deduce that if X contains a K-�ω
ξ

p spreading model, then for any ε > 0, there

exists a K-�ω
ξ

p spreading model (xi) ⊂ BX so that for each E ∈ Sωξ and scalars

(ai)i∈E ,

(∑
i∈E

|ai|p
)1/p

� (1 + ε)

∥∥∥∥
∑
i∈E

aixi

∥∥∥∥.

But in this case, tight �p upper estimates do not follow as in the �1 case. In fact,

the theorem is false in this case, otherwise �p would not be distortable. Similarly,

in the second argument we can replace ∞-absolutely convex blockings with p-

absolutely convex blockings to deduce that if X contains a K-�ω
ξ

p spreading

model, then for ε > 0, there exists a K-�ω
ξ

p (xi) in X so that ‖xi‖ � 1 for all

i ∈ N and so that for all E ∈ Sωξ and scalars (ai)i∈E ,

∥∥∥∥
∑
i∈E

aixi

∥∥∥∥ � (1 + ε)

(∑
i∈E

|ai|p
)1/p

.

We now state the following lemma that will be used to prove one of our main

theorems. Essentially it states that if (xi) is either an �ω
ξ

1 or cω
ξ

0 spreading

model with respect to two equivalent norms on X , we can block the spreading

model to improve its constant with respect to one norm without worsening the

constant with respect to the other norm.

Lemma 7: Suppose that X is a Banach space and (xi) is a C-�ω
ξ

1 spreading

model in (X, ‖ · ‖). Let | · | be an equivalent norm on X . Then for each ε > 0

there is a block (yi) of (xi) satisfying:

(i) The sequence (yi) is a (1 + ε)− �ω
ξ

1 spreading model in (X, | · |).
(ii) The sequence (λyi) is a C − �ω

ξ

1 spreading model in (X, ‖ · ‖).
Proof. This is an immediate consequence of Theorem 6. The blocking (yi) of

(xi) which is a (1 + ε)-�ω
ξ

1 spreading model in (X, | · |) is so that if E ∈ Sωξ ,⋃
i∈E supp(xj) yi ∈ Sωξ , which clearly implies that (yi) is still a C-�ω

ξ

1 spreading

model in (X, ‖ · ‖).

We use the above lemma to prove the following
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Proposition 8: If X is a Banach space with basis (ei) and 0 � ξ < ω1 is such

that X contains either an �ω
ξ

1 or a cω
ξ

0 spreading model, then D1+ε(X) > ωξ

for any ε > 0.

Proof. If �1 ↪→ X , then we reach the conclusion by Proposition 2 and the fact

that �1 is not distortable. So we assume X contains no copy of �1. In this case,

Remark 2 implies that if X contains an �ζ1 spreading model for some ζ > 0, it

contains one which is weakly null. Therefore, we apply a standard perturbation

argument and Theorem 1 to deduce the existence of a block sequence (xi) ⊂ BX

which is a (1 + δ)-�ω
ξ

1 spreading model, δ > 0 to be determined. Let | · | be
an equivalent norm on X . By the previous remark, we can find a blocking

(yi) which is a (1 + δ)-�ω
ξ

1 spreading model in (X, ‖ · ‖) and a (1 + δ)-�ω
ξ

1

spreading model in (X, | · |). Then there exist constants a, a0, b, b0 > 0 so that

ab, a0b0 � 1 + δ so that for E ∈ Sωξ , (ai)i∈E , and x =
∑

i∈E aiyi,

a−1
∑
i∈E

|ai| � ‖x‖ � b
∑
i∈E

|ai|

and

a−1
0

∑
i∈E

|ai| � |x| � b0
∑
i∈E

|ai|.

Fix E ∈ Sωξ and x =
∑

i∈E aiyi, y =
∑

i∈E biyi ∈ SX . Then

|x|
|y| �

b0
∑

i∈E |ai|
a−1
0

∑
i∈E |bi|

� b0a‖x‖
a−1
0 b−1‖y‖ � (1 + δ)2.

With an appropriate choice of δ ≥ 0, we reach the conclusion.

The proof in the c0 case is similar.

While the following is an aside, it is worth observing. It states that not

containing an �ω
ξ

1 spreading model is a three space property. The proof is very

similar to the proof of Theorem 6.

