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Abstract A new method of defining hereditarily indecomposable Banach spaces is
presented. This method provides a unified approach for constructing reflexive HI
spaces and also HI spaces with no reflexive subspace. All the spaces presented here
satisfy the property that the composition of any two strictly singular operators is a
compact one. This yields the first known example of a Banach space with no reflexive
subspace such that every operator has a non-trivial closed invariant subspace.

Keywords Spreading models · Strictly singular operators · Invariant subspaces ·
Hereditarily indecomposable spaces
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1 Introduction

Defining a hereditarily indecomposable (HI) Banach space is not an easy task. It
requires the definition of a subset W of c00(N) (the space of real sequences which are
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eventually zero), which in turn, acting as a set of functionals on c00(N), defines an
HI norm. In all classical constructions the resulting space admits the unit vector basis
of c00(N) as a boundedly complete Schauder basis. This appears to be an inevitable
consequence of the saturation of the set W under certain operations which yield, for
every n in N, a lower bound Cn of ‖∑n

k=1 xk‖, for every sequence of successive
normalized block vectors (xk)nk=1, and limn Cn = ∞.

There are two known types of HI spaces whose basis is not boundedly complete.
The first one concerns the L∞ HI space XK which appeared in [6] and is the result of
mixing theBourgain-Delbaenmethod [12] of constructingL∞-spaces and theGowers-
Maurey corresponding one [15] of constructing HI spaces. The basis of the space is
shrinking but not boundedly complete. However, this is a consequence of theL∞ struc-
ture and not of the HI property of the space. In particular, every block sequence in the
space has a boundedly complete subsequence, hence the space is reflexively saturated.

The second type concerns HI spaces with no reflexive subspace. All such spaces
whose norm is induced by a norming set W have a boundedly complete Schauder
basis. This class includes spaces such as the Gowers Tree space [14] and the spaces
which appeared in [2]. The predual of one of the spaces presented in [2] is also an HI
space without reflexive subspaces. This space admits a shrinking basis and none of its
subspaces admits a boundedly complete basis. This predual is essentially different to a
space which is induced by a saturated norming setW . The latter, as we have explained,
always yields spaces with a boundedly complete basis.

The preceding discussion leads to the following question. Does there exist a method
of defining a norming setW such that the resulting space admits a shrinking Schauder
basis and no subspace admits a boundedly complete one? This problem is directly
related to the problem of the existence of a L∞-space which is HI and has no reflexive
subspace. Indeed, any HIL∞-space must have separable dual [19,22] and if moreover
it does not contain reflexive subspaces, then it does not contain a boundedly complete
basic sequence. More generally, every Banach space with a boundedly complete basis
and separable dual is reflexively saturated [18].

The aim of the present paper is to answer the first problem by providing a new
method of defining a norming set W , which yields an HI space with a shrinking basis
with no boundedly complete basic sequence. We perceive this method as the dual
method of the classical one. This new approach allows us to affirmatively answer the
second problem. Namely, there exists a L∞ HI space with no reflexive subspace. This
result will appear in a forthcoming paper. Our goal is to use a more classical setting in
order to present the definition of the norming set and its consequences, some of which
are rather unexpected.

The definition of the norming set W uses an unconditional frame, namely the
Tsirelson-like space with constraints T (1/2n,Sn, α)n . Norms which are saturated
under constraints were introduced in [3] and [8] and are rooted in the earlier work of
Odell and Schlumprecht [20,21]. The norm of T (1/2n,Sn, α)n is described by the
following implicit formula: if x ∈ c00(N) then

‖x‖ = max

⎧
⎨

⎩
‖x‖∞, sup

1

2n

d∑

q=1

‖Eqx‖mq

⎫
⎬

⎭
(1)
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where the supremum is taken over all n ∈ N, Sn-admissible successive
subsets (Eq)

d
q=1 of N and sequences (mq)

d
q=1 of N so that mq > 2max Eq−1 for

q = 2, . . . , d. The m-norms appearing in (1) are defined as follows. For m ∈ N

and x ∈ c00(N):

‖x‖m = 1

m
sup

m∑

i=1

‖Gi x‖

where the supremum is taken over all successive subsets (Gi )
m
i=1 of N.

The ‖ · ‖m norms, m ∈ N, which appear in the definition above, do not contribute
to the norm of the element x , in fact they act as constraints. This results in the neu-
tralization of the operations (1/2n,Sn) on certain sequences and thus, c0 spreading
models become abundant. As a consequence, every Schauder basic sequence in the
space admits either an �1 or a c0 spreading model and both of them are admitted by
every infinite dimensional subspace. This norm and its variants have been recently
established as an effective tool for answering certain problems on the structure of
Banach spaces and their spaces of operators [3,8,9,11].

The norm on T (1/2n,Sn, α)n is induced by the norming set Wα which is the
minimal subset of c00(N) containing the basis (e∗

i )i , all α-averages of its elements,
i.e. averages of successive elements of Wα , and it is closed under the operations
(1/2n,Sn, α) for every n ∈ N. The latter means that for every very fast growing
family (αq)

d
q=1 of successive α-averages, which is Sn-admissible, the functional f =

(1/2n)
∑d

q=1 αq is in Wα . Any such f is called a weighted functional with w( f ) =
n. Hence, the set Wα includes the elements of the basis, α-averages and weighted
functionals.

The norming setW will be chosen to be a subset ofWα and its definition is based on
a tree U , called the universal tree. This tree consists of finite sequences {( fk, xk)}dk=1,
where ( fk)dk=1 is a sequence of successive non-zero weighted functionals in Wα ,
(xk)dk=1 is a sequence of successive non-zero vectors in c00(N) with rational coeffi-
cients and for each 1 < m � d the weight of fm is uniquely defined by the sequence
{( fk, xk)}m−1

k=1 .
We will consider a class of subtrees T of the universal tree U . Each tree T in

this class is either well founded and satisfies certain additional properties or T = U .
For such a tree T we define the norming set WT . It is worth pointing out that for a
well founded tree T the space XT , induced by the set WT , is a reflexive HI space,
while for T = U the space XU admits a shrinking basis and does not contain a
reflexive subspace. It is also interesting, and rather unexpected, that the reflexive and
non-reflexive cases have a unified approach, as it is presented in the rest of the paper.
Note that the Gowers Tree type HI spaces with no reflexive subspace [2,14] have
substantially increased complexity, concerning their definition as well as their proofs,
compared to the corresponding reflexive HI spaces.

For a subtree T of the universal tree U , as above, we define the norm of the space
XT , which is very similar to the norm of the space T (1/2n,Sn, α)n . Namely, the norm
of XT is described by the implicit formula (1), the difference lying in the definition
of ‖ · ‖m norms, where

Author's personal copy



628 S. A. Argyros, P. Motakis

‖x‖m = sup

{
1

m

m∑

i=1

gi (x) : 1

m

m∑

i=1

gi is an αc-average

}

and αc-averages are α-averages which are inductively defined. In other words, to
define the norm of XT we impose some further restrictions on the α-averages used
as constraints. Alternatively, the norming set WT is the minimal subset of c00(N)

containing the basis, the αc-averages and all f = (1/2n)
∑d

q=1 αq where (αq)
d
q=1 is

a very fast growing and Sn-admissible family of αc-averages.
Let us observe that in the definition ofWT the conditional structure,which yields the

HI property of the spaceXT , is contained in theαc-averages. The spaceXT satisfies the
following property. If T is a well founded subtree of U , for every block sequence with
rational coefficients (yi )i in XT there exist a further finite block sequence (xk)dk=1,
with 1/2 < ‖xk‖ � 10, and ( fk)dk=1 in WT , such that {( fk, xk)}dk=1 is a maximal

element of T and ‖∑d
k=1 xk‖ � 27. If T = U , the corresponding result holds in the

space XU for a branch {( fk, xk)}∞k=1 of U such that ‖∑d
k=1 xk‖ < 27, for all d ∈ N.

Below we summarize the properties of the space XT , in the case the tree T is well
founded.

Theorem A If T is well founded, then the spaceXT satisfies the following properties.

(i) The space XT has a bimonotone Schauder basis, and it is hereditarily indecom-
posable and reflexive.

(ii) Every Schauder basic sequence in XT admits either �1 or c0 as a spreading
model and every infinite dimensional subspace of XT admits both of these types
of spreading models.

(iii) For every block subspace X of XT and every bounded linear operator T : X →
X, there is λ ∈ R so that T − λI is strictly singular.

(iv) For every infinite dimensional subspace X ofXT the ideal of the strictly singular
operators S(X) is non separable.

(v) For every subspace X of XT and every strictly singular operators S, T on X,
the composition T S is compact.

(vi) For every block subspace X of XT , every non-scalar bounded linear operator
T : X → X admits a non-trivial closed hyperinvariant subspace.

The above should be compared to the main theorem from [8], where a space with
very similar properties is presented. The key difference between the aforementioned
case and the present one is in property (v), namely in [8] it is only proved for com-
positions of three strictly singular operators, and not two. In [8] special weighted
functionals are used, which impose the necessity to include β-averages in the defini-
tion of the norming set. The absence of these two notions in the present construction
yields property (v), which is the best possible, as well as simplified proofs, compared
to those in [8].

Below we present the main properties of the space XU .

Theorem B If T = U , then the space XU satisfies the following properties.

(i) The space XU has a bimonotone and shrinking Schauder basis, it is hereditarily
indecomposable and contains no reflexive subspace.

Author's personal copy
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(ii) Every Schauder basic sequence in XU admits either �1, c0 or the summing basis
of c0 as a spreadingmodel, and every infinite dimensional subspace ofXU admits
all three of these types of spreading models.

(iii) For every block subspace X of XU and every bounded linear operator T : X →
X, there is λ ∈ R so that T − λI is weakly compact and hence strictly singular.

(iv) For every infinite dimensional subspace X ofXU the ideal of the strictly singular
operators S(X) is non separable.

(v) For every subspace X ofXU and every strictly singular operators S, T on X, the
composition T S is compact.

(vi) For every block subspace X of XU , every non-scalar bounded linear operator
T : X → X admits a non-trivial closed hyperinvariant subspace.

This is the first known example of a Banach space with no reflexive subspace
such that the space generated by every block sequence satisfies the invariant subspace
property.

In Theorems A and B property (vi) can be stated for every subspace X of the cor-
responding space, such that every T in L(X) is of the form λI + S, with S strictly
singular. The present construction can also be carried out over the field of complex
numbers. The corresponding complex HI spaces satisfy Theorems A and B, in partic-
ular property (vi) holds for every closed subspace [15, Theorem 18].

2 The norming set of the spaceXT

This section is devoted to the norming set WT of the space. We begin with a brief
presentation and discussion concerning the main ingredients involved in the definition
of WT . As we have mentioned in the introduction we will consider subtrees of the
universal tree U . Each such tree T is downwards closed and for every node which is
non-maximal in T , all of its immediate successors in U are also included in T . For
our needs the tree is either well founded, containing at least all elements {( fk, xk)}dk=1
of U such that ( fk)dk=1 is S2-admissible, or otherwise T = U .

The second ingredient are the αc-averages which are inductively defined and are
described as follows.

To each weight n we assign a unique weight φ(n) that appears in the tree T . Two
different weights n and m are comparable, if there exist {( f1, x1), . . . , ( fk, xk)} in T
and 1 � i < j � k such φ(n) = w( fi ) and φ(m) = w( f j ). Otherwise n, m are
incomparable.

We consider the following four types of averages. The first one are averages of the
basis (e∗

i )i , called basic averages.
The second one are IC-averages, i.e. α-averages of the form (1/n)

∑n
i=1 gi with{w(gi )}ni=1 pairwise incomparable.

The third one are IR-averages, i.e. α-averages of the form (1/n)
∑n

i=1 gi such
that there exist {( f1, x1), . . . , ( fm, xm)} in T and 1 � k1 < · · · < kn � m with
w( fki ) = φ(w(gi )) and |gi (xki )| > 10.

The last type are the conditional averages, called CO-averages. Those are α-
averages of the form (1/n)(g1−g2+g3−g4+· · ·+ (−1)n+1gn) such that there exist
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630 S. A. Argyros, P. Motakis

{( f1, x1), . . . , ( fm, xm)} in T and 1 � k1 < · · · < kn � n with w( fki ) = φ(w(gi ))
and |gi (xki ) − g j (xk j )| < 1/2i for 1 � i < j � n.

The third and fourth types of averages explain why we consider in the universal tree
U families of pairs {( fk, xk)}dk=1, instead of ( fk)dk=1 which is the approach used in the
classical norming sets.We note that the basic averages permit to begin the construction
of weighted functionals in the norming set WT . The CO-averages are responsible for
the whole conditional structure in the spaceXT . The remaining two types of averages
are necessary to exclude the presence of c0 in the space.

