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Abstract A new method of defining hereditarily indecomposable Banach spaces is
presented. This method provides a unified approach for constructing reflexive HI
spaces and also HI spaces with no reflexive subspace. All the spaces presented here
satisfy the property that the composition of any two strictly singular operators is a
compact one. This yields the first known example of a Banach space with no reflexive
subspace such that every operator has a non-trivial closed invariant subspace.
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Hereditarily indecomposable spaces
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1 Introduction

Defining a hereditarily indecomposable (HI) Banach space is not an easy task. It
requires the definition of a subset W of co(N) (the space of real sequences which are
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eventually zero), which in turn, acting as a set of functionals on cp(N), defines an
HI norm. In all classical constructions the resulting space admits the unit vector basis
of cgp(N) as a boundedly complete Schauder basis. This appears to be an inevitable
consequence of the saturation of the set W under certain operations which yield, for
every n in N, a lower bound C, of || > ;_, x|, for every sequence of successive
normalized block vectors (x;);_,, and lim,, C;, = oo.

There are two known types of HI spaces whose basis is not boundedly complete.
The first one concerns the L, HI space X ¢ which appeared in [6] and is the result of
mixing the Bourgain-Delbaen method [12] of constructing £ -spaces and the Gowers-
Maurey corresponding one [15] of constructing HI spaces. The basis of the space is
shrinking but not boundedly complete. However, this is a consequence of the £, struc-
ture and not of the HI property of the space. In particular, every block sequence in the
space has a boundedly complete subsequence, hence the space is reflexively saturated.

The second type concerns HI spaces with no reflexive subspace. All such spaces
whose norm is induced by a norming set W have a boundedly complete Schauder
basis. This class includes spaces such as the Gowers Tree space [14] and the spaces
which appeared in [2]. The predual of one of the spaces presented in [2] is also an HI
space without reflexive subspaces. This space admits a shrinking basis and none of its
subspaces admits a boundedly complete basis. This predual is essentially different to a
space which is induced by a saturated norming set W. The latter, as we have explained,
always yields spaces with a boundedly complete basis.

The preceding discussion leads to the following question. Does there exist a method
of defining a norming set W such that the resulting space admits a shrinking Schauder
basis and no subspace admits a boundedly complete one? This problem is directly
related to the problem of the existence of a L~,-space which is HI and has no reflexive
subspace. Indeed, any HI L.,-space must have separable dual [19,22] and if moreover
it does not contain reflexive subspaces, then it does not contain a boundedly complete
basic sequence. More generally, every Banach space with a boundedly complete basis
and separable dual is reflexively saturated [18].

The aim of the present paper is to answer the first problem by providing a new
method of defining a norming set W, which yields an HI space with a shrinking basis
with no boundedly complete basic sequence. We perceive this method as the dual
method of the classical one. This new approach allows us to affirmatively answer the
second problem. Namely, there exists a L, HI space with no reflexive subspace. This
result will appear in a forthcoming paper. Our goal is to use a more classical setting in
order to present the definition of the norming set and its consequences, some of which
are rather unexpected.

The definition of the norming set W uses an unconditional frame, namely the
Tsirelson-like space with constraints 7 (1/2", S, @),. Norms which are saturated
under constraints were introduced in [3] and [8] and are rooted in the earlier work of
Odell and Schlumprecht [20,21]. The norm of T'(1/2",S,, ), is described by the
following implicit formula: if x € cgo(N) then

d
1
[lxl = max ||x||oo,sup2—n§ 1 EgXlm, ()
g=1
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where the supremum is taken over all n € N, S,-admissible successive
subsets (E‘I)z=l of N and sequences (mq)Z:1 of N so that m, > 2™ Eq—1 for
q = 2,...,d. The m-norms appearing in (1) are defined as follows. For m € N
and x € cgo(N):

1 m
el = — sup > I1Gix|

i=1

where the supremum is taken over all successive subsets (G;);" | of N.

The || - ||;» norms, m € N, which appear in the definition above, do not contribute
to the norm of the element x, in fact they act as constraints. This results in the neu-
tralization of the operations (1/2", S,) on certain sequences and thus, ¢ spreading
models become abundant. As a consequence, every Schauder basic sequence in the
space admits either an £ or a ¢y spreading model and both of them are admitted by
every infinite dimensional subspace. This norm and its variants have been recently
established as an effective tool for answering certain problems on the structure of
Banach spaces and their spaces of operators [3,8,9,11].

The norm on 7(1/2",S,, «), is induced by the norming set W, which is the
minimal subset of coo(N) containing the basis (e});, all a-averages of its elements,
i.e. averages of successive elements of W, and it is closed under the operations
(172", Sy, ) for every n € N. The latter means that for every very fast growing
family (aq)Z: | of successive a-averages, which is Sy -admissible, the functional f =

/2" zgzl ag isin Wy. Any such f is called a weighted functional with w(f) =
n. Hence, the set W, includes the elements of the basis, a-averages and weighted
functionals.

The norming set W will be chosen to be a subset of W,, and its definition is based on
a tree U, called the universal tree. This tree consists of finite sequences {( f, xk)}zzl R
where ( fk)zzl is a sequence of successive non-zero weighted functionals in W,
(xk)f:1 is a sequence of successive non-zero vectors in coo(N) with rational coeffi-
cients and for each 1 < m < d the weight of f,, is uniquely defined by the sequence
(i 202,

We will consider a class of subtrees 7 of the universal tree /. Each tree 7 in
this class is either well founded and satisfies certain additional properties or 7 = U.
For such a tree 7 we define the norming set W . It is worth pointing out that for a
well founded tree 7 the space X7, induced by the set Wi, is a reflexive HI space,
while for 7 = U the space X;; admits a shrinking basis and does not contain a
reflexive subspace. It is also interesting, and rather unexpected, that the reflexive and
non-reflexive cases have a unified approach, as it is presented in the rest of the paper.
Note that the Gowers Tree type HI spaces with no reflexive subspace [2,14] have
substantially increased complexity, concerning their definition as well as their proofs,
compared to the corresponding reflexive HI spaces.

For a subtree 7 of the universal tree U, as above, we define the norm of the space
X7, which is very similar to the norm of the space 7'(1/2", S,;, «),,. Namely, the norm
of X7 is described by the implicit formula (1), the difference lying in the definition
of || - ||, norms, where
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1 m 1 m
lxl;;; = sup - Z}gi (x) : - Zl:gi is an o.-average
1= 1=

and o -averages are o«-averages which are inductively defined. In other words, to
define the norm of X7 we impose some further restrictions on the «-averages used
as constraints. Alternatively, the norming set W7 is the minimal subset of cgg(N)
containing the basis, the a.-averages and all f = (1/2") ZZ=1 ag where (th)gl:1 is
a very fast growing and S, -admissible family of «.-averages.

Let us observe that in the definition of W the conditional structure, which yields the
HI property of the space X7, is contained in the o .-averages. The space X7 satisfies the
following property. If 7 is a well founded subtree of I, for every block sequence with
rational coefficients (y;); in X7 there exist a further finite block sequence (xk)le,
with 1/2 < [xll < 10, and (fo)¢_, in Wy, such that {(f¢, x¢)}{_, is a maximal
element of 7 and || ZZ: 1 Xkl < 27.1f T = U, the corresponding result holds in the
space Xy for a branch {(fi, x¢)}72, of U such that || Zle x|l < 27, forall d € N.

Below we summarize the properties of the space X7, in the case the tree 7 is well
founded.

Theorem A [f7 is well founded, then the space X satisfies the following properties.

(1) The space X1 has a bimonotone Schauder basis, and it is hereditarily indecom-
posable and reflexive.

(ii) Every Schauder basic sequence in X1 admits either 1 or co as a spreading
model and every infinite dimensional subspace of X7 admits both of these types
of spreading models.

(iii) For every block subspace X of X7 and every bounded linear operator T : X —
X, there is . € R so that T — Al is strictly singular.

(iv) For every infinite dimensional subspace X of X1 the ideal of the strictly singular
operators S(X) is non separable.

(v) For every subspace X of X7 and every strictly singular operators S, T on X,
the composition T S is compact.

(vi) For every block subspace X of X1, every non-scalar bounded linear operator
T : X — X admits a non-trivial closed hyperinvariant subspace.

The above should be compared to the main theorem from [8], where a space with
very similar properties is presented. The key difference between the aforementioned
case and the present one is in property (v), namely in [8] it is only proved for com-
positions of three strictly singular operators, and not two. In [8] special weighted
functionals are used, which impose the necessity to include S-averages in the defini-
tion of the norming set. The absence of these two notions in the present construction
yields property (v), which is the best possible, as well as simplified proofs, compared
to those in [8].

Below we present the main properties of the space X,.

Theorem B If T = U, then the space Xy satisfies the following properties.

(i) The space Xy has a bimonotone and shrinking Schauder basis, it is hereditarily
indecomposable and contains no reflexive subspace.
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(ii) Every Schauder basic sequence in Xy admits either €1, co or the summing basis
of co as a spreading model, and every infinite dimensional subspace of X1y admits
all three of these types of spreading models.

(iii) For every block subspace X of Xy4 and every bounded linear operator T : X —
X, there is A € R so that T — Al is weakly compact and hence strictly singular.

(iv) For every infinite dimensional subspace X of Xy the ideal of the strictly singular
operators S(X) is non separable.

(v) Forevery subspace X of Xy4 and every strictly singular operators S, T on X, the
composition T S is compact.

(vi) For every block subspace X of Xy, every non-scalar bounded linear operator
T : X — X admits a non-trivial closed hyperinvariant subspace.

This is the first known example of a Banach space with no reflexive subspace
such that the space generated by every block sequence satisfies the invariant subspace
property.

In Theorems A and B property (vi) can be stated for every subspace X of the cor-
responding space, such that every 7 in £(X) is of the form A/ + S, with § strictly
singular. The present construction can also be carried out over the field of complex
numbers. The corresponding complex HI spaces satisfy Theorems A and B, in partic-
ular property (vi) holds for every closed subspace [15, Theorem 18].

2 The norming set of the space X+

This section is devoted to the norming set W7 of the space. We begin with a brief
presentation and discussion concerning the main ingredients involved in the definition
of Wz. As we have mentioned in the introduction we will consider subtrees of the
universal tree Y. Each such tree 7 is downwards closed and for every node which is
non-maximal in 7, all of its immediate successors in ¢/ are also included in 7. For
our needs the tree is either well founded, containing at least all elements {( f%, xk)}Z:1
of U such that ( fk)f=1 is Sy-admissible, or otherwise 7 = U.

The second ingredient are the a.-averages which are inductively defined and are
described as follows.

To each weight n we assign a unique weight ¢ (n) that appears in the tree 7. Two
different weights n and m are comparable, if there exist {( f1, x1), ..., (fx, Xxk)}in T
and 1 <i < j < ksuch¢(n) = w(f;) and ¢ (m) = w(f;). Otherwise n, m are
incomparable.

We consider the following four types of averages. The first one are averages of the
basis (e;‘)i, called basic averages.

The second one are ZC-averages, i.e. a-averages of the form (1/n) > !_, g with
{w(gi)}7_, pairwise incomparable.