Proposition 9: Let X be a Banach space, Y a closed subspace, and ξ < ω1.

Then X contains an �ω
ξ

1 spreading model if and only if Y or X/Y does.

Proof. It is known that X contains a copy of �1 if and only if either Y or X/Y

does, so assume that none of these three spaces contains a copy of �1. This

assumption allows us to use Remark 2 to deduce that it is sufficient to find a

sequence in the unit ball of the appropriate space which satisfies the desired

lower estimate. That is, we do not need this sequence to be basic, since it will
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have a blocking which is an �ω
ξ

1 spreading model. Again, we include the details

only of the ξ > 0 case. Let ξn ↑ ωξ be the ordinals used to define Sωξ .

Suppose X contains a K-�ω
ξ

1 spreading model (xi). Again, we assume c = K,

C = 1, and (xi) ⊂ BX . Let us say (ui) ⊂ X has property Pn if for all

n � E ∈ Sξn and scalars (ai)i∈E ,

K0

∥∥∥∥
∑
i∈E

aiui + Y

∥∥∥∥
X/Y

�
∑
i∈E

|ai|,

where K0 > K is fixed. As in the proof of Theorem 6, we either pass to a

subsequence (xi)i∈N of (xi) which has property Pn for all n, or there exists

an n ∈ N and an Sξn -absolutely convex blocking (zi) which is also a K-�ω
ξ

1

spreading model in X and so that ‖zi + Y ‖X/Y < K−1
0 for all i. In the first

case, the sequence (zi + Y ) ⊂ BX/Y and satisfies the desired lower estimate

with constant K0. In the second case, choose for each i ∈ N some yi ∈ 2BY so

that ‖zi − yi‖ < K−1
0 and let δ = K−1 −K−1

0 . Then if E ∈ Sωξ and (ai)i∈E ,∥∥∥∥
∑
i∈E

aiyi

∥∥∥∥ �
∥∥∥∥
∑
i∈E

aizi

∥∥∥∥−
∑
i∈E

|ai|‖zi − yi‖ � δ
∑
i∈E

|ai|.

The upper �1 estimates on (yi) follow from the fact that (yi) ⊂ 2BY .

The other direction is trivial.

It is worth pointing out that an analogous result cannot be stated for �ω
ξ

p ,

p > 1, or cω
ξ

0 spreading models. For instance, if X = �1, then there exists a

subspace Y of X such that the space X/Y is isometric to �p or c0. In particular,

X/Y contains an �ω
ξ

p or cω
ξ

0 , for every countable ordinal number ξ, however X

does not contain any order of �p or c0 spreading models.

5. Computing the distortion index for certain spaces

In this section we compute or bound the distortion indices for several spaces.

As stated in the introduction, the present paper was inspired by a question

of P. Dodos question on MathOverFlow [7]. Here, we resolve several of the

queries found there. In particular, we observe that AD(S) = 2 where S is

Schlumprecht’s space, AD(X) � 2 for any asymptotic �p space X with 1 < p,

and for every countable ordinal ξ there is an arbitrarily distortable space X

such that AD(X) > ξ. Also, as noted by Dodos, for each countable ζ � 1 there

is a mixed Tsirelson space Xζ [3, Chapter 13] (that is a higher order analogue
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of the asymptotic �1 mixed Tsirelson space of Argyros–Deliyanni [2]) that is

arbitrarily distortable and asymptotic �ζ1. For ζ = ωξ, Proposition 8 implies

that AD(Xξ) > ξ. We also present the examples (Xωξ

0,1
)ξ<ω1 which were first

introduced in the paper [4] by S. A. Argyros, the first and third authors. For

these spaces we are able to calculate the exact index, namely, we show that

AD(X) = ωξ + 1 for any block sequence X of Xωξ

0,1
. As these spaces have the

property that in every subspace there are exactly two spreading models c0 and

�1, this answers, in the negative, the conjecture of Dodos which asked whether

an arbitrarily distortable space with AD(X) > 1 contains an asymptotic �p

space. We note that S also serves as a counterexample to this conjecture.