2.1 The Schreier families

The Schreier families is an increasing sequence of families of finite subsets of the
natural numbers, which first appeared in [1], and is inductively defined in the following
manner. Set

S0 = {{n} : n ∈ N
}

and S1 = {F ⊂ N : #F � min F}.

Suppose that Sn has been defined and set

Sn+1 =
{
F ⊂ N : F = ∪k

j=1Fj , where F1 < · · · < Fk ∈ Sn

and k � min F1
}

.

For each n, Sn is a regular family. This means that it is hereditary, i.e. if F ∈ Sn

and G ⊂ F then G ∈ Sn , it is spreading, i.e. if F = {i1 < · · · < id} ∈ Sn and
G = { j1 < · · · < jd} with i p � jp for p = 1, . . . , d, then G ∈ Sn and finally it is
compact, if seen as a subset of {0, 1}N.

If for n,m ∈ N we set

Sn ∗ Sm =
{
F ⊂ N : F = ∪k

j=1Fj , where F1 < · · · < Fk ∈ Sm

and {min Fj : j = 1, . . . , k} ∈ Sn

}
,

then it is well known [4] and follows easily by induction that Sn ∗ Sm = Sn+m .

2.2 The unconditional frame

The norming set of the spaceXT is a subset ofW(1/2n ,Sn ,α)n , a version of the norming
set of Tsirelson space, defined with saturation under constraints.

We denote by c00(N) the space of all real valued sequences (ci )i with finitely many
non-zero terms. We denote by (ei )i the unit vector basis of c00(N), while in some
cases we shall denote it as (e∗

i )i . For x = (ci )i ∈ c00(N), the support of x is the set
supp x = {i ∈ N : ci 	= 0} and the range of x , denoted by ran x , is the smallest
interval of N containing supp x . We say that the vectors x1, . . . , xk in c00(N) are
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A dual method of constructing HI spaces... 631

successive if max supp xi < min supp xi+1 for i = 1, . . . , k − 1. In this case we write
x1 < · · · < xk . A sequence of successive vectors in c00(N) is called a block sequence.

Notation We remind some notation and terminology which is used constantly
throughout this paper.

(i) A sequence of vectors x1 < · · · < xk in c00(N) is said to be Sn-admissible, for
given n ∈ N, if {min supp xi : i = 1, . . . , k} ∈ Sn .

(ii) Let G ⊂ c00(N). A vector α0 ∈ c00(N) is called an α-average of G of size
s(α0) = n, if there exist f1 < · · · < fd ∈ G, where d � n, such that

α0 = 1

n
( f1 + · · · + fd).

(iii) A sequence of successive α-averages of G (αq)q is called very fast growing if
s(αq) > 2max suppαq−1 for q > 1.

Definition 2.1 We define Wα = W(1/2n ,Sn ,α)n to be the smallest subset of c00(N)

satisfying the following properties:

(i) for every i ∈ N, e∗
i ∈ Wα and the set Wα is symmetric,

(ii) the set Wα contains all α-averages of Wα ,
(iii) for every n ∈ N and every very fast growing and Sn-admissible sequence of

α-averages of Wα (αq)
d
q=1, the vector f = (1/2n)

∑d
q=1 αq is also in Wα .

We note that, as it is usually the case in this type of constructions, the size of
an average and the weight of a weighted functional may not be uniquely defined.
However, this does not cause any problems.

Remark 2.2 The setWα satisfies the properties mentioned below. Note that properties
(i), (ii) and (iii) follow readily from property (iv).

(i) Every f ∈ Wα is either of the form f = ±e∗
i , either an α-average of Wα or

f = (1/2n)
∑d

q=1 αq , where (αq)
d
q=1 is a very fast growing and Sn-admissible

sequence of α-averages of Wα . In the last case we shall say that f is a weighted
functional of Wα of weight w( f ) = n.

(ii) For every f ∈ Wα and subset of the natural numbers E , the functional E f , i.e.
the restriction of f onto E , is also in Wα .

(iii) The coefficients of every f ∈ Wα are rational numbers. In particular, Wα is a
countable set.

(iv) The set Wα can be constructed recursively to be the union of an increasing
sequence of sets (Wα

m)∞m=0, where Wα
0 = {±e∗

i : i ∈ N} and if Wα
m has been

defined, then W 1
m+1 is the set of all α-averages of Wα

m , W
2
m+1 is the set of all

weighted functionals constructed on very fast growing sequences of elements of
W 1

m+1 and Wα
m+1 = Wα

m ∪ W 1
m+1 ∪ W 2

m+1.

2.3 The universal tree U

We denote by Q the set of all finite sequences {( f1, x1), . . . , ( fk, xk)} satisfying the
following:
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632 S. A. Argyros, P. Motakis

(i) the f1, . . . , fk are successive non-zero weighted functionals of Wα and
(ii) the x1, . . . , xk are successive non-zero vectors in c00(N, Q) (i.e. they are vectors

in c00(N) with rational coefficients).

Note that Q is a subset of ∪n(Wα × c00(N, Q))n and hence countable.
Choose an infinite subset L ′ = {�k : k ∈ N} of N satisfying:

(i) min L ′ � 8 and
(ii) for every k ∈ N, �k+1 > 22�k .

Define a partition of L ′ into two infinite subsets L0 and L ′
1 and choose a one-

to-one function σ : Q → L ′
1, called the coding function, so that for every

{( f1, x1), . . . , ( fk, xk)} ∈ Q,

σ ({( f1, x1), . . . , ( fk, xk)}) > ‖ fk‖−1∞ max supp xk . (2)

A finite sequence {( fk, xk)}dk=1 ∈ Q is called a special sequence if:

(i) w( f1) ∈ L0 and
(ii) if d � 2 then w( fk) = σ ({( f1, x1), . . . , ( fk−1, xk−1)}) for k = 2, . . . , d.

Remark 2.3 Note that if {( fk, xk)}dk=1 is a special sequence, then (2) and (ii) imply
that w( f1) < · · · < w( fd).

Note that if {( fk, xk)}dk=1 is a special sequence and 1 � p � d, then {( fk, xk)}pk=1
is a special sequence as well, hence if we defineU to be the set of all special sequences,
then U is a tree endowed with the natural ordering “�” of initial segments. Note that
the tree U is ill founded, more precisely every maximal chain of U is infinite. We shall
call the tree U , the universal tree associated with the coding function σ .

2.4 Subtrees of U

We fix a subtree T of U which satisfies the following properties:

(i) for every {( fk, xk)}dk=1 in T and 1 � p � d {( fk, xk)}pk=1 is also in T , i.e. T is
a downwards closed subtree of U ,

(ii) if {( fk, xk)}dk=1 is a non-maximal node in T , then for every element ( fd+1, xd+1)

so that {( fk, xk)}d+1
k=1 is in U , {( fk, xk)}d+1

k=1 is also in T and
(iii) for every {( fk, xk)}dk=1 in U with ( fk)dk=1 being S2-admissible, we have that

{( fk, xk)}dk=1 is in T .

Definition 2.4 We define L1 = σ(T ), which is a subset of L ′
1, and L = L0 ∪ L1.

Define φ : {i ∈ N : i � min L} → L with φ(i) = max{� ∈ L : � � i}.
Observe that the function φ is non-decreasing, φ(i) � i for all i ∈ N and

limi φ(i) = ∞.

Definition 2.5 Two natural numbers i and j , both greater than or equal to min L , are
called incomparable if one of the following holds:
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A dual method of constructing HI spaces... 633

(i) φ(i) and φ( j) are both in L0 and φ(i) 	= φ( j) or
(ii) φ(i) and φ( j) are both in L1 and σ−1(φ(i)), σ−1(φ( j)) are incomparable, in the

ordering of T .

If i , j are not incomparable they will be called comparable.

2.5 αc-averages

We shall define very specific types of averages, based on the tree T and the notion of
comparability of natural numbers fromDefinition 2.5. Alongside averages of elements
of the basis (e∗

i )i , in the definition of the norming setWT we shall only consider these
types of averages.

Definition 2.6 Let g1 < · · · < gd be weighted functionals in a subset G of Wα , all
of which have weight greater than or equal to min L , satisfying φ(w(g1)) < · · · <

φ(w(gd)).

(i) The sequence (gi )di=1 is called incomparable, if the natural numbers w(gi ), i =
1, . . . , d are pairwise incomparable, in the sense of Definition 2.5. In this case,
if n ∈ N with d � n we call the average

α0 = 1

n

d∑

i=1

gi

an IC-average of G.
(ii) The sequence (gi )di=1 is called comparable, if there exist m ∈ N with d � m,

{( f1, x1), . . . , ( fm, xm)} ∈ T and 1 � k1 < · · · < kd � m so that the following
are satisfied:

(a) w( fki ) = φ(w(gi )),
(b) if d � 3 then |gi (xki )| � 10 for i = 2, . . . , d − 1 and
(c) if d � 4 then |gi (xki ) − g j (xk j )| < 1/2i for 2 � i < j � d − 1.
In this case, if n ∈ N with d � n and (εi )

d
i=1 is a sequence of alternating signs

in {−1, 1} we call the average

α0 = 1

n

d∑

i=1

εi gi

a CO-average of G.
(iii) The sequence (gi )di=1 is called irrelevant, if there exist m ∈ N with d � m,

{( f1, x1), . . . , ( fm, xm)} ∈ T and 1 � k1 < · · · < kd � m so that the following
are satisfied:

(a) w( fki ) = φ(w(gi )) and
(b) if d � 3 then |gi (xki )| > 10 for i = 2, . . . , d − 1.
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In this case, if n ∈ N with d � n we call the average

α0 = 1

n

d∑

i=1

gi

an IR-average of G.

Any average which is of one of the forms defined above, shall be called an αc-average
of G. Basic averages will be referred to as αc-averages as well, where a basic average
is a functional of the form α0 = (1/n)

∑d
i=1 εi e∗

ji
where d, n, j1 < · · · < jd ∈ N

with d � n and (εi )
d
i=1 are any signs in {−1, 1}.

Remark 2.7 The class of αc-averages, is a much more restricted version of the one
of α-averages and, with the exception of basic averages, αc-averages are determined
using the coding function σ , more precisely the tree T .

Remark 2.8 If (gi )di=1 is a sequence inWα which is of one of the three types described
in Definition 2.6, then any subsequence of it is of the same type. Moreover, if E is an
interval of N and i1 = min{i : E ∩ ran gi 	= ∅} and i2 = max{i : E ∩ ran gi 	= ∅},
then the sequence Egi1, Egii+1, . . . , Egi2 is of the same type as (gi )di=1. This last part
in particular implies that whenever α0 is an average which is of one of the three types
described in Definition 2.6 and E is an interval of N, then Eα0 is an average of the
same type.

2.6 The norming set WT of the space XT

Definition 2.9 We define WT to be the smallest subset of Wα which satisfies the
following properties.

(i) For every i ∈ N, e∗
i ∈ WT and the set WT is symmetric.

(ii) The set WT contains all αc-averages of WT , i.e. it contains all basic averages
and all IC, COand IR-averages of WT .

(iii) For every n ∈ N and every Sn-admissible and very fast growing sequence of
αc-averages (αq)

d
q=1 of WT , f = (1/2n)

∑d
q=1 αq is also in WT .

Remark 2.10 The setWT satisfies the properties mentioned below. Note that property
(ii) follows from an inductive argument using Remark 2.8 and property (iii).

(i) Every f ∈ WT is either of the form f = ±e∗
i , either an αc-average of WT or a

weighted functional f = (1/2n)
∑d

q=1 αq , where (αq)
d
q=1 is a very fast growing

and Sn-admissible sequence of αc-averages of WT .
(ii) For every f ∈ WT and interval of the natural numbers E , the functional E f , i.e.

the restriction of f onto E , is also in WT .
(iii) The set WT can be recursively constructed to be the union of an increasing

sequence of sets (Wm)∞m=0, where W0 = {±e∗
i : i ∈ N} and if Wm has been

defined, then Wαc
m+1 is the set of all αc-averages of Wm , Ww

m+1 is the set of all
weighted functionals constructed on very fast growing sequences of elements of
Wαc

m+1, and Wm+1 = Wm ∪ Wαc
m+1 ∪ Ww

m+1.
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The normof the spaceXT is the one induced by the setWT , i.e. for every x ∈ c00(N)

we set ‖x‖ = sup{ f (x) : f ∈ WT } and we defineXT to be the completion of c00(N)

with respect to this norm. By Remark 2.10 the unit vector basis of c00(N) forms a
bimonotone Schauder basis for XT .

Remark 2.11 The conditional structure of the space XT is only imposed by the
CO-averages in the norming set WT , which are merely averages. In this sense, the
conditionality appearing in the space XT is not as strict as in other HI constructions.

3 Special convex combinations and evaluation of their norm

We first recall the notion of the (n, ε) special convex combinations, (see [4,5,10])
which is one of the main tools used in the sequel. We then include, without proof,
some estimates from [8], which also apply to the present case.