The third one are ZR-averages, i.e. a-averages of the form (1/n) > ;_, g; such
that there exist {(f1,x1), ..., (fm,Xm)}in 7 and 1 < k; < -+ < k, < m with
w(fi,) = ¢(w(g) and |g; (xi,)| > 10.

The last type are the conditional averages, called CO-averages. Those are a-
averages of the form (1/n)(g1 — g2+ g3 — g4+ - - - +(—1)"*1g,) such that there exist
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{(fiox), ooy (fmyxm)}in T and 1 < ky < -+ < ky < nowithw(fi) = ¢ (w(gi))
and |g; (xk;) — g (xk;)| < 1/2" for1 <i < j < n.

The third and fourth types of averages explain why we consider in the universal tree
U families of pairs {( fx, )ck)}f=1 , instead of ( fk)z:1 which is the approach used in the
classical norming sets. We note that the basic averages permit to begin the construction
of weighted functionals in the norming set W7. The CO-averages are responsible for
the whole conditional structure in the space X7. The remaining two types of averages
are necessary to exclude the presence of ¢ in the space.

2.1 The Schreier families

The Schreier families is an increasing sequence of families of finite subsets of the
natural numbers, which first appeared in [1], and is inductively defined in the following
manner. Set

So={{n}:n €N} and S ={F C N:#F < minF}.
Suppose that S, has been defined and set

St ={FcN: F=Uk

=1 Fj where F1 <--- < F € S,

and k <minF1}.

For each n, S, is a regular family. This means that it is hereditary, i.e. if F € S,
and G C F then G € §,, it is spreading, i.e. if F = {ij < --- < ig} € S, and
G={j1i << jgywithi, < j,forp=1,...,d, then G € S, and finally it is
compact, if seen as a subset of {0, N,

If for n, m € N we set

S, *Sp ={FCN:F=UIJ‘.:1FJ-, where F| < --- < F € Sy,

and {min F; :j:l,...,k}eS,,},

then it is well known [4] and follows easily by induction that S, * S, = Sp4-

2.2 The unconditional frame

The norming set of the space X7 is a subset of W(j 21 s, ), @ version of the norming
set of Tsirelson space, defined with saturation under constraints.

We denote by coo(N) the space of all real valued sequences (c;); with finitely many
non-zero terms. We denote by (e;); the unit vector basis of coo(N), while in some
cases we shall denote it as (e;‘),-. For x = (¢j); € coo(N), the support of x is the set
suppx = {i € N : ¢; # 0} and the range of x, denoted by ran x, is the smallest
interval of N containing supp x. We say that the vectors xi, ..., xx in coo(N) are
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successive if max supp x; < minsupp x;+1 fori =1, ...,k — 1. In this case we write
X1 < --- < xi. A sequence of successive vectors in cgp(N) is called a block sequence.

Notation We remind some notation and terminology which is used constantly
throughout this paper.

(i) A sequence of vectors x; < --- < xi in cgo(N) is said to be S,-admissible, for
givenn € N, if {minsuppx; :i =1,...,k} € S,,.

(i) Let G C coo(N). A vector ag € coo(N) is called an «-average of G of size
s(ag) = n, if there exist f] < --- < fy € G, where d < n, such that

1
0l0=;(f1+-~+fd).

(iii) A sequence of successive a-averages of G ()4 is called very fast growing if
s(og) > 2MASUPP -1 for g > 1.

Definition 2.1 We define W, = W(j,21 s, «), to be the smallest subset of coo(NN)
satisfying the following properties:

(i) foreveryi € N, ef € W, and the set W, is symmetric,
(ii) the set W, contains all o-averages of Wy,
(iii) for every n € N and every very fast growing and S,-admissible sequence of
a-averages of W, (aq)gzl, the vector f = (1/2") Zzzl ag is alsoin Wy.

We note that, as it is usually the case in this type of constructions, the size of
an average and the weight of a weighted functional may not be uniquely defined.
However, this does not cause any problems.

Remark 2.2 The set W, satisfies the properties mentioned below. Note that properties

(1), (i1) and (iii) follow readily from property (iv).

(i) Every f € W, is either of the form f = e, either an a-average of W, or
f=a/m2m Z;{:] a4, where (%)Z:l is a very fast growing and S,,-admissible
sequence of a-averages of W,,. In the last case we shall say that f is a weighted
functional of W, of weight w(f) = n.

(i) For every f € W, and subset of the natural numbers E, the functional Ef, i.e.
the restriction of f onto E, is also in W,,.

(iii) The coefficients of every f € W, are rational numbers. In particular, W, is a
countable set.

(iv) The set W, can be constructed recursively to be the union of an increasing
sequence of sets (W)™, where W = {£e’ : i € N} and if W;; has been
defined, then W 41 1is the set of all a-averages of Wy, W 41 is the set of all
weighted functlonals constructed on very fast growing sequences of elements of

WhojandWe  =Wauwl  UW2, .

2.3 The universal tree U

We denote by Q the set of all finite sequences {( fi, x1), ..., (fk, xx)} satisfying the
following:
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(i) the fi, ..., fx are successive non-zero weighted functionals of W, and
(ii) the xp, ..., x; are successive non-zero vectors in cop(N, Q) (i.e. they are vectors
in cgp(N) with rational coefficients).

Note that Q is a subset of U, (W, x coo(N, Q))" and hence countable.
Choose an infinite subset L’ = {¢; : k € N} of N satisfying:

(1) min L’ > 8 and

(i) forevery k € N, £, 1 > 22%.

Define a partition of L’ into two infinite subsets Lo and L} and choose a one-
to-one function o : Q@ — L/, called the coding function, so that for every

{(frox0), ooy (fk,x0)} € Q,

o ({(f1, %1y« oy (fis )1 > [l fello max supp x. 2)

A finite sequence {( f%, xk)}z=1 € Q is called a special sequence if:

(i) w(f1) € Lo and
(i) ifd =2 2then w(fx) = o {(f1,x1)s ..., (fi—1, xk—1)p fork =2,...,d.

Remark 2.3 Note that if {( fx, xk)}zz1 is a special sequence, then (2) and (ii) imply
that w(f1) < - - < w(fa)-

Note that if {( fx, xk)}z=1 is a special sequence and 1 < p < d, then {(f, xk)},{’:l
is a special sequence as well, hence if we define U/ to be the set of all special sequences,
then U is a tree endowed with the natural ordering “C” of initial segments. Note that
the tree U is ill founded, more precisely every maximal chain of I/ is infinite. We shall
call the tree U, the universal tree associated with the coding function o.

2.4 Subtrees of U

We fix a subtree 7 of &/ which satisfies the following properties:

(i) for every {( fk, )ck)}f:1 in7 and 1 < p <d {(fx, xk)},’z:l isalsoin7,ie. 7 is
a downwards closed subtree of U/,
G1) if {(fx, xk)}Z:l is a non-maximal node in 7, then for every element ( fz41, X4+1)

so that {(fi, xe))921 is in U, {(fe, x)}{ 1] is also in 7" and
(iii) for every {(fr, xx)}¢_, in U with (fi){_, being S-admissible, we have that
{(fe» x)}d_ isin T.

Definition 2.4 We define L; = o(7), which is a subset of L, and L = Ly U L.
Define¢ : {i e N: i >minL} — L with¢p(i) = max{€ € L : £ <i}.

Observe that the function ¢ is non-decreasing, ¢ (i) < i for all i € N and
lim; ¢ (i) = oo.

Definition 2.5 Two natural numbers i and j, both greater than or equal to min L, are
called incomparable if one of the following holds:
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(i) ¢ (i) and ¢(j) are bothin Ly and ¢ (i) # ¢(j) or
(i1) ¢ (i) and ¢(j) are bothin L and o1 (@), o1 (¢ (j)) are incomparable, in the
ordering of 7.

If i, j are not incomparable they will be called comparable.

2.5 a.-averages

We shall define very specific types of averages, based on the tree 7 and the notion of
comparability of natural numbers from Definition 2.5. Alongside averages of elements
of the basis (e]");, in the definition of the norming set W7 we shall only consider these
types of averages.

Definition 2.6 Let g < --- < g4 be weighted functionals in a subset G of W,, all

of which have weight greater than or equal to min L, satisfying ¢ (w(g1)) < --- <
d(w(ga))-

(i) The sequence (g,-)f.lz1 is called incomparable, if the natural numbers w(g;), i =

1,...,d are pairwise incomparable, in the sense of Definition 2.5. In this case,

if n € N with d < n we call the average

1 d
w=13s
1=

an ZC-average of G.

(i) The sequence (g,-)f=1 is called comparable, if there exist m € N with d < m,
{(f1,x1), s (fm>xm)} €7 and 1 < ky < -+ < kg < m so that the following
are satisfied:

(@ w(fiy) = d(w(gi)),

(b) if d > 3 then |g; (xy,)| < 10fori =2,...,d —1and

(c) ifd > 4 then [g; (xx;) — g (xx;)| < 1/2 for2 <i<j<d-—1l.
In this case, if n € N with d < n and (8,‘)?:1 is a sequence of alternating signs
in {—1, 1} we call the average

1d

w == &g
iy 1 i8i
i=

a CO-average of G.

(iii)) The sequence (gi)f=1 is called irrelevant, if there exist m € N with d < m,
{(f1,x1), s (fm>xm)} €7 and 1 < ky < --- < kg < m so that the following
are satisfied:

(@) w(fy) = ¢(w(gi)) and
(b) ifd > 3 then |g;(xy,)| > 10 fori=2,...,d— 1.
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In this case, if n € N with d < n we call the average

1 d
w=1 3
1=

an Z'R-average of G.

Any average which is of one of the forms defined above, shall be called an «-average
of G. Basic averages will be referred to as a.-averages as well, where a basic average
is a functional of the form oy = (1/n) 221:1 siejfi where d, n, j1 < --- < jg € N
with d < n and (si)f.izl are any signs in {—1, 1}.

Remark 2.7 The class of a.-averages, is a much more restricted version of the one
of a-averages and, with the exception of basic averages, a.-averages are determined
using the coding function o, more precisely the tree 7.

Remark 2.8 If (g,')ld:1 is a sequence in W, which is of one of the three types described
in Definition 2.6, then any subsequence of it is of the same type. Moreover, if E is an
interval of Nand iy = min{i : E Nrang; # &} and ip = max{i : E Nrang; # J},
then the sequence Eg;,, Egj; 1, - .., Eg;, is of the same type as (g,-)l‘.lzl. This last part
in particular implies that whenever «j is an average which is of one of the three types
described in Definition 2.6 and E is an interval of N, then E«y is an average of the
same type.

2.6 The norming set Wz of the space X1

Definition 2.9 We define W7 to be the smallest subset of W, which satisfies the
following properties.

(i) Foreveryi € N, ef € W7 and the set W7 is symmetric.
(i) The set W7 contains all «.-averages of W, i.e. it contains all basic averages
and all ZC, COand IT'R-averages of Wr.
(iii) For every n € N and every S,-admissible and very fast growing sequence of
o-averages (O‘q)Z:1 of W, f = (1/2") ZZ:I ag is alsoin Wr.

Remark 2.10 The set W7 satisfies the properties mentioned below. Note that property
(i1) follows from an inductive argument using Remark 2.8 and property (iii).