5.1. Tsirelson space T , Schlumprecht space S, and asymptotic �p

spaces. Let T denote the Figiel–Johnson Tsirelson space [8, 25]. We note that

T is asymptotic �1. This implies that any normalized block sequence in T is an �11
spreading model. Therefore, by Proposition 3 we can deduce that D1+ε(Y ) > 1

for all ε > 0 and any block subspace Y of T . In [20], it is shown that Tsirelson

space is (2 − ε)-distortable for every ε > 0 (also see [19, pp. 1343–1344]). This

proof roughly goes as follows: For every n ∈ N one can find �n1 averages with

good constants and rapidly increasing sequences of �n1 averages—typically called

RIS vectors. The �n1 averages in any block sequences have supports in S1, while

the RIS vectors can be realized with supports in S2. Since these vectors witness

the appropriate 2− ε distortion, for any 1 < t < 2, Dt(T ) = 2.

Similarly, for the space S we have D1+ε(S) > 1, since S contains an �11
spreading model [14]. But S can be arbitrarily distorted by �n1 averages and

RIS vectors, which can again be found in any normalized block with supports

in S1 and S2, respectively. Therefore we deduce that AD(S) = 2.

We also observe that in their famous solution to the distortion problem, Odell

and Schlumprecht [17] used a generalization of the Mazur map to prove that

for 1 < p < ∞, �p is arbitrarily distortable. The construction involved using

appropriate pointwise products of sequences of RIS vectors in S and norming

functionals in S∗ to construct sequences in �1 and then transport them to �p to

construct the norms which witness the distortion. Since the generalization of

the Mazur map preserves supports, the processes of taking pointwise products

and of taking images under this generalization can only reduce supports. This

means AD(�p) � 2. Moreover, Maurey’s proof [15] that for 1 < p < ∞,

asymptotic �p spaces are arbitrarily distortable, uses a process similar to that
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of Odell and Schlumprecht, and yields the same conclusion: If 1 < p, and if X

is an asymptotic �p Banach space, AD(X) � 2.

5.2. The spaces (Xωξ

0,1
)ξ<ω1 . The rest of the paper is dedicated to defining

and providing the relevant facts concerning the spaces Xωξ

0,1
. For each ξ with

1 � ξ < ω1 the space X
ωξ

0,1
is reflexive with a 1-unconditional basis. In [18], Odell

and Schlumprecht introduced the method, a form of which used to construct the

space Xωξ

0,1
. In this paper they construct a space having the property that every

unconditional basic sequence is finitely block represented in every subspace.

In [4], a thorough study of the spaces Xn
0,1

is undertaken. Here it is shown that

the spaces are quasi-minimal and every subspace admits only c0 and �1 spreading

models. In a subsequent paper [5], S. A. Argyros and the third author use these

spaces to provide the first reflexive spaces so that every operator on a subspace

has a non-trivial invariant subspace. In [4], the spaces Xξ
0,1

are introduced

for countable ξ, however, many of the properties were not proved. The next

proposition includes the properties of Xωξ

0,1
that we need to compute AD(Xωξ

0,1
).

In the Appendix we give the definition of Xωξ

0,1
and prove this proposition.

Proposition 10: If (xi) is a normalized block sequence, either there exists

M ∈ [N] so that (xi)i∈M is an �ω
ξ

1 spreading model, or for any ε > 0, there

exists M ∈ [N] so that (xi)i∈M is a (1 + ε)-c10 spreading model. In particular

we have:

(i) If (xi)i∈M is a c10 spreading model, there exists a sequence (Ei) of suc-

cessive elements of S1 so that yi =
∑

j∈Ei
xj is an �ω

ξ

1 spreading model.

(ii) If (xi)i∈M is an �ω
ξ

1 spreading model and ε > 0, there exists a se-

quence (Ei) of successive elements of Sωξ and scalars (aj) so that

yi =
∑

j∈Ei
ajxj is a (1 + ε)-c0 spreading model.

The proof of Proposition 10 relies on several results from the papers [4, 5].

Theorem 11: If X is any block subspace of Xωξ

0,1
, then AD(X) = ωξ + 1.

Proof. AD(X) > ωξ follows from Proposition 10 and Proposition 8, since the

block subspaces of Xωξ

0,1
each contain block sequences which are �ω

ξ

1 spreading

models.
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For n ∈ N, define | · |n on Xωξ

0,1
by

|x|n = sup

{ n∑
i=1

‖Iix‖ : I1 < · · · < In, Ii an interval

}
.