Definition 3.1 Let x = ∑
k∈F ckek be a vector in c00(N) and n ∈ N, ε > 0. Then

x is called a (n, ε)-basic special convex combination (or a (n, ε)-basic s.c.c.) if the
following are satisfied:

(i) F ∈ Sn , ck � 0 for k ∈ F and
∑

k∈F ck = 1,
(ii) for any G ⊂ F , with G ∈ Sn−1, we have that

∑
k∈G ck < ε.

Remark 3.2 We note for later use the following easy fact. If x = ∑
i∈F ci ei is a (n, ε)-

basic s.c.c.with 0 < ε < 1/2 and for i ∈ F\{min F}we set c′
i = ci/(

∑
j∈F\{min F} c j )

then y = ∑
i∈F\{min F} c′

i ei is a (n, 2ε)-basic s.c.c.

The next result is from [7]. For a proof see [10, Chapter 2, Proposition 2.3].

Proposition 3.3 For every infinite subset of the natural numbers M, any n ∈ N and
ε > 0, there exist F ⊂ M and non-negative real numbers (ck)k∈F , such that the vector
x = ∑

k∈F ckek is a (n, ε)-basic s.c.c.

Definition 3.4 Let x1 < · · · < xm be vectors in c00(N) and ψ(k) = min supp xk , for
k = 1, . . . ,m. If the vector

∑m
k=1 ckeψ(k) is a (n, ε)-basic s.c.c., for some n ∈ N and

ε > 0, then the vector x = ∑m
k=1 ckxk is called a (n, ε)-special convex combination

(or (n, ε)-s.c.c.).

By T we denote Tsirelson space and by ‖ · ‖T its norm, as they were defined in
[13]. This space is actually the dual of Tsirelson’s original Banach space defined in
[25]. The proof of the following result can be found in [8, Proposition 2.5].

Proposition 3.5 Let n ∈ N, ε > 0, x = ∑
k∈F ckek be a (n, ε)-basic s.c.c. and

G ⊂ F. Then ∥
∥
∥
∥
∥

∑

k∈G
ckek

∥
∥
∥
∥
∥
T

� 1

2n
∑

k∈G
ck + ε.

The next result can also be found in [8, Corollary 2.8]. A number of steps are
required in order to reach this estimate, however the arguments used there also work
in the present case unchanged and therefore we omit the proof.
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Proposition 3.6 Let (xk)k be a block sequence in XT with ‖xk‖ � 1 for all k ∈ N,
(ck)k be a sequence of real numbers and φ(k) = max supp xk for all k. Then

∥
∥
∥
∥
∥

∑

k

ck xk

∥
∥
∥
∥
∥

� 6

∥
∥
∥
∥
∥

∑

k

ckeφ(k)

∥
∥
∥
∥
∥
T

.

The next crucial estimate follows from Propositions 3.5 and 3.6. A proof can be
found in [8, Corollary 2.9].

Corollary 3.7 Let n ∈ N, ε > 0 and x = ∑m
k=1 ckxk be a (n, ε)-s.c.c. in XT , such

that ‖xk‖ � 1, for k = 1, . . . ,m. If F is subset of {1, . . . ,m} then
∥
∥
∥
∥
∥

∑

k∈F
ckxk

∥
∥
∥
∥
∥

� 6

2n
∑

k∈F
ck + 12ε.

In particular, ‖x‖ � 6/2n + 12ε.

Using Propositions 3.3 and 3.7 one can easily derive the next result. For a proof see
[8, Corollary 2.10].

Proposition 3.8 The basis of XT is shrinking. In particular, the dual of XT is sepa-
rable.

We now give some definitions which will be crucial in the next sections, where
we prove the properties of the space XT . Rapidly increasing sequences are defined
exactly as in [8, Definition 2.13].

Definition 3.9 Let C � 1 and (nk)k be a strictly increasing sequence of natural
numbers. A block sequence (xk)k is called a (C, (nk)k)-rapidly increasing sequence
(or (C, (nk)k)-RIS) if ‖xk‖ � C for all k and the following hold:

(i) for every k and every weighted functional f in WT with w( f ) = j < nk , we
have | f (xk)| < C/2 j and

(ii) for every k, 1/2nk+1 max supp xk < 1/2nk .

The notion of a (C, θ, n)-vector and a (C, θ, n)-exact vector is defined identically
as in [8, Definition 2.15].

Definition 3.10 Let n ∈ N, C � 1 and θ > 0. A vector x ∈ XT is called a (C, θ, n)-
vector if there exist 0 < ε < 1/(36C23n) and a block sequence (xk)mk=1 with ‖xk‖ � C
for k = 1, . . . ,m such that:

(i) min supp x1 � 8C22n ,
(ii) there exist non-negative real numbers (ck)mk=1 so that the vector

∑m
k=1 ckxk is a

(n, ε)-s.c.c.,
(iii) x = 2n

∑m
k=1 ckxk and ‖x‖ � θ .

If moreover there exists a strictly increasing sequence of natural numbers (nk)mk=1
with n1 > 22n so that (xk)mk=1 is a (C, (nk)mk=1)-RIS, then x is called a (C, θ, n)-exact
vector.
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Remark 3.11 Let x be a (C, θ, n)-vector inXT . Then, usingCorollary 3.7we conclude
that ‖x‖ < 7C .

Remark 3.12 Let x be a (C, θ, n)-vector in XT . By the choice of ε and ‖xk‖ � C for
k = 1, . . . ,m, we obtain ‖x‖∞ < 1/(22n36).

4 The α-index

In all recent constructions involving saturation under constraints [3,8,9,11], the α-
index has been used to help determine the spreading models admitted by block
sequences. In contrast to the HI constructions [8] and [9], where the α-index is not
sufficient to fully characterize the spreading models of block sequences, the present
case resembles more closely the unconditional example from [3], where the α-index
is the only necessary tool to study spreading models admitted by the space. This is due
to the fact that α-averages, more precisely αc-averages, are the only ingredient used
to construct weighted functionals. The definition of the α-index of a block sequence
given below is identical to the one from [8] and [9].

Definition 4.1 Let (xk)k be a block sequence in XT that satisfies the following: for
every n ∈ N, for every very fast growing sequence of αc-averages of WT (αq)q , for
every increasing sequence of subsets of the natural numbers (Fm)m , such that (αq)q∈Fm
is Sn-admissible for all m ∈ N and for every subsequence (xkm )m of (xk)k , we have
that

lim
k

∑

q∈Fm
|αq(xkm )| = 0.

Then we say that the α-index of (xk)k is zero and write α((xk)k) = 0. Otherwise we
write α((xk)k) > 0.

The next characterization, of when a block sequence has α-index zero, and its proof
can be found in [8, Proposition 3.3]. Although here it is formulated slightly differently,
the two versions are easily seen to be equivalent.

Proposition 4.2 Let (xk)k be a block sequence in XT . The following assertions are
equivalent.

(i) The α-index of (xk)k is zero.
(ii) For every ε > 0 there exists j ∈ N such that for every n ∈ N there exists kn ∈ N

such that for every k � kn and for every very fast growing and Sn-admissible
sequence of αc-averages (αq)

d
q=1, with s(αq) � j for q = 1, . . . , d, we have that

∑d
q=1 |αq(xk)| < ε.

The next result is proved in [8, Proposition 3.5].

Proposition 4.3 Let (xk)k be a seminormalized block sequence inXT withα((xk)k) >

0. Then there exist θ > 0 and a subsequence (xkm )m of (xk)k that generates an �n1
spreading model with a lower constant θ/2n, for all n ∈ N. More precisely, for every
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n ∈ N, subset of the natural numbers F, so that (xkm )m∈F is Sn-admissible, and real
numbers (cm)m∈F we have that

∥
∥
∥
∥
∥

∑

m∈F
cmxkm

∥
∥
∥
∥
∥

� θ

2n
∑

m∈F
|cm |.

In particular, for all k0, n ∈ N, there exists a finite subset of the natural numbers
F with min F � k0 and non-negative real numbers (cm)m∈F , such that the vector
x = 2n

∑
m∈F cmxkm is a (C, θ, n)-vector, where C = sup{‖xk‖ : k ∈ N}.

We now prove that block sequences with α-index zero admit only c0 as a spreading
model and that Schreier sums of them define rapidly increasing sequences.

Proposition 4.4 Let (xk)k be a normalized block sequence in XT with α((xk)k) =
0. Then (xk)k has a subsequence, which we also denote by (xk)k , that generates a
spreading model which is isometric to the unit vector basis of c0. Moreover, there
exists a strictly increasing sequence of natural numbers ( jk)k so that for every natural
numbers n � k1 < · · · < kn, real numbers (ci )ni=1 and weighted functional f of WT
with w( f ) = j < jn, we have

∣
∣
∣
∣
∣
f

(
n∑

i=1

ci xki

)∣
∣
∣
∣
∣
<

9/8

2 j
max
1�i�n

|ci |.

Proof Using Proposition 4.2, we pass to a subsequence of (xk)k , again denoted by
(xk)k , and choose a strictly increasing sequence of natural numbers so that the follow-
ing are satisfied:

(i) for every k ∈ N, 1/2 jk+1 max supp xk < 1/2k and
(ii) for every k0, k ∈ N with k � k0 and every very fast growing and S jk0

-admissible
sequence of αc-averages (αq)

n
q=1 with s(αq) � max supp xk0 we have

d∑

q=1

|αq(xk)| < 1/(k02
k0).

We claim that (xk)k generates a spreading model isometric to c0. Using the third
assertion of Remark 2.10 we shall inductively prove the following: for every f ∈ Wm ,
natural numbers n � k1 < · · · < kn and real numbers c1, . . . , cn in [−1, 1] we have

∣
∣
∣
∣
∣
f

(
n∑

i=1

ci xki

)∣
∣
∣
∣
∣
< 1 + 3

2n
. (3)

If moreover f is a weighted functional with w( f ) = j < jn , then
∣
∣
∣
∣
∣
f

(
n∑

i=1

ci xki

)∣
∣
∣
∣
∣
<

1 + 4/2n

2 j
. (4)
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The desired conclusion clearly follows from the above and the fact that the basis of
XT is bimonotone, omitting if necessary a finite number of terms of the sequence
(xk)k .

We now proceed to the proof of the inductive step. The casem = 0 is an immediate
consequence of the fact that the sequence (xk)k is normalized and W0 = {±e∗

i : i ∈
N}. Assume now that m is such that the conclusion holds for every functional in Wm

and let f ∈ Wm+1. If f is an αc-average of Wm , then by the inductive assumption we
conclude that (3) holds. Otherwise, f is aweighted functional ofweightw( f ) = j , i.e.
there is a very fast growing and S j admissible sequence of αc-averages ofWm (αq)

d
q=1

so that f = (1/2) j
∑d

q=1 αq . Assuming that f
(∑n

i=1 ci xki
) 	= 0, set q0 = min{q :

max suppαq � min supp xk1}. Omitting, if it is necessary, the first q0 − 1 averages,
we may assume that q0 = 1. the We distinguish three cases concerning weight of f .

Case 1: j < jk1 . Since the sequence (αq)
d
q=1 is very fast growing, for q > 1 we

have s(αq) > max suppα1 � min supp xk1 . Also, since (αq)
d
q=2 is S j admissible with

j < jk1 , by (ii) we conclude:

d∑

q=2

∣
∣
∣
∣
∣
αq

(
n∑

i=1

ci xki

)∣
∣
∣
∣
∣
< n

1

k12k1
� 1

2n
. (5)

Moreover, by the inductive assumption we obtain
∣
∣α1

(∑n
i=1 ci xki

)∣
∣ < 1 + 3/2n .

Combining this with (5):
∣
∣
∣
∣
∣
f

(
n∑

i=1

ci xki

)∣
∣
∣
∣
∣
<

1 + 4/2n

2 j
. (6)

This concludes the proof of the first case and also (4) of the inductive assumption.

Case 2: there is 1 � i0 < n so that jki0 � j < jki0+1 . Arguing in an identical manner
as in the previous case, we obtain

∣
∣
∣
∣
∣
∣
f

⎛

⎝
∑

i>i0

ci xki

⎞

⎠

∣
∣
∣
∣
∣
∣
<

1 + 4/2ki0+1

2
jki0

� 2

2n
. (7)

Also, if i0 > 1, by (i) we have that 1/2 j max supp xki0−1 < 1/2ki0−1 and hence:

∣
∣
∣
∣
∣
∣
f

⎛

⎝
∑

i<i0

ci xki

⎞

⎠

∣
∣
∣
∣
∣
∣
� ‖ f ‖∞ max supp xki0−1 <

1

2ki0−1
� 1

2n
. (8)

Combining (7) and (8) with the fact that | f (xki0 )| � 1 we conclude

∣
∣
∣
∣
∣
f

(
n∑

i=1

ci xki

)∣
∣
∣
∣
∣
< 1 + 3

2n
. (9)
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Case 3: j � jkn . Using that | f (xkn )| � 1 and arguing as in (8) we obtain∣
∣ f

(∑n
i=1 ci xki

)∣
∣ < 1 + 1/2n and this concludes the proof. �

Propositions 4.3 and 4.4 yield the following result, which characterizes the spread-
ing models admitted by a given block sequence.