(i) Every f € Wr is either of the form f = e, either an a.-average of W7 or a
weighted functional f = (1/2") Zgzl oy, where (aq)Z: | 1s a very fast growing
and S,-admissible sequence of o -averages of W7 .
(ii) Forevery f € W7 and interval of the natural numbers E, the functional Ef, i.e.
the restriction of f onto E, is also in W.
(iii) The set W7 can be recursively constructed to be the union of an increasing
sequence of sets (Wy,)o"_,, where Wy = {£e] : i € N} and if W, has been

m=0°
defined, then WZ"H is the set of all a.-averages of W,,,, W 1 is the set of all

m
weighted functionals constructed on very fast growing sequences of elements of

W and Wyyp = Wy UWp  UWY
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The norm of the space X7 is the one induced by the set W, i.e. forevery x € coo(N)
we set ||x]| = sup{f(x) : f € W7} and we define X7 to be the completion of cyo(N)
with respect to this norm. By Remark 2.10 the unit vector basis of cgo(N) forms a
bimonotone Schauder basis for X 7.

Remark 2.11 The conditional structure of the space X7 is only imposed by the
CO-averages in the norming set Wz, which are merely averages. In this sense, the
conditionality appearing in the space X7 is not as strict as in other HI constructions.

3 Special convex combinations and evaluation of their norm

We first recall the notion of the (n, ¢) special convex combinations, (see [4,5,10])
which is one of the main tools used in the sequel. We then include, without proof,
some estimates from [8], which also apply to the present case.

Definition 3.1 Let x = >, _r cxex be a vector in coo(N) and n € N, & > 0. Then
x is called a (n, &)-basic special convex combination (or a (n, £)-basic s.c.c.) if the
following are satisfied:

(i) FeSy,cp=20forke Fand D ) per =1,
(i) forany G C F, with G € S,_1, we have that ZkeG Ck < &.

Remark 3.2 We note for later use the following easy fact. If x = >, ciejisa (n, €)-
basics.c.c.withO < & < 1/2andfori € F\{min F}wesetc; = ¢i/ (2 jcp\(min F} €/)
then y = > c p\ (min ) €i€i is @ (n, 2¢)-basic s.c.c.

The next result is from [7]. For a proof see [10, Chapter 2, Proposition 2.3].

Proposition 3.3 For every infinite subset of the natural numbers M, any n € N and
& > 0, there exist F C M and non-negative real numbers (cy)rer, such that the vector
X = ZkeF crex is a (n, g)-basic s.c.c.

Definition 3.4 Let x; < --- < x;,, be vectors in coo(N) and ¥ (k) = min supp x, for
k=1,..., m.If the vector kazl Ckey (k) 18 a (n, £)-basic s.c.c., for some n € N and
& > 0, then the vector x = kazl cix is called a (n, €)-special convex combination
(or (n, g)-s.c.c.).

By T we denote Tsirelson space and by || - |7 its norm, as they were defined in
[13]. This space is actually the dual of Tsirelson’s original Banach space defined in
[25]. The proof of the following result can be found in [8, Proposition 2.5].

Proposition 3.5 Letn ¢ N, ¢ > 0, x = ZkeF crer be a (n, g)-basic s.c.c. and

G C F. Then
> o

1
< 2_n E Ck+<9.
keG

T keG

The next result can also be found in [8, Corollary 2.8]. A number of steps are
required in order to reach this estimate, however the arguments used there also work
in the present case unchanged and therefore we omit the proof.
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Proposition 3.6 Let (xi)i be a block sequence in X7 with ||xi|| < 1 forallk € N,
(ck)k be a sequence of real numbers and ¢ (k) = max supp xi for all k. Then

chxk che¢(k)

k k

<6

T

The next crucial estimate follows from Propositions 3.5 and 3.6. A proof can be
found in [8, Corollary 2.9].

Corollary 3.7 Letn € N, ¢ > 0 and x = >°;"_| ckxi be a (n, €)-s.c.c. in X7, such
that ||xi|| < 1, fork =1, ..., m. If F is subset of {1, ..., m} then

Z Ck Xk

6
< 2_” E cr + 12e.
keF

keF

In particular, | x|| < 6/2" + 12e.

Using Propositions 3.3 and 3.7 one can easily derive the next result. For a proof see
[8, Corollary 2.10].

Proposition 3.8 The basis of X1 is shrinking. In particular, the dual of X7 is sepa-
rable.

We now give some definitions which will be crucial in the next sections, where
we prove the properties of the space X7. Rapidly increasing sequences are defined
exactly as in [8, Definition 2.13].

Definition 3.9 Let C > 1 and (ny); be a strictly increasing sequence of natural
numbers. A block sequence (xi)x is called a (C, (ny))-rapidly increasing sequence
(or (C, (ng)k)-RIS) if ||xx || < C for all k and the following hold:

(1) for every k and every weighted functional f in Wz with w(f) = j < ng, we
have | f (xx)| < C/2/ and
(ii) for every k, 1/2"%+! max supp xx < 1/2"*.

The notion of a (C, 8, n)-vector and a (C, 6, n)-exact vector is defined identically
as in [8, Definition 2.15].

Definition 3.10 Letn € N, C > 1 and 6 > 0. A vector x € X7 is called a (C, 0, n)-
vector if there exist0 < ¢ < 1/(36C 237y and a block sequence (xx);"_; with [lx || < C
fork =1, ..., m such that:

(i) minsuppx; > 8C2%",
(ii) there exist non-negative real numbers (Ck);:lzl so that the vector ka: | CkXk is a
(n, &)-s.c.c.,
(iii) x = 2" >, ckxg and [[x]| = 6.

If moreover there exists a strictly increasing sequence of natural numbers ()",
with n > 22" so that (xi)j_; isa (C, (ng)y_;)-RIS, then x is called a (C, 0, n)-exact
vector.
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Remark 3.11 Letxbea (C, 8, n)-vectorin X7 . Then, using Corollary 3.7 we conclude
that ||x|| < 7C.

Remark 3.12 Letx be a (C, 0, n)-vector in X7. By the choice of ¢ and || x| < C for
k=1,...,m, weobtain ||x| s < 1/(22"36).

4 The a-index

In all recent constructions involving saturation under constraints [3,8,9,11], the «-
index has been used to help determine the spreading models admitted by block
sequences. In contrast to the HI constructions [8] and [9], where the «-index is not
sufficient to fully characterize the spreading models of block sequences, the present
case resembles more closely the unconditional example from [3], where the «-index
is the only necessary tool to study spreading models admitted by the space. This is due
to the fact that «-averages, more precisely o-averages, are the only ingredient used
to construct weighted functionals. The definition of the «-index of a block sequence
given below is identical to the one from [8] and [9].

Definition 4.1 Let (x;)x be a block sequence in X7 that satisfies the following: for
every n € N, for every very fast growing sequence of a.-averages of Wz (o), for
every increasing sequence of subsets of the natural numbers (F; ), such that (&g )4 <,
is 5, -admissible for all m € N and for every subsequence (xi,, ), of (xx)k, we have
that

lim > g (xx,) = 0.

q€Fn

Then we say that the «-index of (xx )y is zero and write «((xx)x) = 0. Otherwise we
write o ((xx)r) > 0.

The next characterization, of when a block sequence has «-index zero, and its proof
can be found in [8, Proposition 3.3]. Although here it is formulated slightly differently,
the two versions are easily seen to be equivalent.

Proposition 4.2 Let (xi)x be a block sequence in X 7. The following assertions are
equivalent.

(1) The a-index of (xi) is zero.

(i1) Forevery ¢ > O there exists j € N such that for every n € N there exists k, € N
such that for every k > ky, and for every very fast growing and S,,-admissible
sequence of a.-averages (aq)gzl, withs(ay) > jforq =1,...,d, we have that

> lag ()l < e.
The next result is proved in [8, Proposition 3.5].

Proposition 4.3 Let (xi ) be a seminormalized block sequence in X7 with o ((xg)r) >
0. Then there exist & > 0 and a subsequence (xy,,)m of (Xi)k that generates an £
spreading model with a lower constant 6 /2", for all n € N. More precisely, for every
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n € N, subset of the natural numbers F, so that (xi, )meF is Sy-admissible, and real
numbers (c;)meF we have that

: / CmXky,

meF

meF

In particular, for all ko, n € N, there exists a finite subset of the natural numbers
F with min F > ko and non-negative real numbers (cy)mer, such that the vector
x=2">  crCmXk, isa (C, 0, n)-vector, where C = sup{||xi|| : k € N}.

We now prove that block sequences with «-index zero admit only ¢ as a spreading
model and that Schreier sums of them define rapidly increasing sequences.

Proposition 4.4 Let (xi)x be a normalized block sequence in X7 with a((xx)r) =
0. Then (xi)i has a subsequence, which we also denote by (xi)i, that generates a
spreading model which is isometric to the unit vector basis of co. Moreover, there
exists a strictly increasing sequence of natural numbers (ji)i so that for every natural
numbers n < ki < --- < ky, real numbers (c;)!_, and weighted functional f of W
with w(f) = j < ju, we have

(5

Proof Using Proposition 4.2, we pass to a subsequence of (xx)x, again denoted by
(xx)k, and choose a strictly increasing sequence of natural numbers so that the follow-
ing are satisfied:

/8
< — max |c¢;l.
27 1<i<n

(i) forevery k € N, 1/2/k+1 max supp x; < 1/2% and
(ii) forevery ko, k € N with k > kg and every very fast growing and S ko -admissible
sequence of a.-averages (otq);:1 with s(a;) > max supp xi, we have

d
D leg ()| < 1/(ko20).

g=1

We claim that (x; ) generates a spreading model isometric to c¢g. Using the third
assertion of Remark 2.10 we shall inductively prove the following: for every f € W,,,
natural numbers n < k| < --- < k,, and real numbers cy, ..., ¢, in [—1, 1] we have

()

If moreover f is a weighted functional with w(f) = j < j,, then

()

3

1+4/2"

57 “)
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The desired conclusion clearly follows from the above and the fact that the basis of
X7 is bimonotone, omitting if necessary a finite number of terms of the sequence
(X )k-

We now proceed to the proof of the inductive step. The case m = 0 is an immediate
consequence of the fact that the sequence (xi) is normalized and Wy = {£e} : i €
N}. Assume now that m is such that the conclusion holds for every functional in W,,
and let f € Wy,41.If f is an a-average of W,,, then by the inductive assumption we
conclude that (3) holds. Otherwise, f is a weighted functional of weight w(f) = j,i.e.

there is a very fast growing and S; admissible sequence of a.-averages of W, (ozq)Z:l
so that f = (1/2)/ 23:1 ag. Assuming that f (37, ¢ixy,;) # 0, set go = min{q :
max supp o, > min supp xi, }. Omitting, if it is necessary, the first go — 1 averages,

we may assume that go = 1. the We distinguish three cases concerning weight of f.

Case 1: j < Ji,. Since the sequence (th)g=1 is very fast growing, for g > 1 we

have s(cy) > max supp oy > min supp xg, . Also, since (ozq)fi’:2 is §; admissible with
J < Jk;» by (ii) we conclude:

d n
S oy (zc,xk,) ;
i=1

q=2
Moreover, by the inductive assumption we obtain |a1 (Z?:] cixki)} < 14 3/2".