Clearly ‖ · ‖ � | · |n � n‖ · ‖. We will show that for δ > 0, | · |n (n − δ)-Sωξ+1

distorts Xωξ

0,1
, and therefore (n− δ)-Sωξ+1 distorts any block subspace as well.

We claim that for any block sequence (xi) ⊂ Xωξ

0,1
, any ε > 0, and any k ∈ N,

there exist E ∈ Sωξ+1 and block sequences (yi)
k
i=1, (zi)

n
i=1 ⊂ [xi]i∈E so that

(yi)
k
i=1, (zi)

n
i=1 are (1+ ε)-equivalent to the �k1 and �n∞ bases, respectively. First

we will show how this claim finishes the proof, and then we will return to the

claim. We can assume that ‖yi‖ � 1 and ‖zi‖ � 1 for all i. Suppose we have

found the indicated (yi)
k
i=1, (zi)

n
i=1. Let y =

∑k
i=1 yi, y = y/‖y‖, z =

∑n
i=1 zi,

z = z/‖z‖ ∈ [xi]i∈E . Then

‖z‖ �1 + ε, and |z|n �
n∑

i=1

‖zi‖ � n,

‖y‖ �k/(1 + ε), and |y|n � (k + 2n).

Therefore

|z|n/|y|n � n

(1 + ε)2
k

k + 2n
.

Since ε and k were arbitrary, this gives the conclusion.

We return to the claim. We assume k � n. Let (xi) be a block sequence in

Xωξ

0,1
. By Proposition 10, we can choose M ∈ [N] so that (xi)i∈M is either a

(1 + ε)-c10 spreading model or an �ω
ξ

1 spreading model.

Suppose (xi)i∈M is a (1 + ε)-c10 spreading model. If E ∈ S1 ∩ [M ]<ω is any

set with |E| � n, we can clearly find (zi)
n
i=1 ⊂ [xi]i∈E . Choose (ni) = N ∈ [M ]

so that Sωξ [S1](N) ⊂ Sωξ . By Proposition 10, we can find E1 < E2 < · · · ,
Ei ∈ S1 so that if ui =

∑
j∈Ei

xnj , (ui) is an �ω
ξ

1 spreading model. By Theorem

6, we can find F1 < F2 < · · · , Fi ∈ Sωξ and non-zero scalars (aj) so that if

yi =
∑

j∈Fi
ajuj, (yi) is a (1 + ε)-�ω

ξ

1 spreading model. Then

supp(xj) yi = N(supp(xj)j∈N
yi) = N

( ⋃
�∈Fi

E�

)
∈ Sωξ [S1](N) ⊂ Sωξ .

Choose k � i1 < · · · < ik and let E =
⋃k

j=1 supp(x�)
(yij ) ∈ Sωξ+1. Since

(yij )
k
j=1 ⊂ [xi]i∈E and since |E| � n, this finishes the first case.
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Suppose (xi)i∈M is an �ω
ξ

1 spreading model. We choose according to The-

orem 6 some F1 < F2 < · · · , Fi ∈ Sωξ and non-zero scalars (aj) so that if

yi =
∑

j∈Fi
ajxj , (yi) ⊂ BX is a (1 + ε)-�ω

ξ

1 spreading model. By Propo-

sition 10, we choose E1 < E2 < · · · , Ei ∈ Sωξ and scalars (bj) so that

if zi =
∑

j∈Ei
bjxj , (zi) is a (1 + ε)-c10 spreading model. Then we choose

i1 < · · · < ik and m1 < · · · < mn so that

n+ k � Fi1 < · · · < Fik < Em1 < . . . < Emn

and set

E = Fi1 ∪ · · · ∪ Fik ∪ Em1 ∪ · · · ∪ Emn ∈ Sωξ+1.

Then (yij )
k
j=1, (zmj )

n
j=1 ⊂ [xi]i∈E are clearly the desired blocks.

We conclude this section by stating a few problems that are open to us.

Problem 1: Does there exist a space X so that AD(X) = 1?

Problem 2: Construct an arbitrarily distortable space X space admitting nei-

ther a c0 nor an �1 spreading model so that AD(X) > 1. This would perhaps

reveal a new method of achieving lower bounds for AD(X), which would not

involve these spreading models.