Corollary 4.5 Let (xk)k be a normalized block sequence in XT . Then (xk)k has a
subsequence that generates either an isometric c0 spreading model or an �n1 spreading
model for every n ∈ N. More precisely, the assertions stated below hold.

(i) The sequence (xk)k admits only c0 as a spreading model if and only if α((xk)k) =
0.

(ii) The sequence (xk)k has a subsequence that generates an �n1 spreading model for
every n ∈ N if and only if α((xk)k) > 0.

5 Estimations on exact vectors

In this section we provide estimations on exact vectors whose sums define non-trivial
weakly Cauchy sequences inXU and in the general case provide the fact that the space
XT is hereditarily indecomposable. We give the definitions of exact vectors and exact
sequences and several technical intermediate steps are presented in order to achieve
the main estimate.

The next estimate uses Proposition 3.6 and the properties of special convex com-
binations. It is proved in [8, Lemma 3.8] and identical arguments also apply in this
case.

Lemma 5.1 Let x be a (C, θ, n)-vector inXT . Let also (aq)dq=1 be a very fast growing
and S j -admissible sequence of αc-averages, with j < n. Then

d∑

q=1

|αq(x)| <
6C

s(α1)
+ 1

2n
.

These next two results follows readily form Lemma 5.1 and Proposition 4.4. Their
proof can also be found in [8, Propositions 3.9 and 3.10]

Proposition 5.2 Let C � 1 and θ > 0. If (xk)k is a block sequence inXT so that each
xk is a (C, θ, nk)-vector, with (nk)k a strictly increasing sequence of natural numbers,
then α((xk)k) = 0 and hence, every spreading model admitted by (xk)k is isometric,
up to scaling, to the unit vector basis of c0.

Proposition 5.3 Let x be a (C, θ, n)-vector in XT . Then for any weighted functional
f in WT such that w( f ) = j < n we have

| f (x)| <
7C

2 j
.

We now give the definition of an exact pair and a dependent sequence.
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Definition 5.4 A pair ( f, x) where x is a (C, θ, n)-exact vector in XT and f is a
weighted functional in WT with w( f ) = n, ran f ⊂ ran x and f (x) = θ is called a
(C, θ, n)-exact pair.

Definition 5.5 Let C � 1 and θ > 0. A sequence of pairs {( fk, xk)}�k=1, where
fk ∈ WT and xk is a vector with rational coefficients inXT for k = 1, . . . , �, is called
a (C, θ)-dependent sequence if the following are satisfied:

(i) ( fk, xk) is a (C, θ, w( fk))-exact pair for k = 1, . . . , � and
(ii) {( fk, xk)}�k=1 is in T ,

We introduce some notation baring similarities to the one used in [8, Subsection
3.2] and [9].

Notation Let x = 2n
∑m

k=1 ckxk be a (C, θ, n)-exact vector, with (xk)mk=1 a
(C, (nk)mk=1)-RIS. Let also g1 < · · · < gd beweighted functionals inWT , all of which
have weight greater than or equal to min L satisfying φ(w(g1)) < · · · < φ(w(gd))
(see Definition 2.4). We define the following subsets of N:

I0(x, (gi )
d
i=1) = { j : n � w(g j ) < 22n},

I1(x, (gi )
d
i=1) = { j : w(g j ) < n} and

I2(x, (gi )
d
i=1) = { j : 22n � w(g j )}.

Remark 5.6 Let x be a (C, θ, n)-exact vector and g1 < · · · < gd be weighted func-
tionals in WT , all of which have weight greater than or equal to min L satisfying
φ(w(g1)) < · · · < φ(w(gd)).

(i) If n ∈ L , then the set I0(x, (gi )di=1) is either empty or a singleton. Indeed, by the
choice of L ′, the fact that L ⊂ L ′ and the definition of φ it is straightforward to
check that if j ∈ I0(x, (gi )di=1), then φ(w(g j )) = n and clearly at most one j
can satisfy this condition.

(ii) Also, the sets I1(x, (gi )di=1), I2(x, (gi )
d
i=1) are successive intervals of {1, . . . , d},

which clearly follows from the fact that φ is non-decreasing.

Lemma 5.7 Let n � 2, x be a (C, θ, n)-exact vector in XT and g1 < · · · < gd be
weighted functionals in WT , all of which have weight greater than or equal to min L
satisfying φ(w(g1)) < · · · < φ(w(gd)). If we set I2(x) = I2(x, (gi )di=1), then

∑

j∈I2(x)
|g j (x)| < d

C

2n
.

Proof Wewill actually show that if g is a weighted functional inWT withw(g) � 22n ,
then |g(x)| < C/2n . If x = 2n

∑m
k=1 ckxk , with (xk)mk=1 a (C, (nk)mk=1)-RIS, recall

that according to Definition 3.10 we have that 22n < n1. Set

A = {k : nk � w(g)} and B = {k : w(g) < nk}.

If A 	= ∅, set k0 = max A.
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For k ∈ B and 1 � k � m, since (xk)mk=1 is a (C, (nk)mk=1)-RIS, we obtain
|g(xk)| < C/2w(g) and hence:

∣
∣
∣
∣
∣
g

(

2n
∑

k∈B
ckxk

)∣
∣
∣
∣
∣
� 2nC

∑

k∈B

ck
2w(g)

� 2nC
1

222n
< C

1

2n6
(10)

where we used that w(g) � 22n while the last inequality holds for all n � 2.
If A = ∅ we are done. Otherwise we need some further calculations. Observe that

∣
∣g

(
2nck0xk0

)∣
∣ � 2nCck0 <

C

22n36
(11)

where we used that, according to Definition 3.10, the vector
∑m

k=1 ckxk is an (n, ε)-
s.c.c. with ε < 1/(36C23n).

If A is a singleton, then (10) and (11) yield the desired estimate. Otherwise, if A is
not a singleton:

∣
∣
∣
∣
∣
∣
g

⎛

⎝2n
∑

k<k0

ckxk

⎞

⎠

∣
∣
∣
∣
∣
∣
� ‖g‖∞ max supp xk0−1

∥
∥
∥
∥
∥
∥
2n

∑

k<k0

ckxk

∥
∥
∥
∥
∥
∥∞

� 2nk0

2w(g)

(
1

2nk0
max supp xk0−1

)
1

22n36

� 1

2nk0−1

1

22n36
<

1

22n36

where we used property (ii) from Definition 3.9, Remark 3.12 and that k0 is in A, i.e.
nk0 � w(g). The result follows from the above, (10) and (11). �
Lemma 5.8 Let 1 � C � 10/7, θ > 0, {( fk, xk)}�k=1 be a (C, θ)-dependent sequence
and 1 � n � m � � be natural numbers. Let also (g j )

d
j=1 be a sequence of weighted

functionals in WT and (ε j )
d
j=1 be a sequence of signs in {−1, 1}, so that one of the

following is satisfied:

(i) the sequence (g j )
d
j=1 is comparable and the signs (ε j )

d
j=1 are alternating or

(ii) the sequence (g j )
d
j=1 is either incomparable or irrelevant.

If for j = 1, . . . , d we define D j = {
n � k � m : w(g j ) < w( fk)

}
, then

∣
∣
∣
∣
∣
∣

d∑

j=1

ε j g j

(
m∑

k=n

xk

)

−
d∑

j=1

ε j g j

⎛

⎝
m∑

k∈Dj

xk

⎞

⎠

∣
∣
∣
∣
∣
∣
� 22C + d

2C

2w( fn)
.

Proof Recall that each xk is a (C, θ, w( fk))-exact vector and for all 1 � k � � define

Ak = I0
(
xk, (g j )

d
j=1

)
and Bk = I1

(
xk, (g j )

d
j=1

)
. Observe that

Author's personal copy



A dual method of constructing HI spaces... 643

d∑

j=1

ε j g j

⎛

⎝
m∑

k∈Dj

xk

⎞

⎠ =
m∑

k=1

∑

j∈Bk
ε j g j (xk).

Therefore, if we define Ck = I2
(
xk, (g j )

d
j=1

)
we conclude

∣
∣
∣
∣
∣
∣

d∑

j=1

ε j g j

(
m∑

k=n

xk

)

−
d∑

j=1

ε j g j

⎛

⎝
m∑

k∈Dj

xk

⎞

⎠

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

m∑

k=n

⎛

⎝
∑

j∈Ak

ε j g j (xk) +
∑

j∈Ck

ε j g j (xk)

⎞

⎠

∣
∣
∣
∣
∣
∣
�

∣
∣
∣
∣
∣
∣

m∑

k=n

∑

j∈Ak

ε j g j (xk)

∣
∣
∣
∣
∣
∣
+

m∑

k=n

d
C

2w( fk )

�

∣
∣
∣
∣
∣
∣

m∑

k=n

∑

j∈Ak

ε j g j (xk)

∣
∣
∣
∣
∣
∣
+ d

2C

2w( fn)

where the first inequality follows from Lemma 5.7 while the second one follows from
the fact that the w( f j )’s are strictly increasing (see Remark 2.3).

Wewill show that |∑m
k=1

∑
j∈Ak

ε j g j (xk)| � 22C , which will conclude the proof.
We remind that by Remark 3.11, ‖xk‖ < 7C for all 1 � k � �. We also remind that
by Remark 5.6 each set Ak is either empty or a singleton and in particular, we note
the following: if j ∈ Ak then φ(w(g j )) = w( fk). Moreover, the assumptions yield
the φ(w(g j ))’s are strictly increasing. If the sets Ak are all empty there is nothing to
prove. Otherwise, let k1 < · · · < ks be all the k’s in {1, . . . , �} satisfying Aki 	= ∅.
Let also 1 � j1 < · · · < js � d be so that for each i , ji is the unique element of Aki ,
and hence φ(w(g ji )) = w( fki ) for i = 1, . . . , s.

If s � 2 then the desired estimate follows from ‖xk‖ < 7C for all 1 � k � �.
Otherwise, s � 3 which implies that the sequence (gi )di=1 is not incomparable, i.e.
there are 1 � i < i ′ � d so that w(g j2) and w(g j3) are not incomparable in the sense
of Definition 2.5. Indeed, since {( fk, xk)}mk=1 is in T we have that

σ−1(φ(w(g j2))) = σ−1(w( fk2)) = {( fk, xk)}k2−1
k=1 � {( fk, xk)}k3−1

k=1

= σ−1(w( fk3)) = σ−1(φ(w(g j3)))

which means that w(g j2) and w(g j3) are comparable.
We conclude that the sequence (g j )

d
j=1 is either comparable, or irrelevant and

therefore there exists m′ ∈ N with d � m′, natural numbers 1 � k′
1 < · · · < k′

d � m′

and {(hk, yk)}m′
k=1 in T , so that φ(w(g j )) = w(hk′

j
) for j = 1, . . . , d. Observe the

following:

{(hk, yk)}k
′
js

−1

k=1 = σ−1(φ(w(g js ))) = σ−1(w( fks )) = {( fk, xk)}ks−1
k=1 . (12)

The above implies that { j1, . . . , js} is an initial interval of {1, . . . , d}, in particular:
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(a) ji = i for i = 1, . . . , s and
(b) k′

i = ki for i = 1, . . . , s.

Indeed, if 1 � t < js then φ(w(gt )) = w(hk′
t
) = w( fk′

t
) and hence j ∈ Ak′

t
. This

yields that there is 1 � i < s so that t = ji and ki = k′
t . A simple cardinality argument

yields that { j1, . . . , js} = {1, . . . , s} and for 1 � i < s k′
i = ki . Also, since js = s,

(12) clearly yields that ks = k′
s .

Observe that the sequence (g j )
d
j=1 is not irrelevant. Indeed, the opposite would

imply that 10 < |g2(yk′
2
)| = |g2(xk2)| � 7C � 10, a contradiction.

In the last remaining case, the sequence (g j )
d
j=1 is comparable. Define E = {i :

ki ∈ {n, . . . ,m}}, observe that E is an interval of {1, . . . , s} and choose successive
two-point intervals E1, . . . , Ep of E\{max E,min E}, so that E\∪p

i=1 Ei has at most
three elements. The fact that the sequence (g j )

d
j=1 is comparable and (b) yield that

|gi (xki ) − g j (xk j )| < 1/2i for all 2 � i < j � s − 1 and therefore, since the signs
(εi )

d
i=1 are alternating, if for each i we write Ei = {ri , ri + 1} then we obtain

∣
∣
∣
∣
∣
∣

∑

j∈Ei

ε j g j (xk j )

∣
∣
∣
∣
∣
∣
=

∣
∣
∣gr (xkri ) − gr+1(xkri+1)

∣
∣
∣ <

1

2ri
� 1

2i

for i = 1, . . . , p and hence

∣
∣
∣
∣
∣
∣

m∑

k=n

∑

j∈Ak

ε j g j (xk)

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∑

i∈E
εi gi (xki )

∣
∣
∣
∣
∣
� 21C +

p∑

i=1

∣
∣
∣
∣
∣
∣

∑

j∈Ei

εi gi (xki )

∣
∣
∣
∣
∣
∣
� 22C.