Combining this with (5):
- 1+4/2"
‘f(zcixk,.)‘ <— (6)

i=1

1 1

n_k12k1 < Tk 5)

This concludes the proof of the first case and also (4) of the inductive assumption.

Case 2: there is 1 < io < nsothat ji, < j < jk - Arguing in an identical manner
as in the previous case, we obtain

1 +4/2k0c1 2

S zCixki < ZJ—]"O < o @)

i>ig
Also, if ig > 1, by (i) we have that 1/2/ max supp Xkig_y < 1/2ki0-1 and hence:
1 1
D eixn || < NI lloo max supp i, < S < ®)

2}’!

i<ig

Combining (7) and (8) with the fact that | (xki0)| < 1 we conclude

()

3
<1+ )
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Case 3: j > ji,. Using that |f(xk,)| < 1 and arguing as in (8) we obtain
| £ (32 cixk,)| < 1+ 1/2" and this concludes the proof. |

Propositions 4.3 and 4.4 yield the following result, which characterizes the spread-
ing models admitted by a given block sequence.

Corollary 4.5 Let (xr)r be a normalized block sequence in X7. Then (x)r has a
subsequence that generates either an isometric co spreading model or an U spreading
model for every n € N. More precisely, the assertions stated below hold.

(1) The sequence (xi)i admits only co as a spreading model if and only if o ((x)x) =
0.

(i) The sequence (xi) has a subsequence that generates an {'| spreading model for
everyn € Nifand only if a((xg)r) > 0.

5 Estimations on exact vectors

In this section we provide estimations on exact vectors whose sums define non-trivial
weakly Cauchy sequences in Xz, and in the general case provide the fact that the space
X7 is hereditarily indecomposable. We give the definitions of exact vectors and exact
sequences and several technical intermediate steps are presented in order to achieve
the main estimate.

The next estimate uses Proposition 3.6 and the properties of special convex com-
binations. It is proved in [8, Lemma 3.8] and identical arguments also apply in this
case.

Lemma 5.1 Letx bea (C, 0, n)-vectorin X7. Let also (aq)Zzl be avery fast growing
and S j-admissible sequence of a.-averages, with j < n. Then

6C 1

d
6;lotq(xﬂ < @ + o

These next two results follows readily form Lemma 5.1 and Proposition 4.4. Their
proof can also be found in [8, Propositions 3.9 and 3.10]

Proposition 5.2 Let C > 1 and 6 > 0. If (xx)x is a block sequence in X1 so that each
xi isa (C, 0, ny)-vector, with (ny )y a strictly increasing sequence of natural numbers,
then a((xr)r) = 0 and hence, every spreading model admitted by (xi)y is isometric,
up to scaling, to the unit vector basis of co.

Proposition 5.3 Let x be a (C, 0, n)-vector in X7. Then for any weighted functional
f in W such that w(f) = j < n we have

|f el < 72—f

We now give the definition of an exact pair and a dependent sequence.
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Definition 5.4 A pair (f, x) where x is a (C, 6, n)-exact vector in X7 and f is a
weighted functional in Wz with w(f) = n,ran f C ranx and f(x) = 0 is called a
(C, 8, n)-exact pair.

Definition 5.5 Let C > 1 and 8 > 0. A sequence of pairs {( fk,xk)},e(:l, where
fr € W7 and xi is a vector with rational coefficients in X7 fork =1, ..., £, is called
a (C, 0)-dependent sequence if the following are satisfied:

1) (fk,xx)isa (C, 0, w(fx))-exact pair fork =1,..., ¢ and
(i) {(fi. x)}5_; isin 7,

We introduce some notation baring similarities to the one used in [8, Subsection
3.2] and [9].

Notation Let x = 2">7/"  cxxx be a (C, 0, n)-exact vector, with (i), a
(C, (nk)km:1 )-RIS. Letalso g1 < --- < g4 be weighted functionals in W, all of which
have weight greater than or equal to min L satisfying ¢ (w(g1)) < -+ < ¢(w(gq))
(see Definition 2.4). We define the following subsets of N:

Io(x, (g = {j 1 n < w(g)) <2,
Ii(x, (g)%_)) = {j : w(g;) < n}and
Lx, (g))) = {7 : 22" < w(g))).

Remark 5.6 Let x be a (C, 0, n)-exact vector and g; < --- < g4 be weighted func-
tionals in W, all of which have weight greater than or equal to min L satisfying

pw(g)) < -+ < p(w(ga)).

(i) If n € L, then the set Ip(x, (g,-)le) is either empty or a singleton. Indeed, by the
choice of L', the fact that L C L’ and the definition of ¢ it is straightforward to
check that if j € Ip(x, (gi)le), then ¢ (w(g;)) = n and clearly at most one j
can satisfy this condition.

(i) Also, the sets I (x, (g,-)le), L(x, (gi)le) are successive intervals of {1, ..., d},
which clearly follows from the fact that ¢ is non-decreasing.

Lemma 5.7 Letn > 2, x be a (C, 0, n)-exact vector in X7 and g1 < --- < gq be
weighted functionals in W, all of which have weight greater than or equal to min L

satisfying p(w(g1) < -+ < P(w(ga)). [fwe set Ir(x) = L(x, (&)L ,), then

C
2 lgwl<d.

Jjeh(x)

Proof We will actually show that if g is a weighted functional in W7 with w(g) > 2%,
then |g(x)| < C/2". If x = 2" >} ckxk, with (xi)p_; a (C, (np)y_)-RIS, recall
that according to Definition 3.10 we have that 2*" < nj. Set

A={k: np <w(g)} and B ={k: w(g) < ng}.

If A # &, set kp = max A.
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For k € Band 1 < k < m, since (x)}_; is a (C, (ngp)j;)-RIS, we obtain
lg(xxk)| < C/2%® and hence:

g (2” z ckxk)
keB

where we used that w(g) > 22" while the last inequality holds for all n > 2.
If A = & we are done. Otherwise we need some further calculations. Observe that

1 1
n
2 ckEZB ow <2'Com < Caig (10)

|8 (2" ckoxry) | < 2" Coepy < (11)

C
22136

where we used that, according to Definition 3.10, the vector Zle cxXy is an (n, €)-
s.c.c. with e < 1/(36C23").

If A is a singleton, then (10) and (11) yield the desired estimate. Otherwise, if A is
not a singleton:

g (2" D cxxx || < llglloo maxsuppxg, 1 2" D cx

k<kg k<kg 00
2o 1 1
< ) (an max Supp X, — 1) 336
1 1 1

S P 2236 < 22136

where we used property (ii) from Definition 3.9, Remark 3.12 and that k¢ is in A, i.e.
ng, < w(g). The result follows from the above, (10) and (11). O

Lemma 5.8 Ler1 < C < 10/7,0 > O, {( fx, )ck)}izl bea (C, 0)-dependent sequence
and 1 < n < m < £ be natural numbers. Let also (g j)ji.: | be a sequence of weighted
functionals in W and (e j)‘jl-zl be a sequence of signs in {—1, 1}, so that one of the
following is satisfied:

(i) the sequence (g j)‘f:1 is comparable and the signs (e j)‘jl-: | are alternating or

(1) the sequence (g j)‘]’?lzl is either incomparable or irrelevant.

Iffor j =1,...,d wedefine D; = {n <k<m: w(g)) < w(fk)}, then
d m 20
2558 (Zxk) 25181 Z || S 2C+dms
j=1 k=n keD;

Proof Recall that each xi is a (C, 6, w( fx))-exact vector and for all 1 < k < £ define
A= 1Io (xk, (g.,');?zl) and By = I, (xk, (g.,-);?zl). Observe that
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d m m
LTI DI EDIPITIHCHE
j=1 keD; k=1 jeB
Therefore, if we define Cy, = I (xk, (g j)‘}: 1) we conclude
d m d m
S (3) - S (3 -
j=1 k=n j=1 keD;

m m m C
2| 2 i+ 2 eigitw || <20 D0 g0l + 2 des
k=n \jeAx jeCr k=n jeA; k=n

m
2C
< Z Z €8 (xr) +d—2w(f,,)
k=n jeAy

where the first inequality follows from Lemma 5.7 while the second one follows from
the fact that the w( f;)’s are strictly increasing (see Remark 2.3).

We will show that | 37| 3754, €8 (xx)| < 22C, which will conclude the proof.
We remind that by Remark 3.11, ||x¢|| < 7C for all 1 < k < £. We also remind that
by Remark 5.6 each set Ay is either empty or a singleton and in particular, we note
the following: if j € Ay then ¢(w(g;)) = w(fx). Moreover, the assumptions yield
the ¢ (w(g;))’s are strictly increasing. If the sets Ay are all empty there is nothing to
prove. Otherwise, let k; < --- < kg be all the k’sin {1, ..., £} satisfying Ay, # <.
Letalsol < jj < -+ < jy < d be so that for each i, j; is the unique element of Ay,
and hence ¢ (w(g;;)) = w(fy,) fori =1,...,s.

If s < 2 then the desired estimate follows from ||xx|| < 7C forall 1 < k < £.
Otherwise, s > 3 which implies that the sequence (gi):.j:] is not incomparable, i.e.
there are 1 < i < i’ < d so that w(gj,) and w(g};) are not incomparable in the sense
of Definition 2.5. Indeed, since {( fi, xx)};-_, is in 7 we have that

o @w(g))) = o W) = {(fr xS C (i 20}
=o' (w(fy) =0 Hpw(gp)))

which means that w(g;,) and w(g ;) are comparable.

We conclude that the sequence (g j)‘]':'= | is either comparable, or irrelevant and

therefore there exists m’ € N with d < m/, natural numbers 1 <k < --- <k, <m’

and {(hy, yk)}k”’;1 in 7, so that ¢ (w(g;)) = w(hk}) for j = 1,...,d. Observe the
following:

eyl = o @wigi)) = o~ (i) = (). (1)

The above implies that {ji, ..., j;} is an initial interval of {1, ..., d}, in particular:
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(@ ji=ifori=1,...,sand
(b) k;:kiforizl,...,s.

Indeed, if 1 < t < js then ¢p(w(g;)) = w(hk;) = w(fk;) and hence j € Ak;. This
yields thatthereis 1 < i < ssothatt = j; and k; = k;. A simple cardinality argument
yields that {ji, ..., js} = {l,...,s}andfor1 <i < s klf = k;. Also, since j; = s,
(12) clearly yields that k; = .

Observe that the sequence (g j)”?:] is not irrelevant. Indeed, the opposite would
imply that 10 < |82()’k§)| = |g2(xk,)| < 7C < 10, a contradiction.

In the last remaining case, the sequence (gj)j.l:1 is comparable. Define £ = {i :
ki € {n,...,m}}, observe that E is an interval of {1, ..., s} and choose successive
two-pointintervals E1, ..., E, of E\{max E, min E}, so that E\ Ule E; has at most
three elements. The fact that the sequence (g j)fle is comparable and (b) yield that
lgi (xi;) — 8 (x;)| < 1/2/ forall 2 < i < j < s — 1 and therefore, since the signs
(si)f.lzl are alternating, if for each i we write E; = {r;, r; + 1} then we obtain

1 1
gr(xk,i) - gr+1(xk,,.+1) <— < =

D> eigjtu)| =

2 2!
JEE;
fori =1,..., p and hence
m P
DD e =D eigi)| <2UC+ D> eigiu,)| < 22C.
k=n jeAx icE i=1|jek;

O

The result below is the main one of this section and it is used later to prove the main
properties of the space X7 and its operators.