Problem 3 (Gowers): Is AD(�2) > 1?

Appendix A. The spaces (Xωξ

0,1
)ξ<ω1

A.1. Defining the spaces (Xωξ

0,1
)ξ<ω1 . Below we define the space Xωξ

0,1
for a

countable ordinal ξ.

Notation 12: Let G ⊂ c00. If a vector α0 ∈ G is of the form α0 = 1
�

∑d
q=1 fq,

for some � ∈ N, f1 < · · · < fd ∈ G, d � � and 2 � �, then α0 will be called

an α-average of size s(α0) = �. Notice that the size is not uniquely defined,

however, this will not cause a problem.

Let k ∈ N. A finite sequence (αq)
d
q=1 of α-averages in G will be called Sωξ

admissible if α1 < . . . < αd and {min suppαq : q = 1, . . . , d} ∈ Sωξ .

A finite or infinite sequence (αq)q of α-averages in G will be called very fast

growing if α1 < α2 < · · · , s(α1) < s(α2) < · · · and s(αq) > max suppαq−1 for

1 < q.
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If a vector g ∈ G is of the form g =
∑d

q=1 αq for an Sωξ -admissible and

very fast growing sequence (αq)
d
q=1 ⊂ G, then g will be called a Schreier

functional.

The norming set. Inductively construct a set W ⊂ c00 in the following man-

ner. Set W0 = {+−en}n∈N. Suppose that W0, . . . ,Wm have been constructed.

Define

Wα
m+1 =

{
1

�

d∑
q=1

fq : f1 < · · · < fd ∈ Wm, � � 2, � � d

}

and

WS
m+1 =

{ d∑
q=1

αq : {αq}dq=1 ⊂ Wm Sωξ -admissible and very fast growing

}
.

Define Wm+1 = Wα
m+1 ∪WS

m+1 ∪Wm and W =
⋃∞

m=0 Wm.

For x ∈ c00 define ‖x‖ = sup{f(x) : f ∈ W} and Xωξ

0,1
= (c00(N), ‖ · ‖).

Evidently, Xωξ

0,1
has a 1-unconditional basis. Further properties will imply that

Xωξ

0,1
is reflexive.

One may also describe the norm on Xωξ

0,1
with an implicit formula. For j ∈ N,

j � 2, x ∈ Xωξ

0,1
, set ‖x‖j = sup{ 1

j

∑d
q=1 ‖Eqx‖}, where the supremum is taken

over all successive finite subsets of the naturals E1 < · · · < Ed, d � j. Then by

using standard arguments it is easy to see that

‖x‖ = max

{
‖x‖0, sup

{ d∑
q=1

‖Eqx‖jq
}}

,

where the supremum is taken over all Sωξ admissible finite subsets of the nat-

urals E1 < · · · < Ek, such that jq > maxEq−1, for q > 1.

A.2. Indices and tools. Now we collect several tools first used in the papers

[4, 5].

Definition 13: Let (xk)k∈N be a block sequence in Xωξ

0,1
and let ξn ↑ ωξ be the

ordinal sequence defining Sωξ .

We write α<ωξ((xi)i∈N) = 0 if, for any n ∈ N, any fast growing sequence

(αq)q∈N of α-averages in W and for any (Fk)k∈N increasing sequence of subsets
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of N, such that (αq)q∈Fk
is Sξn admissible, the following holds: For any sub-

sequence (xnk
)k∈N of (xk)k∈N we have limk

∑
q∈Fk

|αq(xnk
)| = 0. If this is not

the case, we write α<ωξ((xi)i∈N) > 0.

The above index is used to detect when a given block sequence will admit

an �ω
ξ

1 spreading model or a c10 spreading model. We will need the following

characterization.

Remark 14: Let ξ be a countable limit ordinal and (xk)k∈N be a block sequence

in Xωξ

0,1
. The following are equivalent:

(i) α<ωξ((xk)k∈N) = 0.

(ii) For any ε > 0 and n ∈ N there exist j0, k0 ∈ N such that for any

k � k0, and for any (αq)
d
q=1 Sξn -admissible and very fast growing se-

quence of α-averages such that s(αq) > j0 for q = 1, . . . , d, we have that∑d
q=1 |αq(xk)| < ε.