�
The result below is the main one of this section and it is used later to prove the main

properties of the space XT and its operators.

Proposition 5.9 Let 1 � C � 10/7, {( fk, xk)}�k=1 be a (C, θ)-dependent sequence
and f be a weighted functional in WT . If for some natural numbers 1 � n � m � �

we set D = {k ∈ {n, . . . ,m} : w( f ) < w( fk)}, then:
∣
∣
∣
∣
∣
f

(
∑

k∈D
xk

)∣
∣
∣
∣
∣
� 47C

2w( f )
.

In particular, for every natural numbers 1 � n � m � �, ‖∑m
k=n xk‖ � 24C.

Proof We first assume that the first statement holds to prove the fact that for 1 �
n � m � �, ‖∑m

k=n xk‖ � 24C . Let f ∈ WT . We may assume that f is either
an element of the basis, or a weighted functional. In the first case,

∣
∣ f

(∑m
k=n xk

)∣
∣ �

max{‖xk‖∞ : n � k � m} < 24C by Remark 3.12. If on the other hand f is a
weighted functional, we distinguish three cases regarding the weight of f . If w( f ) <

w( fn), then the first statement yields that
∣
∣ f

(∑m
k=n xk

)∣
∣ < 47C/2w( f ) < 24C . If
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there is n � k0 < m with w( fk0) � w( f ) < w( fk0+1), then as before we obtain
that

∣
∣ f

(∑
k>k0 xk

)∣
∣ � 47C/2w( f ) � 47C/2w( fk0 ) < C (recall that w( fk0) ∈ L and

min L � 8). Also, by Remark 3.7, | f (xk0)| � 7C while (2) and Remark 3.12 yield that∣
∣ f

(∑
k<k0 xk

)∣
∣ < C . We obtain that

∣
∣ f

(∑m
k=n xk

)∣
∣ < 9C . In the last case we have

w( f ) � w( fm), where by using similar arguments we obtain
∣
∣ f

(∑m
k=n xk

)∣
∣ < 8C .

We now proceed to prove the first statement, for which we will use the third state-
ment of Remark 2.10. In particular, by induction on p, where WT = ∪pWp, we shall
prove that for everyweighted functional f inWp and natural numbers 1 � n � m � �,
if D = {k ∈ {n, . . . ,m} : w( f ) < w( fk)} then

∣
∣ f

(∑
k∈D xk

)∣
∣ � 24C/2w( f ).

The set W0 = {±e∗
i : i ∈ N} does not contain any weighted functionals and

so the statement for p = 0 trivially holds. Let p ∈ N such that every weighted
functional inWp satisfies the conclusion. Before showing that this property is satisfied
by functionals in Wp+1, we remark the following: let α0 be an αc-average of Wp and
n � m, then ∣

∣
∣
∣
∣
α0

(
m∑

k=n

xk

)∣
∣
∣
∣
∣
� 23C

s(α0)
+ 2C

2w( fn)
. (13)

Indeed, if α0 is a basic average, then

∣
∣
∣
∣
∣
α0

(
m∑

k=n

xk

)∣
∣
∣
∣
∣
� max

n�k�m
‖xk‖∞ � 1

2w( fn)

where the last inequality follows from Remark 3.12. If α0 is not a basic average, then
there are natural numbers s � d and weighted functionals g1 < · · · < gs in Wp, so
that α0 = (1/d)

∑s
i=1 gi (or α0 = (1/d)

∑s
i=1 εi gi with the εi ’s being alternating

signs). We define Dj = {k ∈ {n, . . . ,m} : w(g j ) < w( fk) and by Lemma 5.8 we
obtain:

∣
∣
∣
∣
∣
α0

(
m∑

k=n

xk

)∣
∣
∣
∣
∣
� 1

d

d∑

j=1

∣
∣
∣
∣
∣
∣
g j

⎛

⎝
∑

k∈Dj

xk

⎞

⎠

∣
∣
∣
∣
∣
∣
+ 22C

d
+ 2C

2w( fn)
(14)

The inductive assumption yields

d∑

j=1

∣
∣
∣
∣
∣
∣
g j

⎛

⎝
∑

k∈Dj

xk

⎞

⎠

∣
∣
∣
∣
∣
∣
�

d∑

j=1

47C

2w(g j )
�

d∑

j=1

47C

2φ(w(g j ))
� C

where we used the fact that, in order to define an αc-average, the φ(w(g j ))’s must be
strictly increasing elements of L and min L � 8. Combining (14) with the above, (13)
follows.

Let now f = (1/2 j )
∑d

q=1 αq be a weighted functional in Wp+1, with (αq)
d
q=1

a very fast growing and S j -admissible sequence of αc-averages of Wp, and let also
1 � n � m � � be natural numbers. Define D = {k ∈ {n, . . . ,m} : j < w( fk)} and
also for k ∈ D set
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Mk = {
q : ran αq ∩ ran xk 	= ∅

}
and

Nk =
{
q ∈ Mk : s(αq) > 8C22w( fk )

}
.

Lemma 5.1 yields that for k ∈ D,

∑

q∈Nk

|αq(xk)| <
2

2w( fk )

and therefore:

∣
∣
∣
∣
∣
∣

d∑

q=1

αq

(
∑

k∈D
xk

)∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

∑

k∈D

∑

q∈Mk\Nk

αq(xk) +
∑

k∈D

∑

q∈Nk

αq(xk)

∣
∣
∣
∣
∣
∣

�

∣
∣
∣
∣
∣
∣

∑

k∈D

∑

q∈Mk\Nk

αq(xk)

∣
∣
∣
∣
∣
∣
+

∑

k∈D

2

2w( fk )

�

∣
∣
∣
∣
∣
∣

∑

k∈D

∑

q∈Mk\Nk

αq(xk)

∣
∣
∣
∣
∣
∣
+ 4

2w( fn)
(15)

where we used that, according to Remark 2.3, the w( fk)’s are strictly increasing.
Define A = ∪k∈DMk\Nk , for q ∈ A set Dq = {k ∈ D : q ∈ Mk\Nk} and observe

the following: ∣
∣
∣
∣
∣
∣

∑

k∈D

∑

q∈Mk\Nk

αq(xk)

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

∑

q∈A

αq

⎛

⎝
∑

k∈Dq

xk

⎞

⎠

∣
∣
∣
∣
∣
∣
. (16)

We will show that the Dq ’s are disjoint intervals of {n, . . . ,m}. Indeed, let q ∈ A
and k1, k2 ∈ Dq . If k1 < k < k2, we will show that k ∈ Dq . The fact that q ∈
Mk1 ∩ Mk2 means that ran αq ∩ ran xk1 	= ∅ and ran αq ∩ ran xk2 	= ∅ which, of
course, yields that ran αq ∩ ran xk 	= ∅, i.e. q ∈ Mk . Also, q ∈ Mk1\Nk1 means that
s(αq) � 8C22w( fk1 ) < 8C22w( fk ), in other words q /∈ Nk and hence k ∈ Dq . We
now show that the Dq ’s are pairwise disjoint. Let q1 < q2 be in A and assume that
k ∈ Dq1 ∩ Dq2 . By the fact that ran αq1 ∩ ran xk 	= ∅ and Definition 3.10 we obtain

8C2w( fk ) � min supp xk � max suppαq1

and since the sequence (αq)
d
q=1 is very fast growing, we obtain that

s(αq2) > max suppαq1 � 8C2w( fk )

which means that q2 ∈ Nk , which contradicts k ∈ Dq2 .
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If we set nq = min Dq , then the nq ’s are strictly increasing and since the Dq ’s are
intervals, by (13) ∣

∣
∣
∣
∣
∣
αq

⎛

⎝
∑

k∈Dq

xk

⎞

⎠

∣
∣
∣
∣
∣
∣
� 23C

s(αq)
+ 2C

2w( fnq )
(17)

for all q ∈ A. Combining (15), (16) and (17):

∣
∣
∣
∣
∣
∣

d∑

q=1

αq

(
∑

k∈D
xk

)∣
∣
∣
∣
∣
∣
�

∑

q∈A

23C

s(αq)
+

∑

q∈A

2C

2w( fnq )
+ 4

2w( fn)
< 47C

where we used that, as implied by the definition of very fast growing sequences,∑
q(1/s(αq)) < 2, that the w( fnq )’s are strictly increasing elements of L and that

min L � 8. Finally, we conclude that | f (∑k∈D)xk | < 47C/2 j . �

6 Non-trivial weakly Cauchy sequences and the HI property of the space
XT

In this section we prove that in every block subspace of XT one can find a seminor-
malized block sequence (xk)k and a sequence of weighted functionals ( fk)k so that
{( fk, xk)}k forms amaximal chain in T . We conclude thatXT is hereditarily indecom-
posable. We also show that in the case T is well founded, then the spaceXT reflexive.
On the other hand, if T = U , then we show that XU contains no reflexive subspace.

Lemma 6.1 Let ( fk)k be an infinite sequence of non-averages in WT so that for each
n ∈ N the set {k : fk is a weighted functional with w( fk) = n} is finite. Then
there exists a subsequence of ( fk)k , again denoted by ( fk)k , so that for every natural
numbers k1 < · · · < kd and alternating signs (εi )

d
i=1 in {−1, 1}, the functional

α0 = (1/d)
∑d

i=1 εi fki is an αc-average in WT .

Proof By passing to a subsequence, either all fk’s are weighted functionals, or they
are all of the form fk = εke∗

ik
where εk ∈ {−1, 1}. If the second case holds, the result

follows easily.
Assume now that the fk’s are all weighted functionals. Then limk w( fk) = ∞ and

so we may pass to a subsequence so that the sequence φ(w( fk)) is strictly increasing.
By Ramsey’s theorem [23, Theorem A], by passing to a further subsequence, the
φ(w( fk))’s are either all pairwise incomparable, or all pairwise comparable, in the
sense of Definition 2.5. If the first one holds, then for any natural numbers d � n,
k1 < · · · < kd and for any choice of signs ε j , j = 1, . . . , d the sequence of functionals
(ε j fk j )

d
j=1 is incomparable, which easily implies the desired result.

We assume now that the φ(w( fk))’s are pairwise comparable in the sense of Defi-
nition 2.5. Observe first that for at most one k ∈ N φ(w( fk)) ∈ L0 and hence we may
assume that φ(w( fk)) ∈ L1 for all k ∈ N. This further implies that (σ−1(φ(w( fk))))k
is a chain in T and hence, there exist sequences (hi )i in Wα and (yi )i in c00(N, Q),
so that {(hi , yi )}ni=1 is in T for all n ∈ N and there is a strictly increasing sequence of
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natural numbers (mk)k , so that w(hmk ) = φ(w( fk)) for all k ∈ N. By passing once
more to a subsequence, we may assume that either | fk(ymk )| > 10 for all k ∈ N,
or | fk(ymk )| � 10 for all k ∈ N. If the first one holds, then for any natural numbers
d � n, k1 < · · · < kd and for any choice of signs ε j , j = 1, . . . , d the sequence of
functionals (ε j fk j )

d
j=1 is irrelevant, which implies the desired result. Otherwise, we

pass to an even further subsequence so that for every natural numbers k < n we have
that | fk(ymk ) − fn(ymn )| < 1/2k . This means that for any natural numbers d � n,
k1 < · · · < kd sequence of functionals ( fk j )

d
j=1 is comparable and therefore for

alternating signs (ε j )
d
j=1, α0 = (1/n)

∑d
j=1 ε j fk j is a CO-average. �

If we assume that the tree T is well founded, then there does not exist a strictly
increasing sequence of natural numbers which are pairwise comparable in the sense
of Definition 2.5. In this case, the proof of Lemma 6.1 yields the following.

Lemma 6.2 Assume that the tree T is well founded and let ( fk)k be an infinite
sequence of non-averages in WT so that for each n ∈ N the set {k : fk is a weighted
functional with w( fk) = n} is finite. Then there exists a subsequence of ( fk)k , again
denoted by ( fk)k , so that for every natural numbers k1 < · · · < kd the functional
α0 = (1/d)

∑d
i=1 fki is an αc-average in WT .

Lemma 6.3 Let (xk)k be a block sequence in XT and assume that there is a constant
C > 0 so that ‖∑�

k=1 xk‖ � C for all � ∈ N. Then α((xk)k) = 0.