Proposition 5.9 Ler 1 < C < 10/7, {(fk,)ck)}f=1 be a (C, 0)-dependent sequence
and f be a weighted functional in W. If for some natural numbers 1 <n <m < £
weset D ={k e {n,...,m}: w(f) <w(fr)}, then:

(z)

In particular, for every natural numbers 1 <n <m < £, || >, xx|| < 24C.

< 47C
= ow(f)”

Proof We first assume that the first statement holds to prove the fact that for 1 <
n<m < |20, xkll < 24C. Let f € Wr. We may assume that f is either
an element of the basis, or a weighted functional. In the first case, | f (Z?:n xk)| <
max{||xklloc : 7 < k < m} < 24C by Remark 3.12. If on the other hand f is a
weighted functional, we distinguish three cases regarding the weight of f. If w(f) <
w( fn), then the first statement yields that |f (ka:n xk)| < 47C /2% < 24C. If
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there is n < ko < m with w(fx,) < w(f) < w(fiy+1), then as before we obtain
that | £ (3o, Xk)| < 47C/270) < 47€/2"U0) < C (recall that w(fi,) € L and
min L > 8). Also, by Remark 3.7, | f (x,)| < 7C while (2) and Remark 3.12 yield that
|f (Zk<ko xk)| < C. We obtain that | £ (32, xk)| < 9C. In the last case we have
w(f) = w(fn), where by using similar arguments we obtain | f (3, x¢)| < 8C.

We now proceed to prove the first statement, for which we will use the third state-
ment of Remark 2.10. In particular, by induction on p, where W7 = U, W, we shall
prove that for every weighted functional f in W, and naturalnumbers 1 <n < m < ¢,
iftD={kefn ....m}: w(f) <w(flthen |f (D cpxx)| <24C/200D.

The set Wy = {£e] : i € N} does not contain any weighted functionals and
so the statement for p = 0 trivially holds. Let p € N such that every weighted
functional in W, satisfies the conclusion. Before showing that this property is satisfied
by functionals in W, we remark the following: let crg be an c.-average of W), and

n < m, then
0 (z) <

Indeed, if « is a basic average, then

where the last inequality follows from Remark 3.12. If «g is not a basic average, then
there are natural numbers s < d and weighted functionals g1 < --- < g;in W), so
that g = (1/d) X.7_, gi (or ag = (1/d) >"}_, &igi with the &;’s being alternating
signs). We define D; = {k € {n,...,m} : w(g;) < w(fx) and by Lemma 5.8 we

obtain:
m
k=n

The inductive assumption yields

2C

—_— 13
S(Oto) + 2w(fn) (13)

< max ”kaOO\
n<k<m

Sw(fa)

d
1 22C 2C
Sglo| 2w )|t e (1
j=1 keD;

47C
2¢(w<g,>)

d
> e

j=1 keD; j=1

M
§
N
M&
S
&2Aa
/
M=

where we used the fact that, in order to define an a.-average, the ¢ (w(g;))’s must be
strictly increasing elements of L and min L > 8. Combining (14) with the above, (13)
follows.

Let now f = (1/27) Z(;:l oy be a weighted functional in Wy, 1, with (ozq)gz1
a very fast growing and S;-admissible sequence of a-averages of W, and let also
1 < n < m < £ be natural numbers. Define D = {k € {n,...,m}: j < w(fi)}and
also for k € D set
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My = {q : rano, Nranx; # @} and

N = {q € My : s(ag) > Scz2w(fk)}'

Lemma 5.1 yields that for k € D,

2
Z |aq(xk)| < Zw(fk)

qENK

and therefore:

:Z:;aq(zxk) PP ITEREDIDICACE

keD keD ge M\ Ny keD geNy

N

2
z Z Olq(xk)-f-Zm

keD ge M\ Ny keD

4

(X)) | + = (15)
2w(fn)

keD geM\ Ny

N

where we used that, according to Remark 2.3, the w( f)’s are strictly increasing.
Define A = Ugep Mi\Ni,forq € Aset Dy = {k € D : q € M\N} and observe
the following:

DD =D | D x| (16)

keD geM\ Ny geA keDy,

We will show that the D,’s are disjoint intervals of {n, ..., m}. Indeed, let g € A
and k1, ky € Dy. If ki < k < kz, we will show that k € D,. The fact that g €
My, N My, means that rana; Nranx;, # @ and rana, Nranxg, # & which, of
course, yields that ran oy, Nranx; # @, 1.e. g € M. Also, g € My, \ Ny, means that

s(ag) < 8C22w k) < 8C22w() | in other words q ¢ Ny and hence k € D,. We
now show that the D,’s are pairwise disjoint. Let g1 < g be in A and assume that
k € Dy N Dy,. By the fact that ran oy, N ran x; # & and Definition 3.10 we obtain

8C2* 0 < min supp x; < max supp oy,
and since the sequence <0tq)2’:1 is very fast growing, we obtain that
s(ag,) > maxsuppa,, > 8C2%W

which means that go € Ng, which contradicts k € Dy,.
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If we set ny; = min Dy, then the n,’s are strictly increasing and since the D,’s are
intervals, by (13)

23C 2C
a | D || <+ (17)
keD, sag) 2"

for all ¢ € A. Combining (15), (16) and (17):

d 23C 2C 4
Z;,“q (Z xk) <2 2wt + qu <4€
p

keD geA S(Olq) qgeA

where we used that, as implied by the definition of very fast growing sequences,
zq(l /s(ag)) < 2, that the w(fy,,)’s are strictly increasing elements of L and that

min L > 8. Finally, we conclude that | f (D p)xk| < 47C/27 . O

6 Non-trivial weakly Cauchy sequences and the HI property of the space
XT

In this section we prove that in every block subspace of X7 one can find a seminor-
malized block sequence (xi); and a sequence of weighted functionals (f;)x so that
{(fk» X&)}k forms a maximal chain in 7. We conclude that X7 is hereditarily indecom-
posable. We also show that in the case 7 is well founded, then the space X7 reflexive.
On the other hand, if 7 = U, then we show that X;; contains no reflexive subspace.

Lemma 6.1 Let (fx)i be an infinite sequence of non-averages in W so that for each
n € N the set {k : fi is a weighted functional with w(fy) = n} is finite. Then
there exists a subsequence of (fx)k, again denoted by (fi)x, so that for every natural
numbers k1 < --- < kg and alternating signs (8,~)§1:1 in {—1, 1}, the functional
ag = (1/d) Z?:l &i fx; is an ac-average in Wr.

Proof By passing to a subsequence, either all f;’s are weighted functionals, or they
are all of the form f; = ske:( where ¢, € {—1, 1}. If the second case holds, the result
follows easily.

Assume now that the f;’s are all weighted functionals. Then limy w( f;) = oo and
so we may pass to a subsequence so that the sequence ¢ (w( f)) is strictly increasing.
By Ramsey’s theorem [23, Theorem A], by passing to a further subsequence, the
¢ (w(fx))’s are either all pairwise incomparable, or all pairwise comparable, in the
sense of Definition 2.5. If the first one holds, then for any natural numbers d < n,
k1 < --- < kg and for any choice of signs ¢, j = 1, ..., d the sequence of functionals
(&) fx; )?:] is incomparable, which easily implies the desired result.

We assume now that the ¢ (w( f))’s are pairwise comparable in the sense of Defi-
nition 2.5. Observe first that for at most one k € N ¢p(w( fi)) € Lo and hence we may
assume that ¢ (w( fx)) € L forall k € N. This further implies that (o1 (DWW i)k
is a chain in 7 and hence, there exist sequences (h;); in W, and (y;); in coo(N, Q),
so that {(h;, y;)}_, isin 7 for all n € N and there is a strictly increasing sequence of
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natural numbers (my)g, so that w(h,,) = ¢ (w(fi)) for all k € N. By passing once
more to a subsequence, we may assume that either | fi (y, )| > 10 for all kK € N,
or | fk (Ym, )| < 10 for all k € N. If the first one holds, then for any natural numbers
d <n,ky <--- < kg and for any choice of signs €, j = 1, ..., d the sequence of
functionals (& f j)7:1 is irrelevant, which implies the desired result. Otherwise, we
pass to an even further subsequence so that for every natural numbers k < n we have
that | fx (Vi) — [uQm,) < 1 /2% This means that for any natural numbers d < n,
ki < --- < kq sequence of functionals (f; )‘;21 is comparable and therefore for

alternating signs (sj)‘;zl, ap = (1/n) Z‘;:l &j fi; is a CO-average. O

If we assume that the tree 7 is well founded, then there does not exist a strictly
increasing sequence of natural numbers which are pairwise comparable in the sense
of Definition 2.5. In this case, the proof of Lemma 6.1 yields the following.

Lemma 6.2 Assume that the tree T is well founded and let (fi)x be an infinite
sequence of non-averages in Wy so that for each n € N the set {k : fx is a weighted
functional with w( fy) = n} is finite. Then there exists a subsequence of (fx)k, again
denoted by (fi)r, so that for every natural numbers k; < --- < kg the functional
ag = (1/d) Zf-l:l fx; is an a.-average in Wr.

Lemma 6.3 Let (xi); be a block sequence in X1 and assume that there is a constant
C > 0 5o that || Zi:l x|l < C forall ¢ € N. Then a((xx)r) = 0.

Proof Assume that this is not the case. Then there exist ¢ > 0, m € N, a very fast
growing sequence of a.-averages (¢ ), a sequence of successive subsets (), of N,
with (atg)geF, Sm-admissible for all » € N and a subsequence (xg,, ), of (xx)x so that
foralln € N3 _p oq(xi,) > . We may also assume that ran ey C ran x, for all
q € F, and n € N, hence quFn oy (xp) = 0 for k" # k,. Choose ng > 2+l /e
and observe that the functional

2no—1

1
f= g 22 2.
n=no qeky

is a weighted functional in W7 of weight w(f) = m + 1. We conclude

anO—l k2no—l 1

C > Zxk > f Zxk >2m+1n08>C

k=1 k=1

which is absurd. O

Lemma 6.4 Let (xi)r be a seminormalized block sequence in X1 with a((xx)r) =
0. Let also (fi)r be a sequence of non-zero functionals in W, so that fi(xy) =
B/B|xk |l for all k € N. Then for each n € N the set {k : fi is a weighted functional
with w( fi) = n} is finite.
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Proof Assume that, passing to a subsequence, there is m € N so that f} is a weighted
functional with w(fx) = m for all k € N. Proposition 4.4 yields that, passing to a
further subsequence, there is kg € N so that fi (xx) < (1/2™)&/D x|l < B/4) |l xk |l
for all k > ko, which is absurd. O

Lemmas 6.3 and 6.4 immediately yield the following.

Lemma 6.5 Let (xi)r be a seminormalized block sequence in X7 and assume that
there is a constant C > 0 so that || Zi:l xi|l < C forall £ € N. Let also (fi)i be a
sequence of non-averages in W, so that fi(xx) > (3/4)||xx|| for all k € N. Then for
each n € N the set {k : fi is a weighted functional with w( fy) = n} is finite.

We obtain the first result that depends on the properties of the tree 7 .
Proposition 6.6 [f the tree T is well founded, then the space X1 is reflexive.