Definition 15: Let x =
∑

i∈F ciei be a vector in c00(N), ζ < ξ be countable

ordinal numbers and ε > 0. If:

(i) the coefficients (ci)i∈F are non-negative and
∑

i∈F ci = 1,

(ii) the set F is in Sξ, and

(iii) for every G ∈ Sζ we have that
∑

i∈G∩F ci < ε,

then we say that the vector x is a (ξ, ζ, ε) basic special convex combination

(or basic s.c.c.).

The proof of the next proposition can be found in [3, Chapter 12, Proposition

12.9].

Proposition 16: For all countable ordinal numbers ζ < ξ, positive real num-

bers ε and infinite subset of the natural numbers M , there exists F ⊂ M and

non-negative real numbers (ci)i∈F such that the vector x =
∑

i∈F ciei is a

(ξ, ζ, ε) basic s.c.c.

Definition 17: Let (xk)
m
k=1 be a finite block sequence in c00(N), ζ < ξ be count-

able ordinal numbers and ε > 0. Let (ck)
m
k=1 be non-negative real numbers and

set φk = min suppxk for k = 1, . . . ,m. If the vector
∑m

k=1 ckeφk
is an (ξ, ζ, ε)

basic s.c.c., then we shall say that the vector x =
∑m

k=1 ckxk is a (ξ, ζ, ε) special

convex combination (or s.c.c.).
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Lemma 18: Let (xi)i be a block sequence in c00(N). Then for every k ∈ N and

ε > 0 there exists F ∈ Sωξ and non-negative real numbers (ci)i∈F such that the

vector y =
∑

i∈F cixi is a (ξk+1, ξk, ε) s.c.c.

Proof. Let (xi)i, k and ε be fixed. Define ji = min suppxi for all i ∈ N and

A = {F ⊂ N : {jn}n∈F ∈ Sξk+1
}. Since ξk+1 < ωξ, Theorem 1.1 from [9]

implies that there is an infinite subset of the natural numbers M so that for

every F ∈ A with F ⊂ M , F is also in Sωξ . Define L = {ji : i ∈ M}.
Applying Proposition 16 we obtain G = {ji1 , . . . , jid} ⊂ L, and (cn)

d
n=1 such

that the vector x =
∑d

n=1 cnejin is a (ξk+1, ξk, ε) basic s.c.c. Since G ∈ Sξk+1
,

it follows that F = {i1, . . . , id} ∈ A, and by the choice of M we obtain that

F ∈ Sωξ . Observe that y =
∑d

n=1 cnxin is the desired (ξk+1, ξk, ε) s.c.c.

The next two lemmas are from [4] where they are labeled Lemma 3.3 and

Lemma 3.4, respectively.

Lemma 19: Let α0 be an α-average in W , (xk)
m
k=1 be a normalized block se-

quence and (ck)
m
k=1 non-negative reals with

∑m
k=1 ck = 1. Then if

Gα0 = {k : ranα0 ∩ ranxk 	= ∅},

the following holds:

∣∣∣∣α0

( m∑
k=1

ckxk

)∣∣∣∣ < 1

s(α0)

∑
i∈Gα

ci + 2max{ci : i ∈ Gα0}.

Lemma 20: Let k ∈ N, x =
∑m

i=1 cixi be a (ξk+1, ξk, ε) s.c.c. with ‖xi‖ � 1

for i = 1, . . . ,m. Let also (αq)
d
q=1 be a very fast growing and Sξk -admissible

sequence of α-averages. Then the following holds:

d∑
q=1

∣∣∣∣αq

( m∑
i=1

cixi

)∣∣∣∣ < 1

s(α1)
+ 6ε.

Our next result follows from Lemma 20 and the fact that the sequence (ξk)k

used to define Sωξ satisfies Sξk ⊂ Sξk+1
for all k ∈ N.

Corollary 21: Let (xk)k be a bounded block sequence in Xωξ

0,1
and (yk)k be a

further block sequence of (xk)k, such that each yk =
∑

i∈Fk
cixi is a (ξk+1, ξk, εk)

s.c.c. with limk εk = 0. Then α<ωξ((yj)j) = 0.
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A.3. Important Technical Propositions. In this final section of the ap-

pendix we provide some technical propositions and use them to prove Proposi-

tion 10. A variation of the next proposition appears in the paper [4]. The outline

of the proof is very similar; however, there are some technical differences that

arise when considering ordinals of the form ωξ and their corresponding Schreier

families Sωξ . Because of these differences we have included the detailed proof.