Proof Assume that this is not the case. Then there exist ε > 0, m ∈ N, a very fast
growing sequence of αc-averages (αq)q , a sequence of successive subsets (Fn)n of N,
with (αq)q∈Fn Sm-admissible for all n ∈ N and a subsequence (xkn )n of (xk)k so that
for all n ∈ N

∑
q∈Fn αq(xkn ) > ε. We may also assume that ran αq ⊂ ran xkn for all

q ∈ Fn and n ∈ N, hence
∑

q∈Fn αq(xk′) = 0 for k′ 	= kn . Choose n0 > 2m+1C/ε

and observe that the functional

f = 1

2m+1

2n0−1∑

n=n0

∑

q∈Fn
αq

is a weighted functional in WT of weight w( f ) = m + 1. We conclude

C �

∥
∥
∥
∥
∥
∥

k2n0−1∑

k=1

xk

∥
∥
∥
∥
∥
∥

� f

⎛

⎝

k2n0−1∑

k=1

xk

⎞

⎠ >
1

2m+1 n0ε > C

which is absurd. �
Lemma 6.4 Let (xk)k be a seminormalized block sequence in XT with α((xk)k) =
0. Let also ( fk)k be a sequence of non-zero functionals in WT , so that fk(xk) �
(3/4)‖xk‖ for all k ∈ N. Then for each n ∈ N the set {k : fk is a weighted functional
with w( fk) = n} is finite.
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Proof Assume that, passing to a subsequence, there is m ∈ N so that fk is a weighted
functional with w( fk) = m for all k ∈ N. Proposition 4.4 yields that, passing to a
further subsequence, there is k0 ∈ N so that fk(xk) � (1/2m)(8/9)‖xk‖ < (3/4)‖xk‖
for all k � k0, which is absurd. �

Lemmas 6.3 and 6.4 immediately yield the following.

Lemma 6.5 Let (xk)k be a seminormalized block sequence in XT and assume that
there is a constant C > 0 so that ‖∑�

k=1 xk‖ � C for all � ∈ N. Let also ( fk)k be a
sequence of non-averages in WT , so that fk(xk) > (3/4)‖xk‖ for all k ∈ N. Then for
each n ∈ N the set {k : fk is a weighted functional with w( fk) = n} is finite.

We obtain the first result that depends on the properties of the tree T .

Proposition 6.6 If the tree T is well founded, then the space XT is reflexive.

Proof Wewill show that the basis ofXT is boundedly complete, which in conjunction
with Proposition 3.8 and James’well known theorem [17, Theorem 1] yield the desired
result. Let us assume that this is not the case, i.e. there is a seminormalized block
sequence (xk)k and a constant C with ‖∑m

k=1 xk‖ � C for all m ∈ N. For each
k ∈ N choose a functional in WT , which is not an average, so that ran fk ⊂ ran xk
and fk(xk) > (3/4)‖xk‖. Lemmas 6.2 and 6.5 yield that there is an infinite subset of
the natural numbers M , so that for every finite subset F of M the functional αF =
(1/#F)

∑
k∈F fk is an αc-average of WT . Note that for m � max F we have

αF

(
m∑

k=1

xk

)

= 1

#F

∑

k∈F
fk(xk) >

3

4
inf
k

‖xk‖

Choose a natural number d > 6C/(4 inf ‖xk‖) and F1 < · · · < Fd so that the sequence
(αFq )

d
q=1 is S1-admissible and very fast growing. Then f = (1/2)

∑d
q=1 αFq is in

WT and if m = max Fd we obtain f (
∑m

k=1 xk) > C , which is absurd. �
The next result is one of the main features of saturation under constraints and it

plays an important role in deducing the properties of the space.

Proposition 6.7 Every block subspace X ofXT contains a block sequence generating
an �1 spreading model, as well as a block sequence generating a c0 spreading model.

Proof By Corollary 4.5, it suffices to find, given a block sequence generating an
�1 spreading model, a further block sequence with α-index zero and, given a block
sequence generating a c0 spreading model, a further block sequence with α-index
positive. Assume that (xk)k is a block sequence generating an �1 spreading model,
i.e. α((xk)k) > 0. By Proposition 4.3 we may find C � 1, θ > 0 and a further block
sequence (yk)k so that each yk is a (C, θ, nk)-vector, with (nk)k strictly increasing.
Proposition 5.2 yields the desired result. Assume now that (xk)k is a normalized block
generating a c0 spreading model, i.e. α((xk)k) = 0. Choose a sequence ( fk)k of non-
averages in WT so that for each k, ran fk ⊂ ran xk and fk(xk) > 3/4. By Lemmas
6.1 and 6.4 we may pass to a further subsequence so that for every k1 < · · · < kd

Author's personal copy



650 S. A. Argyros, P. Motakis

and alternating signs (εi )
d
i=1, the functional (1/d)

∑d
i=1 εi fki is an αc-average of

WT . Choose a sequence (Fn)n of successive subsets of N with #Fn � min Fn for all
n ∈ N and limn #Fn = ∞. Also choose sequences of alternating signs (εi )i∈Fn and
set yn = ∑

i∈Fn εi xi , αn = (1/#Fn)
∑

εi
fi for all n ∈ N. Since (xk)k generates a c0

spreading model we conclude that (yn)n is bounded. Furthermore for each n, αn is an
αc-average of size #Fn so that αn(yn) > 3/4. It easily follows that α((yn)n) > 0. �
Lemma 6.8 Let (xk)k be a block sequence in the unit ball of XT generating a c0
spreading model and ( fk)k be a sequence of functionals in WT so that the following
are satisfied:

(a) fk is not an αc-average, ran fk ⊂ ran xk for all k ∈ N and
(b) there is a θ > 0, so that (3/4)‖xk‖ < fk(xk) = θ for all k ∈ N.

Then for every n ∈ N there are successive finite subsets of the natural numbers
(Fk)mk=1, sequences of signs (εi )i∈Fk , k = 1, . . . ,m and a sequence of non-negative
real numbers (ck)mk=1 so that the following are satisfied:

(i) the vector x = 2n
∑m

k=1 ck(
∑

i∈Fk εi xi ) is a (9/8, θ, n)-exact vector,
(ii) the functional αk = (1/#Fk)

∑
i∈Fk εi fi is an αc-average of WT for k =

1, . . . ,m and
(iii) the sequence (αk)

d
k=1 is Sn-admissible and very fast growing. In particular, f =

(1/2n)
∑m

k=1 αk is a weighted functional in WT with, ran f ⊂ ran x, w( f ) = n
and f (x) = θ .

Proof By Corollary 4.5 α((xk)k) = 0 and by Lemma 6.4 we obtain that, passing to a
subsequence, ( fk)k satisfies the conclusion of Lemma 6.1, i.e.

(c) for every natural numbers k1 < · · · < kd and alternating signs (εi )
d
i=1, the func-

tional α0 = (1/d)
∑d

i=1 εi fki is an αc-average of WT .

Corollary 4.5 yields that α((xk)k) = 0 and so we pass once more to a subsequence
and find a strictly increasing sequence of natural numbers ( jk)k , so that the conclusion
of Proposition 4.4 holds, i.e. for every natural numbers d � k1 < · · · < kd , scalars
(λi )

d
i=1 we have ∥

∥
∥
∥
∥

d∑

i=1

λi xki

∥
∥
∥
∥
∥

� (9/8) max
1�i�d

|λi | (18)

and for every weighted functional in WT f with w( f ) = j < jd , we have

∣
∣
∣
∣
∣
f

(
d∑

i=1

λi xki

)∣
∣
∣
∣
∣
<

9/8

2 j
max
1�i�d

|λi |. (19)

Inductively choose a sequence of successive intervals of N (Iq)q so that the following
are satisfied:

(d) min Iq � #Iq for all q ∈ N,
(e) #Iq+1 > 2max supp xmax Iq for all q ∈ N and

(f) 1/2 jmin Iq+1 max supp xmax Iq < 1/2 jmax Iq for all q ∈ N.
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For each q choose alternating signs (εi )i∈Iq and define

wq =
∑

i∈Iq
εi xi and αq = 1

#Iq

∑

i∈Iq
εi fi .

Then (18) and (d) yield ‖wq‖ � 9/8 for all q ∈ N while by (c) and (e) (αq)q is a
very fast growing sequence of αc-averages ofWT . Since ran αq ⊂ ranwq for all q we
easily obtain the following:

(g) whenever F ⊂ N is such that (wq)q∈F isSn-admissible, then f =(1/2n)
∑

q∈F αq

is inWT and hence, if (λq)q∈F are non-negative scalars with
∑

q∈F λq = 1, then

f
(
2n

∑
q∈F λqwq

)
= θ .

Furthermore, by (19) and (f), the sequence (wq)q is (9/8, ( j ′q)q)-RIS, where j ′q =
jmin Iq for all q ∈ N.
By Proposition 3.3 we may choose q1 < · · · < qm and non-negative real numbers

(ck)mk=1 so that the vector x = 2n
∑m

k=1 ckwqk satisfies all assumptions of the definition
of a (9/8, θ, n)-exact vector (see Definition 3.10). Therefore, the (Iqk )

m
k=1, (εi )i∈Iqk

for k = 1, . . . ,m and (ck)mk=1 satisfy the desired conclusion. �
Remark 6.9 Let (xk)k , ( fk)k satisfy the assumptions of Lemma 6.8. Assumemoreover
that (gk)k is a sequence of successive functionals in WT such that for each n ∈ N,
the set {k : gk is a weighted functional with w(gk) = n} is finite. The same method
of proof, and an argument involving Proposition 3.3, Remark 3.2 and the spreading
property of the Schreier families, yields that we may find (Fk)mk=1, (εi )i∈Fk , k =
1, . . . ,m and (ck)mk=1 satisfying the conclusion of Proposition 6.8 so that moreover

the functional g = (1/2n)
∑m

k=1

(
(1/(#Fk))

∑
i∈Fk εi gi

)
is a weighted functional of

weight w(g) = n in WT .

Lemma 6.10 Let X be a block subspace of XT and n ∈ N. Then there exists a
(9/8, 8/9, n)-exact pair ( f, x) so that x is in X.

Proof By Proposition 6.7 there exists a normalized block sequence (xk)k in X generat-
ing a c0 spreadingmodel. Choose a sequence of functionals fk inWT so that for each k,
fk is not an average, fk(x)k > 8/9 and ran fk ⊂ ran xk . Define x ′

k = (8/(9 fk(xk)))xk
and observe that the assumptions of Lemma 6.8 are satisfied for (x ′

k)k , ( fk)k and
θ = 8/9. The first and third assertions of the conclusion of that proposition yield the
desired result. �
Lemma 6.11 Let X and Y be block subspaces of XT , both generated by vectors with
rational coefficients. Then there exists an initial interval E of N (finite or infinite) and
a sequence of exact pairs {( fk, xk)}k∈E so that the following are satisfied:

(i) for k odd xk is in X while for k even xk is in Y ,
(ii) {( fk, xk)}mk=1 is a (9/8, 8/9)-dependent sequence for all m ∈ E and
(iii) {{( fk, xk)}mk=1 : m ∈ E} is a maximal chain of T .
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Proof Using an inductive argument and Lemma 6.10, we choose a sequence of
(9/8, 8/9, nk)-exact pairs {( fk, xk)}∞k=1 so that (i) of the conclusion holds and
{( fk, xk)}mk=1 is in U for all m ∈ N. By property (i) of T from Sect. 2.4 we
obtain that {( f1, x1)} is in T . If for all m ∈ N we have that {( fk, xk)}mk=1 is
in T , then we obtain that for E = N the conclusion is satisfied. Otherwise, set
m0 = max{m ∈ N : {( fk, xk)}mk=1 ∈ T } and by property (ii) of T from Sect.
2.4 we obtain that, setting E = {1, . . . ,m0}, the conclusion holds. �

Recall that T is a subtree of the universal treeU associated with the coding function
σ . If we take T to be all of U , we obtain the result below.

Theorem 6.12 The space XU contains no reflexive subspace.

Proof It is enough to show that any block sequence with rational coefficients is not
boundedly complete. Indeed, let (zk)k be such a block sequence and apply Lemma
6.11, for X = Y = [(zk)k] to find a sequence of exact pairs {( fk, xk)}k∈E satisfying
the conclusion of that lemma. Recall that every maximal chain in U is infinite and
hence E = N. Finally, ‖xk‖ � 8/9 for all k ∈ N while by Proposition 5.9 we have
that ‖∑n

k=1 xk‖ � 27 for all n ∈ N. �
Theorem 6.13 The space XT is hereditarily indecomposable.

Proof We will show that for every block subspaces X and Y of XT , both generated
by vectors with rational coefficients, and for every n ∈ N there exists x ∈ X and
y ∈ Y so that ‖x + y‖ � 53 and ‖x − y‖ � (4/9)n. by passing to further block
subspaces, we may assume the X and Y are generated by block sequences (zk)k and
(wk)k respectively, so that

(i) min supp z1 � n,
(ii) min supp zk > 2max suppwk−1 and min suppwk > 2max supp zk−1 for all sk ∈ N.