Proof We will show that the basis of X7 is boundedly complete, which in conjunction
with Proposition 3.8 and James’ well known theorem [17, Theorem 1] yield the desired
result. Let us assume that this is not the case, i.e. there is a seminormalized block
sequence (x)x and a constant C with || >} x¢|| < C for all m € N. For each
k € N choose a functional in W, which is not an average, so that ran f; C ran xj
and fi(xx) > (3/4)||xr||. Lemmas 6.2 and 6.5 yield that there is an infinite subset of
the natural numbers M, so that for every finite subset F' of M the functional oy =
(1/#F) > 1cr fi is an a.-average of W Note that for m > max F we have

m
1 3.
OZF(E Xk) =zF E Sie(x) > erllf [l |l
k=1 keF

Choose anatural numberd > 6C/(4inf ||x¢|)) and F| < - -- < Fy sothatthe sequence
(aF, )Zzl is S1-admissible and very fast growing. Then f = (1/2) Z;’=1 o, isin
W7 and if m = max F; we obtain f(ZZ”=1 xi) > C, which is absurd. O

The next result is one of the main features of saturation under constraints and it
plays an important role in deducing the properties of the space.

Proposition 6.7 Every block subspace X of X1 contains a block sequence generating
an £y spreading model, as well as a block sequence generating a cy spreading model.

Proof By Corollary 4.5, it suffices to find, given a block sequence generating an
£ spreading model, a further block sequence with «-index zero and, given a block
sequence generating a cg spreading model, a further block sequence with «-index
positive. Assume that (x;)x is a block sequence generating an ¢; spreading model,
i.e. a((xx)x) > 0. By Proposition 4.3 we may find C > 1, 6 > 0 and a further block
sequence (yx)x so that each yi is a (C, 6, ny)-vector, with (ny); strictly increasing.
Proposition 5.2 yields the desired result. Assume now that (xx ) is a normalized block
generating a cg spreading model, i.e. & ((xx)x) = 0. Choose a sequence ( fi); of non-
averages in W7 so that for each k, ran fy C ranx; and fi(xx) > 3/4. By Lemmas
6.1 and 6.4 we may pass to a further subsequence so that for every k; < --- < kg
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and alternating signs (ai);.lzl, the functional (1/d) Zf-lzl &i fx; 1s an o.-average of
W . Choose a sequence (Fy,), of successive subsets of N with #F,, < min F;, for all
n € N and lim, #F, = oo. Also choose sequences of alternating signs (&;);cr, and
set y, = Zian gixi, op = (1/#Fy,) Zsi fi for all n € N. Since (xx); generates a co
spreading model we conclude that (y,), is bounded. Furthermore for each n, o, is an
ac-average of size #F, so that o, (y,,) > 3/4. It easily follows that «((y,),) > 0. O

Lemma 6.8 Let (xi)ix be a block sequence in the unit ball of X7 generating a cg
spreading model and ( fi.)r be a sequence of functionals in W so that the following
are satisfied:

(a) fx is not an a.-average, ran fi C ranxy for all k € N and
(b) thereisa® > 0, so that 3/4)||xx|| < frx(xx) =0 forall k € N.

Then for every n € N there are successive finite subsets of the natural numbers
(Fr)iL . sequences of signs (&;)icF., k = 1,..., m and a sequence of non-negative
real numbers (cy);._, so that the following are satisfied:

(i) the vector x =2" 3" | ck(ZieFk gix;) is a (9/8, 0, n)-exact vector,
(i) the functional o = (1/#Fy) ZieFk & fi is an o.-average of Wr for k =
1,...,mand
(iii) the sequence (ozk)Z:1 is Sp-admissible and very fast growing. In particular, f =
(1/2™) >0, ax is a weighted functional in W with, ran f C ranx, w(f) =n
and f(x) =0.

Proof By Corollary 4.5 o ((xx)x) = 0 and by Lemma 6.4 we obtain that, passing to a
subsequence, ( fi)x satisfies the conclusion of Lemma 6.1, i.e.
(c) for every natural numbers k; < --- < kg and alternating signs (81-);1: |» the func-
tional ag = (1/d) Z?:l &i fk; 18 an a-average of Wr.
Corollary 4.5 yields that «((xx)x) = 0 and so we pass once more to a subsequence
and find a strictly increasing sequence of natural numbers (ji ), so that the conclusion

of Proposition 4.4 holds, i.e. for every natural numbers d < k1 < --- < kg, scalars
(Ai)le we have

< (9/8 A 18
(/)12%' il (18)

d
2 ki,
i=1

and for every weighted functional in W f with w(f) = j < jg, we have

()

Inductively choose a sequence of successive intervals of N (/)4 so that the following
are satisfied:

(d) min I, < #l, forallg € N,
(e) #1yq > 2MPPImaxly for all g € N and
(f) 1/2/mnlg+1 max supp Xmax I, < 1/2/mx1q for all g € N.

9/8
< L max |A;|. (19)
2] 1<i<d
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For each g choose alternating signs (&;);ie I, and define

1
wy = Zsix,- and oy = i zgiﬁ.

iel, 1 iel,

Then (18) and (d) yield [|wy || < 9/8 for all ¢ € N while by (c) and (e) (ay)y is a
very fast growing sequence of o-averages of W . Since ran «; C ran w,, for all ¢ we
easily obtain the following:

(g) whenever F' C Nissuchthat (wg)qer is Sp-admissible, then f=(1/2") quF ay
is in W7 and hence, if (A4)4cF are non-negative scalars with qu g =1, then

7 (2" Ser Aqwq) — 0.

Furthermore, by (19) and (f), the sequence (w,)q is (9/8, (j‘;)q)-RIS, where jé =
Jmin I, forall g € N.

By Proposition 3.3 we may choose g1 < --- < g, and non-negative real numbers
(ck)i; sothat the vectorx = 2" ZZ’zl Ck Wy, satisfies all assumptions of the definition
of a (9/8, 0, n)-exact vector (see Definition 3.10). Therefore, the (14,)}";, (e,-)l-elqk
fork=1,...,mand (ck);{”:1 satisfy the desired conclusion. O

Remark 6.9 Let (xi)k, (fi)r satisfy the assumptions of Lemma 6.8. Assume moreover
that (gx)x is a sequence of successive functionals in W7 such that for each n € N,
the set {k : gi is a weighted functional with w(gy) = n} is finite. The same method
of proof, and an argument involving Proposition 3.3, Remark 3.2 and the spreading
property of the Schreier families, yields that we may find (Fp){_,, (&i)icr, k =
1,...,m and (c)j_, satisfying the conclusion of Proposition 6.8 so that moreover

the functional g = (1/2") >}, ((1/(#Fk)) ZieFk Sigi) is a weighted functional of
weight w(g) = n in Wr.

Lemma 6.10 Let X be a block subspace of X7 and n € N. Then there exists a
(9/8, 8/9, n)-exact pair (f, x) so that x is in X.

Proof By Proposition 6.7 there exists a normalized block sequence (x )i in X generat-
ing a c¢q spreading model. Choose a sequence of functionals fi in W so that for each &,
fr is not an average, fix(x)r > 8/9 andran f; C ranxi. Define x,/{ = (8/(9 fi (xk)))xk
and observe that the assumptions of Lemma 6.8 are satisfied for (x,/()k, (fi)x and
6 = 8/9. The first and third assertions of the conclusion of that proposition yield the
desired result. O

Lemma 6.11 Ler X and Y be block subspaces of X, both generated by vectors with
rational coefficients. Then there exists an initial interval E of N (finite or infinite) and
a sequence of exact pairs {( fr, Xr) ke So that the following are satisfied:

(i) for k odd xy. is in X while for k even x isin Y,
ai) {(fx, xk)}’,?zl is a (9/8, 8/9)-dependent sequence for allm € E and
(i) {({(fk, xx)}f_; : m € E} is a maximal chain of T.
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Proof Using an inductive argument and Lemma 6.10, we choose a sequence of
(9/8,8/9, ny)-exact pairs {(fx, xx)}72; so that (i) of the conclusion holds and
{(fi, x)};_, is in U for all m € N. By property (i) of 7 from Sect. 2.4 we
obtain that {(fi,xy)} is in 7. If for all m € N we have that {(fi, xp)};, is
in 7, then we obtain that for E = N the conclusion is satisfied. Otherwise, set
mo = max{m € N : {(fi,x)}j_, € 7} and by property (i) of 7 from Sect.
2.4 we obtain that, setting E = {1, ..., mo}, the conclusion holds. O

Recall that 7 is a subtree of the universal tree If associated with the coding function
o. If we take 7 to be all of U, we obtain the result below.

Theorem 6.12 The space Xy contains no reflexive subspace.

Proof 1t is enough to show that any block sequence with rational coefficients is not
boundedly complete. Indeed, let (zx)x be such a block sequence and apply Lemma
6.11, for X = Y = [(zx)«] to find a sequence of exact pairs {( fk, xx)}keg satisfying
the conclusion of that lemma. Recall that every maximal chain in ¢/ is infinite and
hence £ = N. Finally, |lx¢|| > 8/9 for all k € N while by Proposition 5.9 we have
that || >, xx|l < 27 foralln € N. O

Theorem 6.13 The space X7 is hereditarily indecomposable.

Proof We will show that for every block subspaces X and Y of X7, both generated
by vectors with rational coefficients, and for every n € N there exists x € X and
y € Y sothat |x + y|| < 53 and ||x — y|| = (4/9)n. by passing to further block
subspaces, we may assume the X and Y are generated by block sequences (zx); and
(wg)k respectively, so that

(1) minsuppz; = n,
(i) minsupp zx > 2MXSUPPWk—1 and min supp wy > 2MXSUPP -1 for all sk € N.

Apply Lemma 6.11 to find sequences (xi)rer and ( fx)ke g satisfying the conclusion of
that Lemma. The maximality property of that conclusion in conjunction with property
(iii) of 7 from Sect. 2.4 yield that there is an initial interval G of E so that the set
{min supp fx : k € G}is a maximal S,-set. By the definition of S> choose a partition
of G into successive intervals G, ..., G4 so that:

(a) {min supp fmian :g=1,...,d}is an S;-set and
(b) {minsupp fi : k € G4}isan Sy-setforg =1,...,d.

Then (i) implies that n < d while the maximality of {minsupp fi : k € G} implies
that each {minsupp f : k € G} is a maximal S;-set, i.e. #G4, = min supp fimin Gy
forg=1,...,d.

Define G, = {k € G : kodd} and G, = {k € G : k even}. Set x = ZkeGa Xk
andy = ZkeGe xr.Thenx € X,y € Y and ||x + y|| < 47(9/8) < 53 by Proposition
5.9.