Proposition 22: Let (xi)i∈N be normalized block sequence in Xωξ

0,1
. Then the

following hold:

(i) If α<ωξ((xi)i∈N) > 0 then, by passing to a subsequence, (xi)i∈N gener-

ates an �ω
ξ

1 spreading model.

(ii) If α<ωξ((xi)i∈N) = 0, then there is a subsequence of (xi) that generates

an isometric c0 spreading model.

Proof. First we prove (i). By Definition 13 there are d ∈ N, ε > 0, a very

fast growing sequence of α-averages (αq)q∈N in W , and a sequence (Fi)i∈N of

successive finite subsets such that (αq)q∈Fi is Sξd admissible and a subsequence

of (xi)i, again denoted by (xi)i, so that for each i ∈ N

∑
q∈Fi

|αq(xi)| > ε.

Since the basis is unconditional, we may assume that suppαq ⊂ suppxi for all

q ∈ Fi and i ∈ N. Using the Proposition 1 (ii) we may find a subsequence

M = (mi)i so that for each F ∈ Sωξ(M) we have
⋃
i∈F

Fi ∈ Sξd+ωξ = Sωξ

(note that ξd + ωξ = ωξ).

Let G ∈ Sωξ and (λi)i∈G be real numbers. Then M(G) ∈ Sωξ(M). Thus
⋃

i∈M(G)

Fi =
⋃
i∈G

Fmi ∈ Sωξ .

Since q � min suppαq we know
⋃
i∈G

{min suppαq : q ∈ Fmi} ∈ Sωξ

and therefore the sequence {αq : q ∈ ⋃
i∈G Fmi} is Sωξ admissible and very fast

growing.



Vol. 214, 2016 ARBITRARILY DISTORTABLE BANACH SPACES 577

We conclude that the functional

g =
∑
i∈G

sgn(λi)
∑

q∈Fmi

αq

is in the norming set W and hence∥∥∥∥
∑
i∈G

λixmi

∥∥∥∥ � g

(∑
i∈G

λixmi

)
> ε

∑
i∈G

|λi|.

Now G ∈ Sωξ and (λi)i∈G were arbitrary, so we conclude that (xmi )i admits an

�ω
ξ

1 spreading model.

We now prove (ii). Let (εi)i∈N be a summable sequence of positive reals

such that εi > 3
∑

j>i εj for all i ∈ N. Using Proposition 14, inductively

choose a subsequence, again denoted by (xi)i∈N, such that for i0 � 2 and

j0 = max suppxi0−1, if (αq)
�
q=1 is Sξj0

-admissible with s(α1) �, s(α1) �
min suppxi0 , then for all i � i0

(1)

�∑
q=1

|αq(xi)| < εi0
i0

.

We will show that for any t � i1 < · · · < it, F ⊂ {1, . . . , t} we have∣∣∣∣α0

(∑
j∈F

xij

)∣∣∣∣ < 1 + 2εiminF ,

whenever α0 is an α-average, and∣∣∣∣g
(∑

j∈F

xij

)∣∣∣∣ < 1 + 3εiminF ,

whenever g is Schreier functional. This implies that item (ii) holds.

For functionals in W0 the above is clearly true. Assume for some m � 0 that

the above holds for any t � i1 < · · · < it and any functional in Wm. In the

first case, let t � i1 < · · · < it and α0 = 1
�

∑d
q=1 fq with d � � and � � 2 be an

α-average in Wm+1.

Set

E1 ={q : there exists at most one j � t such that ran fq ∩ ranxij 	= ∅},

and

E2 ={1, . . . , �} \ E1.
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For q ∈ E1, we have |fq(
∑n

j=1 xij )| � 1. Therefore

∑
q∈E1

∣∣∣∣fq
( n∑

j=1

xij

)∣∣∣∣ � #E1.

For q in E2, let jq ∈ {1, . . . , t} be minimum such that ranxijq ∩ ran fq 	= ∅.
If q < q′ are in E2, jq < jq′ . By the inductive assumption

(2)

∑
q∈E2

∣∣∣∣fq
( t∑

j=1

xij

)∣∣∣∣ <
∑
q∈E2

(1 + 3εijq )

< #E2 + 3εi1 + 3
∑
j>1

εij < #E2 + 4εi1 .