Apply Lemma 6.11 to find sequences (xk)k∈E and ( fk)k∈E satisfying the conclusion of
that Lemma. The maximality property of that conclusion in conjunction with property
(iii) of T from Sect. 2.4 yield that there is an initial interval G of E so that the set
{min supp fk : k ∈ G} is a maximal S2-set. By the definition of S2 choose a partition
of G into successive intervals G1, . . . ,Gd so that:

(a) {min supp fminGq : q = 1, . . . , d} is an S1-set and
(b) {min supp fk : k ∈ Gq} is an S1-set for q = 1, . . . , d.

Then (i) implies that n � d while the maximality of {min supp fk : k ∈ G} implies
that each {min supp fk : k ∈ Gq} is a maximal S1-set, i.e. #Gq = min supp fminGq ,
for q = 1, . . . , d.

Define Go = {k ∈ G : k odd} and Ge = {k ∈ G : k even}. Set x = ∑
k∈Go

xk
and y = ∑

k∈Ge
xk . Then x ∈ X , y ∈ Y and ‖x + y‖ � 47(9/8) < 53 by Proposition

5.9.
The sequence ( fk)k∈Gq can easily seen to be comparable and hence, the func-

tional αq = (1/#Gq)
∑

k∈Gq
(−1)k fk is an αc-average for each q = 1, . . . , n with

αq

(∑
k∈Gq

(−1)k xk
)

= 8/9. Also the sequence (αq)
d
q=1 is S1-admissible by (a).
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Also by (ii), s(αq+1) = min supp fminGq+1 > 2max suppαq and hence the sequence

(αq)
d
q=1 is very fast growing. We conclude that f = (1/2)

∑d
q=1 αq is in WT and

f (x − y) = (1/2)
∑d

q=1 αq

(∑
k∈Gq

(−1)k xk
)

= (1/2)d(8/9) � (4/9)n which

yields the desired result. �

7 The spreading models of non-trivial weakly Cauchy sequences inXT

In the case T is well founded, i.e. the space XT is reflexive, Propositions 4.5 and 6.7
clarify all types of spreading models admitted by Schauder basic sequences in sub-
spaces of XT . In the case of the space XU non-trivial weakly Cauchy sequences exist
in every subspace of the space and this section is devoted to determining what types
of spreading models these sequences admit. We start the section by presenting some
simple general facts about spreading sequences, i.e. sequences which are equivalent
to their subsequences. Both Lemma 7.1 as well as Proposition 7.2 are showed using
classical techniques and we omit their proofs.

Lemma 7.1 Let (ek)k be a conditional and spreading Schauder basic sequence so
that (e2k−1 −e2k)k is equivalent to the unit vector basis of c0. Then (ek)k is equivalent
to the summing basis of c0.

Proposition 7.2 Let X be a Banach space and (xk)k , (yk)k be Schauder basic
sequences in X. If (xk)k admits an �1 spreading model while (yk)k does not, then
(xk − yk)k admits an �1 spreading model.

as well, which is the desired result. Indeed, let (cn)mn=1 be a sequence

Proposition 7.3 Let (λi )i be a sequence of scalars so that if (ei )i is the basis of XT
and xk = ∑k

i=1 λi ei for all k ∈ N, then (xk)k is bounded and non-convergent in the
norm topology. Then (xk)k admits only the summing basis of c0 as a spreading model.

Proof Pass to a subsequence of (xk)k that generates a spreading model (zk)k . The fact
that (xk)k is non-trivial weakly Caushy easily implies that (zk)k is either equivalent
to the unit vector basis of �1, or a conditional spreading sequence. Then, if yk =
x2k−1 − x2k and uk = z2k−1 − z2k for all k ∈ N, the sequence (yk)k generates (uk)k
as a spreading model. Lemma 6.3 implies that α((yk)k) = 0 and hence by Proposition
4.4, (uk)k is equivalent to the unit vector basis of c0. Therefore, (zk)k is conditional
and spreading and by Lemma 7.1 we deduce the desired result. �
Remark 7.4 Note that the summing basis norm is the minimum conditional spreading
norm, in terms of domination. An easy argument yields the following: if (xk)k is a
sequence generating the summing basis of c0 as a spreading model, then every convex
block sequence of (xk)k admits only the summing basis of c0 as a spreading model as
well.

The next will be useful in the sequel.
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Lemma 7.5 Let (xk)k be a non-trivial weakly Cauchy sequence in XT . Then there is
a convex block sequence (yk)k of (xk)k that generates the summing basis of c0 as a
spreading model.

Proof Let x∗∗ be the w∗-limit of (xk)k and yk = ∑k
i=1 x

∗∗(e∗
i )ei . Then by Proposi-

tion 3.8 (yk)k , w∗-converges to x∗∗. By Lemma 7.3, passing to a subsequence, (yk)k
generates the summing basis of c0 as a spreading model. As (xk − yk)k is weakly null,
by Mazur’s theorem there is a convex block sequence of (xk)k that is equivalent to a
convex block sequence of (yk)k . By Remark 7.4 we deduce the desired result. �
Proposition 7.6 Every non-trivial weakly Cauchy sequence inXT admits a spreading
model which is either equivalent to the summing basis of c0 or equivalent to the unit
vector basis of �1. If moreover T = U , then every infinite dimensional subspace of
XU contains non-trivial weakly Cauchy sequences admitting both of these types of
spreading models.

Proof Let (xk)k be a non-trivial weakly Cauchy sequence in XT and x∗∗ be its w∗-
limit. If for k ∈ Nwe set yk = ∑k

i=1 x
∗∗(e∗

i )ei , By proposition 3.8we obtain that (yk)k
w∗-converges to x∗∗ and hence, setting zk = yk − xk , the sequence (zk)k is weakly
null. By Proposition 7.3 (yk)k admits only the summing basis of c0 as a spreading
model, while (zk)k is either norm null, or it is not. If it is not norm it follows from
Proposition 4.5 that (zk)k either admits only the unit vector basis of c0 as a spreading
model, or it admits the unit vector basis of �1 as a spreading model. If the first one
holds, we conclude that any spreading model admitted by (xk)k must be equivalent
to the unit vector basis of c0 and if the second one holds, Proposition 7.2 yields that
(xk)k admits an �1 spreading model.

The second assertion is proved as follows: by Theorem 6.12, and Proposition 7.3
we obtain that every subspace of XU admits the summing basis of c0 as a spread-
ing model. Combining this with Propositions 6.7 and 7.2 we deduce that there is a
non-trivial weakly Cauchy sequence in every subspace generating an �1 spreading
model. �
Remark 7.7 We comment that using the α-index it can be shown that every non-trivial
weakly Cauchy sequence in XT admitting an �1 spreading model, has a subsequence
that generates an �n1 spreading model with lower constant θ/2n , for all n ∈ N and
some θ > 0.

8 Operators on the spaceXT

In this final section we prove the properties of the operators defined on subspaces
of XT . We characterize strictly singular operators with respect to their action on
sequences generating certain types of spreading models. We conclude that the com-
position of any pair of singular operators is a compact one. This ought to be compared
to [8, Theorem 5.19 and Remark 5.20]. We also show that all operators defined on
block subspaces of XT have non-trivial closed invariant subspaces and that operators
defined on XU are strictly singular if and only if they are weakly compact.
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Lemma 8.1 Let x, y be non-zero vectors in XT . Then there exist non-averages f , g
in WT so that the following hold:

(i) ran f ⊂ ran x and ran g ⊂ ran y,
(ii) f (x) > (8/9)‖x‖ and g(y) > (8/9)‖y‖,
(iii)

∣
∣
∣
∣g

(
8

9 f (x)
x

)∣
∣
∣
∣ � 8/9.

Proof Choose a non-average g in WT with g(y) > (8/9)‖y‖. If |g(x)| > (8/9)‖x‖
define f = sgn(g(x))g|ran x and observe that f , g satisfy the conclusion. Otherwise
g(x) � (8/9)‖x‖ and choose any non-average f in WT with f (x) > (8/9)‖x‖ and
ran f ⊂ ran x . A simple calculation yields that f , g satisfy the conclusion. �
Lemma 8.2 Let ( f, x) be an (9/8, 8/9, n)-exact pair in XT and let also ρ in
[−8/9, 8/9]. Then there is a weighted functional g in WT of weight w(g) = n,
so that ran g ⊂ ran x and |g(x) − ρ| < 1/2n+1.

Proof By Remark 3.12, we have that ‖x‖∞ < 1/(22n36) < 1/2n+1. The fact that
f (x) = 8/9 easily implies that there is an initial interval E of ran f and ε ∈ {−1, 1},
so that g = εE f is the desired functional. �

The following result characterizes strictly singular operators, defined on subspaces
of XT , in the following manner: an operator is strictly singular if and only if it does
not preserve any type of spreading model. It is worth mentioning that we could neither
prove nor disprove the same result in [8]. The reason for this difference is the presence
of β-averages in that paper and their absence in the present one.

Proposition 8.3 Let X be an infinite dimensional closed subspace of XT and T :
X → XT be a bounded linear operator. The following assertions are equivalent.

(i) The operator T is strictly singular.
(ii) There exists a normalized weakly null sequence (yk)k in X so that (T yk)k con-

verges to zero in norm.
(iii) For every sequence (xk)k in X generatinga c0 spreadingmodel, (T xk)k converges

to zero in norm.
(iv) For every sequence (xk)k in X generating an �1 spreading model, (T xk)k does

not admit an �1 spreading model.

Proof That (i) implies (ii) follows from the fact that �1 does not embed into XT and
that (iv) implies (i) follows from Proposition 6.7. We shall first demonstrate that (iii)
implies (iv) and then that (ii) implies (iii).

We assume that (ii) is true and towards a contradiction assume that there is a
sequence in (xk)k in X , so that both (xk)k and (T xk)k generate an �1 spreading model.
By taking differences, we may assume that both (xk)k and (T xk)k are block sequences
with α-index positive. By Proposition 4.3 we may assume that there is θ > 0 so that
both sequences generate an �n1 spreading model with a lower constant θ/2n for all
n ∈ N. Using the same Proposition, construct a block sequence (yk)k of (xk)k , so that
each yk is a (C, θ, nk)-vector and ‖T yk‖ � θ for all k ∈ N with a (nk)k a strictly
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increasing sequence of natural numbers. Proposition 5.2 yields that (yk)k admits only
c0 as a spreading model, which contradicts (ii).

We shall now prove that (ii) implies (iii). Toward a contradiction assume that there
is normalized weakly null sequence (yk)k in X with limk T yk = 0 in norm, as well as a
sequence (xk)k in X generating a c0 spreadingmodel, so that (T xk)k does not converge
to zero in norm. By perturbing the operator T we may assume that the following are
satisfied:

(A) (yk)k , (xk)k and (T xk)k are all seminormalized block sequences with rational
coefficients and

(B) T yk = 0 for all k ∈ N.

For each k ∈ N, choose fk and gk so that the conclusion of Lemma 8.1 is satisfied,
i.e. ran fk ⊂ ran xk , ran gk ⊂ ran T xk , fk(xk) > (8/9)‖xk‖, gk(T xk) > (8/9)‖T xk‖
and |gk((8/9 fk(xk))xk)| � 8/9. Hence, if for all k we set x ′

k = (8/9 fk(xk))xk and
θ = (8/9)2 infk ‖T xk‖/ supk ‖xk‖ > 0, then for all k ∈ N:

(C) ran fk ⊂ ran x ′
k , ran gk ⊂ ran T x ′

k ,
(D) fk(x ′

k) = 8/9, gk(T x ′
k) � θ and

(E) |gk(x ′
k)| � 8/9.

We note that the boundedness of T yields that (T xk)k admits only c0 as a spreading
model, combining this with gk(T xk) > (8/9)‖T xk‖ for all k ∈ N and Lemma 6.4 we
obtain that

(F) for each n ∈ N, the set of k’s so that gk is a weighted functional of weight
w(gk) = n is finite.

We pass to a subsequence, so that there is ρ in [−8/9, 8/9] so that
(G) |gk(x ′

k) − ρ| < 1/2k+1 for all k ∈ N.

Let now n ∈ Nwith n > 162‖T ‖/θ .We construct a (9/8, 8/9)-dependent sequence
{(hk, zk)}mk=1 with the following properties:

(H) min supp h1 � n and (hk)mk=1 is S2-admissible,
(I) There is a partition of N into successive intervals (Gk)k and successive subsets of

the natural numbers (Fj ) j as well as a sequence of signs (εi )i so that for k odd:

zk = 2w(hk )
∑

j∈Gk

c j

⎛

⎝
∑

i∈Fj

εi x
′
i

⎞

⎠

hk = 1

2w(hk )

∑

j∈Gk

1

#Fj

∑

i∈Fj

εi fi ,

(J) for k odd the functional

φk = 1

2w(hk )

∑

j∈Gk

1

#Fj

∑

i∈Fj

εi gi

is a weighted functional in WT of weight w(φk) = w(hk) and
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(K) for k even, ran φk−1 < ran zk < ran φk+1 and zk is a linear combination of the
(yk)k .