The sequence (fi)keg, can easily seen to be comparable and hence, the func-

tional oy = (1/#Gy) ZkeGq (—l)kfk is an a.-average for each g = 1,...,n with
ay (ZkeGq (—l)kxk) = 8/9. Also the sequence (ozq)g:l is Sj-admissible by (a).
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Also by (ii), s(g+1) = minsupp fminG,,, > 2" *"PP% and hence the sequence
(()zq);l:l is very fast growing. We conclude that /' = (1/2) ZZ=1 ag is in Wz and

Fo=3) = /D24 o (Sheg, (D) = (1/2d(8/9) > @/9)n which
yields the desired result. O

7 The spreading models of non-trivial weakly Cauchy sequences in X

In the case 7 is well founded, i.e. the space X is reflexive, Propositions 4.5 and 6.7
clarify all types of spreading models admitted by Schauder basic sequences in sub-
spaces of X7 . In the case of the space Xz, non-trivial weakly Cauchy sequences exist
in every subspace of the space and this section is devoted to determining what types
of spreading models these sequences admit. We start the section by presenting some
simple general facts about spreading sequences, i.e. sequences which are equivalent
to their subsequences. Both Lemma 7.1 as well as Proposition 7.2 are showed using
classical techniques and we omit their proofs.

Lemma 7.1 Let (er)r be a conditional and spreading Schauder basic sequence so
that (exr—1 — ear )k is equivalent to the unit vector basis of co. Then (ey )y is equivalent
to the summing basis of cy.

Proposition 7.2 Let X be a Banach space and (xi)r, (yx)r be Schauder basic
sequences in X. If (xi)r admits an £y spreading model while (yi)r does not, then
(Xx — Yi)k admits an €1 spreading model.

as well, which is the desired result. Indeed, let (c,);'_; be a sequence

Proposition 7.3 Let (A;); be a sequence of scalars so that if (e;); is the basis of X1
and xp = Zf:l Aiei forall k € N, then (xi)y is bounded and non-convergent in the
norm topology. Then (xi)x admits only the summing basis of co as a spreading model.

Proof Pass to a subsequence of (xj ), that generates a spreading model (zx)x. The fact
that (x)x is non-trivial weakly Caushy easily implies that (zx)i is either equivalent
to the unit vector basis of £1, or a conditional spreading sequence. Then, if y; =
Xox—1 — X2 and ux = zx—1 — 2ok for all k € N, the sequence (yx)x generates (uy)k
as a spreading model. Lemma 6.3 implies that o ((yx)x) = 0 and hence by Proposition
4.4, (uy)r is equivalent to the unit vector basis of co. Therefore, (zx)x is conditional
and spreading and by Lemma 7.1 we deduce the desired result. O

Remark 7.4 Note that the summing basis norm is the minimum conditional spreading
norm, in terms of domination. An easy argument yields the following: if (x;)x is a
sequence generating the summing basis of c¢ as a spreading model, then every convex
block sequence of (xj); admits only the summing basis of cq as a spreading model as
well.

The next will be useful in the sequel.



654 S. A. Argyros, P. Motakis

Lemma 7.5 Let (xi)i be a non-trivial weakly Cauchy sequence in X. Then there is
a convex block sequence (yi)i of (xr) that generates the summing basis of cy as a
spreading model.

Proof Let x™* be the w*-limit of (xz); and y; = Zf: 1 X** (e} )e;. Then by Proposi-
tion 3.8 (yx)k, w*-converges to x**. By Lemma 7.3, passing to a subsequence, (y)k
generates the summing basis of cq as a spreading model. As (x; — yr)x is weakly null,
by Mazur’s theorem there is a convex block sequence of (xi)i that is equivalent to a
convex block sequence of (y)r. By Remark 7.4 we deduce the desired result. O

Proposition 7.6 Every non-trivial weakly Cauchy sequence in X7 admits a spreading
model which is either equivalent to the summing basis of co or equivalent to the unit
vector basis of £1. If moreover T = U, then every infinite dimensional subspace of
Xy contains non-trivial weakly Cauchy sequences admitting both of these types of
spreading models.

Proof Let (xi)r be a non-trivial weakly Cauchy sequence in X7 and x** be its w*-
limit. If fork € Nweset yy = Zle x**(e})e;, By proposition 3.8 we obtain that (yx )«
w*-converges to x** and hence, setting zx = yr — Xk, the sequence (zx) is weakly
null. By Proposition 7.3 (yx)r admits only the summing basis of ¢y as a spreading
model, while (zx)g is either norm null, or it is not. If it is not norm it follows from
Proposition 4.5 that (z; ), either admits only the unit vector basis of ¢g as a spreading
model, or it admits the unit vector basis of £; as a spreading model. If the first one
holds, we conclude that any spreading model admitted by (x;)x must be equivalent
to the unit vector basis of ¢y and if the second one holds, Proposition 7.2 yields that
(xx)x admits an £ spreading model.

The second assertion is proved as follows: by Theorem 6.12, and Proposition 7.3
we obtain that every subspace of X;; admits the summing basis of cp as a spread-
ing model. Combining this with Propositions 6.7 and 7.2 we deduce that there is a
non-trivial weakly Cauchy sequence in every subspace generating an ¢; spreading
model. O

Remark 7.7 We comment that using the ¢-index it can be shown that every non-trivial
weakly Cauchy sequence in X7 admitting an £; spreading model, has a subsequence
that generates an £ spreading model with lower constant 6/2", for all n € N and
some 6 > 0.

8 Operators on the space X

In this final section we prove the properties of the operators defined on subspaces
of X7. We characterize strictly singular operators with respect to their action on
sequences generating certain types of spreading models. We conclude that the com-
position of any pair of singular operators is a compact one. This ought to be compared
to [8, Theorem 5.19 and Remark 5.20]. We also show that all operators defined on
block subspaces of X7 have non-trivial closed invariant subspaces and that operators
defined on Xy, are strictly singular if and only if they are weakly compact.
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Lemma 8.1 Let x, y be non-zero vectors in X . Then there exist non-averages f, g
in W so that the following hold:

(i) ran f Cranx andrang C rany,
(i) f(x) > (8/9)|x|l and g(y) > 8/ yll,

7)<

(iii) |g

Proof Choose a non-average g in Wz with g(y) > (8/9)|y|l. If |g(x)| > (8/9)|x||
define f = sgn(g(x))glranx and observe that f, g satisfy the conclusion. Otherwise
g(x) < (8/9)|lx|| and choose any non-average f in Wz with f(x) > (8/9)|x|| and
ran f C ranx. A simple calculation yields that f, g satisfy the conclusion. O

Lemma 8.2 Let (f,x) be an (9/8,8/9, n)-exact pair in X7 and let also p in
[—8/9,8/9]. Then there is a weighted functional g in Wt of weight w(g) = n,
so thatran g C ranx and |g(x) — p| < 172"+

Proof By Remark 3.12, we have that ||x[s < 1/(22"36) < 1/2"+!. The fact that
f(x) = 8/9 easily implies that there is an initial interval E of ran f and ¢ € {—1, 1},
so that g = ¢ Ef is the desired functional. O

The following result characterizes strictly singular operators, defined on subspaces
of X7, in the following manner: an operator is strictly singular if and only if it does
not preserve any type of spreading model. It is worth mentioning that we could neither
prove nor disprove the same result in [8]. The reason for this difference is the presence
of B-averages in that paper and their absence in the present one.

Proposition 8.3 Let X be an infinite dimensional closed subspace of X7 and T :
X — X7 be a bounded linear operator. The following assertions are equivalent.

(1) The operator T is strictly singular.
(ii) There exists a normalized weakly null sequence (yi)r in X so that (T yi)i con-
verges to zero in norm.
(iii) Foreverysequence (xi)i in X generating a co spreading model, (T xy ) converges
to zero in norm.
(iv) For every sequence (xi)y in X generating an £y spreading model, (T xi)x does
not admit an £1 spreading model.

Proof That (i) implies (ii) follows from the fact that £; does not embed into X7 and
that (iv) implies (i) follows from Proposition 6.7. We shall first demonstrate that (iii)
implies (iv) and then that (ii) implies (iii).

We assume that (ii) is true and towards a contradiction assume that there is a
sequence in (xx)x in X, so that both (x;)x and (T xx )i generate an £ spreading model.
By taking differences, we may assume that both (xx)x and (7 xi ) are block sequences
with a-index positive. By Proposition 4.3 we may assume that there is 6 > 0 so that
both sequences generate an £] spreading model with a lower constant /2" for all
n € N. Using the same Proposition, construct a block sequence (yx)x of (xi)x, so that
each yy is a (C, 6, ny)-vector and | Tyx| = 6 for all k € N with a (ny)x a strictly
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increasing sequence of natural numbers. Proposition 5.2 yields that (yx)x admits only
co as a spreading model, which contradicts (ii).

We shall now prove that (ii) implies (iii). Toward a contradiction assume that there
is normalized weakly null sequence (yi)x in X with limy Ty, = 0innorm, as well as a
sequence (xx )k in X generating a co spreading model, so that (7 x; ) does not converge
to zero in norm. By perturbing the operator 7 we may assume that the following are
satisfied:

(A) vk, (xi)k and (T xg)i are all seminormalized block sequences with rational
coefficients and
(B) Tyy =0forall k € N.

For each k € N, choose f; and g so that the conclusion of Lemma 8.1 is satisfied,
i.e. ran fi C ranxg, ran g C ran Txg, fi(xk) > 8/ |xkll, gx(Txx) > (8/NDNT xx ||
and |gx((8/9 fi (xi))xx)| < 8/9. Hence, if for all k we set x; = (8/9 fi (xx))xx and
0 = (8/9)2 infy ITxk ||/ supy |lxk |l > O, then for all k € N:

(O) ran fi C ranx;, ran g; C ran Tx;,

D) filxy) =8/9, gk(Tx;) > 6 and

(B) lgr(x)| < 8/9.

We note that the boundedness of T yields that (T xj); admits only cg as a spreading

model, combining this with g (Txx) > (8/9)||T xx|| for all k € N and Lemma 6.4 we

obtain that

(F) for each n € N, the set of k’s so that g; is a weighted functional of weight
w(gr) = n is finite.

We pass to a subsequence, so that there is p in [—8/9, 8/9] so that
(G) Igk(xp) — pl < 1/2%+! forall k € N.

Letnown € Nwithn > 162||T||/6. We constructa (9/8, 8/9)-dependent sequence
{(h, i)}, with the following properties:
(H) minsupp /iy > n and (k)L is Sp-admissible,
(D There is a partition of N into successive intervals (G ) and successive subsets of
the natural numbers (F;); as well as a sequence of signs (&;); so that for k odd:

7k = 2w Z cj z &ix;

jeGy i€F;
hic = 2w(hk) Z thfu
]eGk zeF

(J) for k odd the functional

or = zw(hk) Z #F Zglgl

jeGy lEF

is a weighted functional in W7 of weight w(¢x) = w(hy) and
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(K) for k even, ran ¢ < ranzy < ran ¢4 and zi is a linear combination of the
(V-

Note that in the construction for k£ odd we use Lemma 6.8 (F) and Remark 6.9. For k

even we just use Lemma 6.10 while the fact that we continue this process until ()",

is S>-admissible follows from properties (ii) and (iii) from Sect. 2.4.

Proposition 5.9 yields || >} zx |l < 27. We will finish the proof by showing that
1T 5y zi)ll > 27\ T||, which is absurd.