Therefore

∣∣∣∣α0

( t∑
j=1

xij

)∣∣∣∣ =
∣∣∣∣1�

d∑
q=1

fq

( t∑
j=1

xij

)∣∣∣∣
<
#E1 +#E2 + 4εi1

�
� d+ 4εi1

�
� 1 + 2εi1 .

The last inequality follows from the fact that � � 2.

Let g ∈ Wm+1 such that g =
∑d

q=1 αq is a Schreier functional. We assume

without loss of generality that

(3) rang ∩ ranxij 	= ∅ for all j = 1, . . . t.

Set

q0 = min{q : max suppαq � min suppxi2}.
By definition of Sωξ , (αq)

d
q=1 is Sξmin supp α1

-admissible. Also, by definition,

for q > q0

s(αq) > max suppαq0 � min suppxi2 .

Using (3)

min suppα1 � max suppxi1 .

These facts together allow us to use our initial assumption on the sequence

(xi)i∈N (for i0 = i2) and conclude that for j � 2

(4)
∑
q>q0

|αq(xij )| <
εi2
i2

.
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Using the fact that i2 � t, it follows that

(5)
∑
q>q0

∣∣∣∣αq

( t∑
j=2

xij

)∣∣∣∣ < εi1 .

The rest of the proof is separated into two cases.

Case 1: Assume first that for q < q0, αq(
∑t

j=1 xij ) = 0. In this case we

apply the induction hypothesis for αq0 and (5) to get

g

( t∑
j=1

xij

)
= αq0

( t∑
j=1

xij

)
+ εi1 < 1 + 3εi1 .

Case 2: Alternatively, if αq(
∑t

j=1 xij ) 	= 0 for some q < q0, the very fast

growing assumption on (αq)
d
q=1 yields that s(αq0 ) > min suppxi1 .

In this case, since the singleton αq0 is S0 admissible, we can use (1) to conclude

that

(6)

∣∣∣∣αq0

( t∑
j=1

xij

)∣∣∣∣ < tεi1
i1

� εi1 .

In the above we used that t � i1. Therefore combining (6) and (5) as before we

have

(7)∣∣∣∣g
( t∑

j=1

xij

)∣∣∣∣ =
∑
q<q0

|αq(xi1 )|+
∣∣∣∣αq0

( t∑
j=1

xij

)∣∣∣∣+
∑
q>q0

∣∣∣∣αq

( t∑
j=2

xij

)∣∣∣∣ � 1+2εi1.

The proposition is now proved.

We end the paper by stating and proving one final proposition which, in turn,

can easily be seen to imply Proposition 10.

Proposition 23: Let (xk)k∈N be a normalized block sequence in Xωξ

0,1
.

(i) If (xk)k∈N generates a spreading model equivalent to c0, (Fk)k∈N is a

sequence of successive subsets of natural numbers such that Fk ∈ S1 for

k ∈ N and limk→∞ #Fk = ∞ and yk =
∑

i∈Fk
xi, then a subsequence

(ykn)n of (yk)k generates an �ω
ξ

1 spreading model.

(ii) Suppose (xk)k∈N generates an �ω
ξ

1 spreading model. Then there exists

a sequence (Fk)k∈N of successive subsets of natural numbers such that

Fk ∈ Sωξ for k ∈ N and normalized vectors yk ∈ span{xi : i ∈ Fk} such

that (yk)k generates a c0 spreading model.



580 K. BEANLAND, R. CAUSEY AND P. MOTAKIS Isr. J. Math.

Proof. The proof of (i) is identical to that of Proposition 3.14 in [4].

We prove only (ii). By Lemma 18 we can find {Fk}, a sequence of successive

subsets of N with Fk ∈ Sωξ and seminormalized vectors y′k ∈ span{xi : i ∈ Fk}
such that y′k is an (ξk+1, ξk, εk) s.c.c. with limk→∞ εk = 0. Then (y′k)k satisfies

the assumptions of Corollary 21. By normalizing the sequence (y′k)k and ap-

plying the second statement of Proposition 22, we obtain the desired sequence

(yk)k.
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