For k even, by Lemma 8.2, we may choose ¢ in W7 with ran ¢y C ranz; and
i (zi) — p| < 17200+ <1 /2K+1 Moreover, (G), (I) and () yield that for k odd,
|pr(zx) — p| < 1/2F+1 as well. We conclude:

(L) Ir(zi) — dw(z)| < 1/28 for 1 <k <K' <m
Since {(h, zx)};_; isin 7 and ¢y is a functional of weight w(hy) fork =1,...,m
by (1) and (m) we conclude that the sequence (¢);, is compatible, in the sense of

Definition 2.6. Arguing identically as in the proof of Theorem 6.13, for the already
fixed n we may choose a partition of {1, ..., m} into successive intervals (Eq)Z:l

so that if oy = (1/#E,) ZkeEq (—1)k+l¢k, then the sequence (ocq);i:1 is a very fast

growing and S;-admissible of «.-averages of W7 . Define ¥ = (1/2) 22:1 ag which

is in Wz. Then, by (B) and (K) T (3}, zk) = X oaa T'2k- By (D), (I) and (J) we
Z Tz

obtain:
m
k=1 k odd k odd

—Z > guTw) > —9>27||T||

9 odd keE,

]

We remind that in [8, Theorem 5.19] it is proved that the composition of any triple
of strictly singular operators, defined on a subspace of X, is a compact one. We were
unable to determine whether that result is optimal or if it could be stated for couples of
strictly singular operators. As we commented before Proposition 8.3, the construction
of the space X5, form [8] uses B-averages while the present one does not. A direct
consequence of this difference is that in the case of the space X7 we can prove the
following.

Theorem 8.4 Let X be a closed subspace of X7 and S, T : X — X be strictly
singular operators. Then the composition T S is a compact operator.

Proof Since ¢; does not embed into X7, it suffices to show that 7S maps weakly null
sequences to norm null ones and (xx ), be a weakly null sequence in X. If it is norm null
then there is nothing more to prove. Otherwise, it either admits a cg or an £ spreading
model. If the first one holds, then by Proposition 8.3 (Sxx)x has a subsequence which
is norm null. If on the other hand (xj); admits an ¢; spreading model then, passing
to subsequence, (Sxi)x is either norm null, or it generates a ¢y spreading model and
hence, arguing as above, we obtain that (7' Sxg)x is norm null. O
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Corollary 8.5 Let X be an infinite dimensional closed subspace of X7 and § : X —
X be a non-zero strictly singular operator. Then S admits a non-trivial closed hyper-
invariant subspace.

Proof Assume first that S> = 0. Then it is straightforward to check that ker S is a
non-trivial closed hyperinvariant subspace of S. Otherwise, if S> # 0, then Theorem
8.4 yields that S? is compact and non-zero. Since S commutes with its square, by [24,
Theorem 2.1], it is sufficient to check that for any o, 8 € R with 8 # 0, we have
(el — S8)% + B2I +# 0 (see also [16, Theorem 2]). The fact that S is strictly singular,
easily implies that this condition is satisfied. O

Lemma 8.6 Let (xi)i be a seminormalized block sequence in X7 with o((xg)x) = 0
and X = [(xp)i). Let T : X — X7 be a linear operator and assume that there
exist ¢ > 0 and a sequence of successive non-averages (gr)x in Wr satisfying the
following:

(1) gr(Txy) > € and gr(xr) = 0 forall k € N and
(1) for all n € N the set {k : gy is a weighted functional with w(gy) = n} is finite.

Then T is unbounded.

Proof Towards a contradiction we assume that 7" is bounded. We may assume that
the xi’s have rational coefficients. Choose a sequence of non averages in Wz so
that ran fr C ranxg and fi(xx) > (8/9)||lxx| for all k € N. For all k € N define
x,’{ = (8/(9fi(xx)))xx and set & = (8¢)/(9 sup || xk||) > O and observe the following:

(a) gr(x;) =0forall k € Nand
(b) gk(Tx;) > e forallk e N.

Let now n € N with n > 54||T||/6. We construct a (9/8, 8/9)-dependent sequence
{(hg, zk) Y}, sothat minsupp iy > n, (hy)}"_, is S2-admissible, there is a partition of
Ninto successive intervals (G)x and successive subsets of the natural numbers (F}) ;
as well as a sequence of signs (&;); so thatfork =1, ..., m:

zp = 2V Z cj Z &ix;

jeGy iEFj

1 1
hk:ngzgiﬁ’

jeGr 7 ieF;

and the functional

1 1
¢k=WZ#_szsigi

Jj€Gk i€F;

is a weighted functional in W7 of weight w(¢r) = w(hg). Note that by (a)
(©) ¢x(zx) =0fork=1,...,m.
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Proposition 5.9 yields that || > | zx || <27. We will show thatalso || T (3 zx) | >
27||T ||, which will complete the proof.

Since {(hk, zk) Y3, isin 7 and ¢ is a functional of weight w(hy) fork = 1,...,m
by (c) we easily conclude that the sequence ((— 1)k¢>k)z1:1 is compatible, in the sense
of Definition 2.6. Arguing in the proof of Theorem 6.13 we choose a partition of
{1, ..., m} into successive intervals (Eq);:1 sothatifa, = (1/#E,) ZkeEq ¢, then

the sequence (ozq)g:1 is a very fast growing and S;-admissible of «.-averages of W
An argument similar to that used in the end of the proof of Proposition 8.3 yields
I > Tzill > n6/2 > 27||T]|. O

Remark 8.7 1f E is aninterval of N, we denote by Pg the projection onto E, associated
with the Schauder basis (e;); of X7. It easily follows that if (xx)x, (yx)x are block
sequences in X7, then

(1) if a((xx)x) = 0 and (Ey)x is a sequence of successive intervals of the natural
numbers, then o ((Pg, xx)r) = 0.
(i) if a((xp)r) = 0 and a((yi)x) = 0, then a((xx + yr)k) = 0.

Lemma 8.8 Let (xi)x be a seminormalized block sequence in X7 and X = [(xr)k].
Let T : X — X7 be a bounded linear operator and for each k € N set y, =
Pran x T xi. If the sequence (yi)i is norm null, then T is strictly singular.

Proof By Proposition 8.3 it suffices to find a seminormalized weakly null sequence
(ur)x in X so that (T'uy)y is norm null. For all k define zx = P{1,minranx,—1]7 Xx and
Wk = Plmaxran x;+1,00)] T *k. By perturbing T and passing to a subsequence, we may
assumethat 7x; = zx+wy and zx < x; < wy forallk € N. We distinguish three cases.

Case 1: (x)r admits a co spreading model. We will show that (T xi ) is norm null. If
this is not the case then, passing to a subsequence, either (zj)r or (wi)x is bounded
below. We assume that the first one holds, set ¢ = (3/4) inf ||zx || and for each k choose
(gx)x with ran g C ranzg and gx(xx) > (3/4)|lxx||. By Remark 8.7 we obtain that
a((zx)x) = 0 and by Lemma 6.4 we conclude that the assumptions of Lemma 8.6 are
satisfied, i.e. T is unbounded, which is absurd.

Case 2: (xj)) admits an £1 spreading model and (7 xi ) does not, i.e. it is either norm
null, or passing to a subsequence it generates a co spreading model. In the first case
we are done, in the second case choose a sequence of successive Sy sets (Fg)r with
limy #F;, = 0 and for all k define uy = (1/#Fy) > x;. Then (uy)y is the desired
sequence.

ieFy

Case 3: by passing to a subsequence, both (xi)x and (7 xi ) generate an £ spreading
model. Remark 8.7 yields that either o((zx)x) > 0 or a((wx)x) > 0 and we shall
assume that the first one holds. Passing to a subsequence, there are n € N, § > 0, a
very fast growing sequence of c-averages (o), of W7 and a sequence of successive
subsets (Fy); of N, so that

(@) (ag)ger, is S, admissible for all k € N,
(b) ranay; Cranzy forallg € Fi, k € Nand
(c) quFk oy (zx) > 8 forall k e N.
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By Proposition 4.3, there are C > 1, 6 > 0 and a block sequence (uy)y so that for
eachk,u; = 2"% ZjeGk crxrisa(C, 0, ni)-vector with (n) strictly increasing. Using
an argument involving Proposition 3.3, Remark 3.2 and the spreading properties of
the Schreier families, we may also chose the sets Gy so that (o) geu jeG Fj is Syt
-admissible and hence, g, = (1/2"7%) Z(IEU]’GGk F; % is a weighted functional of
weight w(gr) = n + ny for all k € N. By (b) we obtain gx(ux) = 0 and by(c)
gk(Tuy) > 6/2" for all k € N. Finally, combining these facts with Proposition 5.2 we
conclude that (ux); admits a cp spreading model, i.e. the assumptions of Lemma 8.6
are satisfied. This means that 7' is unbounded, which is absurd. O

Theorem 8.9 Let X be a block subspace of X. Then for every bounded linear oper-
atorT : X — X thereis a A € R so that T — M1 is strictly singular.

Proof Let (xi); be the normalized block sequence so that X = [(xx)r]. We may, of
course, assume that (x;)y is normalized and let Qy,) denote the projections associated
with the basis (x,,), of X,i.e. Q(u}Xm = 8n,m. Then foreach k € N, QxyTxx = Aixy
for some A, € R. Choose an accumulation point A of (Ax)x and by Lemma 8.8 it easily
follows that T — A1 is strictly singular.

Remark 8.10 The reason the above result cannot be stated for every closed subspace of
X7, is that in the definition of the norming set W7 it is not allowed to take «-averages
of convex combinations of elements of W7 . We note that the construction presented
in this paper can also be used to obtain a space %g defined over the field of complex
numbers. In that case, as it was proved in [15, Theorem 18], every subspace of Z{g-
satisfies the scalar plus strictly singular property. Therefore, compared to Theorem
8.11 which is stated for block subspaces of X7, every closed subspace of %g satisfied
the invariant subspace property.

Theorem 8.11 Let X be a block subspace of X7 and T : X — X be a non-scalar
bounded linear operator. Then T admits a non-trivial closed hyperinvariant subspace.

Proof By Theorem 8.9 there is a A € R so that the operator S = T — A[ is strictly
singular. Note that § # 0, otherwise T would be a scalar operator. Corollary 8.5 yields
that S admits a non-trivial closed hyperinvariant subspace Y. It is straightforward to
check that Y is a hyperinvariant subspace for 7. O

We note that the following property of the strictly singular operators on X4, was
also proved for an HI space which appeared in [2].

Theorem 8.12 Let X be a closed subspace of Xy and T : X — Xy be a bounded
linear operator. The following assertions are equivalent.

(1) The operator T is strictly singular.
(i1) The operator T is weakly compact.

Proof The implication (ii)=>(i) immediately follows from Theorem 6.12. Assume
now that 7 is strictly singular and not weakly compact, which implies that there is
a sequence (xg)x in X so that both (xx)x and (T xg)y are non-trivial weakly Cauchy.
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By Lemma 7.5 we may assume that (x;); generates the summing basis of ¢ as a
spreading model. Recall that the norm of the summing basis is the minimum condi-
tional spreading norm and thus, we may assume that (7 xj); generates the summing
basis of ¢( as a spreading model as well. We conclude that if y; = x2r—1 — xp¢ for
all k, then both (yx)x and (T yx )i generate the unit vector basis of ¢y spreading model.
Proposition 8.3 yields a contradiction. O

Remark 8.13 A proof identical to the one of [8, Proposition 5.23] yields that every
infinite dimensional closed subspace X of X7 admits non-compact strictly singular
operators, in fact all such operators define a non-separable subset of £(X).
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