Note that in the construction for k odd we use Lemma 6.8 (F) and Remark 6.9. For k
even we just use Lemma 6.10 while the fact that we continue this process until (hk)mk=1
is S2-admissible follows from properties (ii) and (iii) from Sect. 2.4.

Proposition 5.9 yields ‖∑m
k=1 zk‖ � 27. We will finish the proof by showing that

‖T (
∑m

k=1 zk)‖ > 27‖T ‖, which is absurd.
For k even, by Lemma 8.2, we may choose φk in WT with ran φk ⊂ ran zk and

|φk(zk) − ρ| < 1/2w(hk )+1 � 1/2k+1. Moreover, (G), (I) and (J) yield that for k odd,
|φk(zk) − ρ| < 1/2k+1 as well. We conclude:

(L) |φk(zk) − φk′(zk′)| < 1/2k for 1 � k � k′ � m.

Since {(hk, zk)}mk=1 is in T and φk is a functional of weight w(hk) for k = 1, . . . ,m
by (l) and (m) we conclude that the sequence (φk)

m
k=1 is compatible, in the sense of

Definition 2.6. Arguing identically as in the proof of Theorem 6.13, for the already
fixed n we may choose a partition of {1, . . . ,m} into successive intervals (Eq)

n
q=1

so that if αq = (1/#Eq)
∑

k∈Eq
(−1)k+1φk , then the sequence (αq)

d
q=1 is a very fast

growing and S1-admissible of αc-averages ofWT . Defineψ = (1/2)
∑n

q=1 αq which
is in WT . Then, by (B) and (K) T

(∑m
k=1 zk

) = ∑
k odd T zk . By (D), (I) and (J) we

obtain:
∥
∥
∥
∥
∥
T

(
m∑

k=1

zk

)∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥

∑

k odd

T zk

∥
∥
∥
∥
∥

� ψ

(
∑

k odd

T zk

)

= 1

2

n∑

q=1

1

#Eq

∑

odd k∈Eq

φk(T zk) � θ

2

n

3
> 27‖T ‖.

�
We remind that in [8, Theorem 5.19] it is proved that the composition of any triple

of strictly singular operators, defined on a subspace ofXISP , is a compact one.Wewere
unable to determine whether that result is optimal or if it could be stated for couples of
strictly singular operators. As we commented before Proposition 8.3, the construction
of the space XISP form [8] uses β-averages while the present one does not. A direct
consequence of this difference is that in the case of the space XT we can prove the
following.

Theorem 8.4 Let X be a closed subspace of XT and S, T : X → X be strictly
singular operators. Then the composition T S is a compact operator.

Proof Since �1 does not embed intoXT , it suffices to show that T S maps weakly null
sequences to norm null ones and (xk)k be aweakly null sequence in X . If it is norm null
then there is nothing more to prove. Otherwise, it either admits a c0 or an �1 spreading
model. If the first one holds, then by Proposition 8.3 (Sxk)k has a subsequence which
is norm null. If on the other hand (xk)k admits an �1 spreading model then, passing
to subsequence, (Sxk)k is either norm null, or it generates a c0 spreading model and
hence, arguing as above, we obtain that (T Sxk)k is norm null. �
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Corollary 8.5 Let X be an infinite dimensional closed subspace of XT and S : X →
X be a non-zero strictly singular operator. Then S admits a non-trivial closed hyper-
invariant subspace.

Proof Assume first that S2 = 0. Then it is straightforward to check that ker S is a
non-trivial closed hyperinvariant subspace of S. Otherwise, if S2 	= 0, then Theorem
8.4 yields that S2 is compact and non-zero. Since S commutes with its square, by [24,
Theorem 2.1], it is sufficient to check that for any α, β ∈ R with β 	= 0, we have
(α I − S)2 + β2 I 	= 0 (see also [16, Theorem 2]). The fact that S is strictly singular,
easily implies that this condition is satisfied. �
Lemma 8.6 Let (xk)k be a seminormalized block sequence in XT with α((xk)k) = 0
and X = [(xk)k]. Let T : X → XT be a linear operator and assume that there
exist ε > 0 and a sequence of successive non-averages (gk)k in WT satisfying the
following:

(i) gk(T xk) > ε and gk(xk) = 0 for all k ∈ N and
(ii) for all n ∈ N the set {k : gk is a weighted functional with w(gk) = n} is finite.
Then T is unbounded.

Proof Towards a contradiction we assume that T is bounded. We may assume that
the xk’s have rational coefficients. Choose a sequence of non averages in WT so
that ran fk ⊂ ran xk and fk(xk) > (8/9)‖xk‖ for all k ∈ N. For all k ∈ N define
x ′
k = (8/(9 fk(xk)))xk and set θ = (8ε)/(9 sup ‖xk‖) > 0 and observe the following:

(a) gk(x ′
k) = 0 for all k ∈ N and

(b) gk(T x ′
k) � ε for all k ∈ N.

Let now n ∈ N with n > 54‖T ‖/θ . We construct a (9/8, 8/9)-dependent sequence
{(hk, zk)}mk=1 so that min supp h1 � n, (hk)mk=1 is S2-admissible, there is a partition of
N into successive intervals (Gk)k and successive subsets of the natural numbers (Fj ) j
as well as a sequence of signs (εi )i so that for k = 1, . . . ,m:

zk = 2w(hk )
∑

j∈Gk

c j

⎛

⎝
∑

i∈Fj

εi x
′
i

⎞

⎠

hk = 1

2w(hk )

∑

j∈Gk

1

#Fj

∑

i∈Fj

εi fi ,

and the functional

φk = 1

2w(hk )

∑

j∈Gk

1

#Fj

∑

i∈Fj

εi gi

is a weighted functional in WT of weight w(φk) = w(hk). Note that by (a)

(c) φk(zk) = 0 for k = 1, . . . ,m.
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Proposition5.9yields that‖∑m
k=1 zk‖�27.Wewill show that also‖T (

∑m
k=1 zk)‖>

27‖T ‖, which will complete the proof.
Since {(hk, zk)}mk=1 is in T and φk is a functional of weightw(hk) for k = 1, . . . ,m

by (c) we easily conclude that the sequence ((−1)kφk)
m
k=1 is compatible, in the sense

of Definition 2.6. Arguing in the proof of Theorem 6.13 we choose a partition of
{1, . . . ,m} into successive intervals (Eq)

n
q=1 so that if αq = (1/#Eq)

∑
k∈Eq

φk , then

the sequence (αq)
d
q=1 is a very fast growing and S1-admissible of αc-averages ofWT .

An argument similar to that used in the end of the proof of Proposition 8.3 yields
‖∑m

k=1 T zk‖ > nθ/2 > 27‖T ‖. �
Remark 8.7 If E is an interval ofN, we denote by PE the projection onto E , associated
with the Schauder basis (ei )i of XT . It easily follows that if (xk)k , (yk)k are block
sequences in XT , then

(i) if α((xk)k) = 0 and (Ek)k is a sequence of successive intervals of the natural
numbers, then α((PEk xk)k) = 0.

(ii) if α((xk)k) = 0 and α((yk)k) = 0, then α((xk + yk)k) = 0.

Lemma 8.8 Let (xk)k be a seminormalized block sequence in XT and X = [(xk)k].
Let T : X → XT be a bounded linear operator and for each k ∈ N set yk =
Pran xk T xk. If the sequence (yk)k is norm null, then T is strictly singular.

Proof By Proposition 8.3 it suffices to find a seminormalized weakly null sequence
(uk)k in X so that (Tuk)k is norm null. For all k define zk = P[1,min ran xk−1]T xk and
wk = P[max ran xk+1,∞)]T xk . By perturbing T and passing to a subsequence, we may
assume that T xk = zk+wk and zk < xk < wk for all k ∈ N.Wedistinguish three cases.

Case 1: (xk)k admits a c0 spreading model. We will show that (T xk)k is norm null. If
this is not the case then, passing to a subsequence, either (zk)k or (wk)k is bounded
below.We assume that the first one holds, set ε = (3/4) inf ‖zk‖ and for each k choose
(gk)k with ran gk ⊂ ran zk and gk(xk) > (3/4)‖xk‖. By Remark 8.7 we obtain that
α((zk)k) = 0 and by Lemma 6.4 we conclude that the assumptions of Lemma 8.6 are
satisfied, i.e. T is unbounded, which is absurd.

Case 2: (xk)k admits an �1 spreading model and (T xk)k does not, i.e. it is either norm
null, or passing to a subsequence it generates a c0 spreading model. In the first case
we are done, in the second case choose a sequence of successive S1 sets (Fk)k with
limk #Fk = 0 and for all k define uk = (1/#Fk)

∑
i∈Fk xi . Then (uk)k is the desired

sequence.

Case 3: by passing to a subsequence, both (xk)k and (T xk)k generate an �1 spreading
model. Remark 8.7 yields that either α((zk)k) > 0 or α((wk)k) > 0 and we shall
assume that the first one holds. Passing to a subsequence, there are n ∈ N, δ > 0, a
very fast growing sequence of αc-averages (αq)q ofWT and a sequence of successive
subsets (Fk)k of N, so that

(a) (αq)q∈Fk is Sn admissible for all k ∈ N,
(b) ran αq ⊂ ran zk for all q ∈ Fk , k ∈ N and
(c)

∑
q∈Fk αq(zk) > δ for all k ∈ N.
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By Proposition 4.3, there are C � 1, θ > 0 and a block sequence (uk)k so that for
each k, uk = 2nk

∑
j∈Gk

ckxk is a (C, θ, nk)-vectorwith (nk) strictly increasing.Using
an argument involving Proposition 3.3, Remark 3.2 and the spreading properties of
the Schreier families, we may also chose the sets Gk so that (αq)q∈∪ j∈Gk Fj is Sn+nk

-admissible and hence, gk = (1/2n+nk )
∑

q∈∪ j∈Gk Fj
αq is a weighted functional of

weight w(gk) = n + nk for all k ∈ N. By (b) we obtain gk(uk) = 0 and by(c)
gk(Tuk) > δ/2n for all k ∈ N. Finally, combining these facts with Proposition 5.2 we
conclude that (uk)k admits a c0 spreading model, i.e. the assumptions of Lemma 8.6
are satisfied. This means that T is unbounded, which is absurd. �
Theorem 8.9 Let X be a block subspace of XT . Then for every bounded linear oper-
ator T : X → X there is a λ ∈ R so that T − λI is strictly singular.

Proof Let (xk)k be the normalized block sequence so that X = [(xk)k]. We may, of
course, assume that (xk)k is normalized and let Q{n} denote the projections associated
with the basis (xn)n of X , i.e. Q{n}xm = δn,m . Then for each k ∈ N, Q{k}T xk = λk xk
for some λk ∈ R. Choose an accumulation point λ of (λk)k and by Lemma 8.8 it easily
follows that T − λI is strictly singular.

Remark 8.10 The reason the above result cannot be stated for every closed subspace of
XT , is that in the definition of the norming setWT it is not allowed to take α-averages
of convex combinations of elements of WT . We note that the construction presented
in this paper can also be used to obtain a space XC

T defined over the field of complex
numbers. In that case, as it was proved in [15, Theorem 18], every subspace of XC

T
satisfies the scalar plus strictly singular property. Therefore, compared to Theorem
8.11 which is stated for block subspaces ofXT , every closed subspace ofXC

T satisfied
the invariant subspace property.

Theorem 8.11 Let X be a block subspace of XT and T : X → X be a non-scalar
bounded linear operator. Then T admits a non-trivial closed hyperinvariant subspace.

Proof By Theorem 8.9 there is a λ ∈ R so that the operator S = T − λI is strictly
singular. Note that S 	= 0, otherwise T would be a scalar operator. Corollary 8.5 yields
that S admits a non-trivial closed hyperinvariant subspace Y . It is straightforward to
check that Y is a hyperinvariant subspace for T . �

We note that the following property of the strictly singular operators on XU , was
also proved for an HI space which appeared in [2].

Theorem 8.12 Let X be a closed subspace of XU and T : X → XU be a bounded
linear operator. The following assertions are equivalent.

(i) The operator T is strictly singular.
(ii) The operator T is weakly compact.

Proof The implication (ii)⇒(i) immediately follows from Theorem 6.12. Assume
now that T is strictly singular and not weakly compact, which implies that there is
a sequence (xk)k in X so that both (xk)k and (T xk)k are non-trivial weakly Cauchy.
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By Lemma 7.5 we may assume that (xk)k generates the summing basis of c0 as a
spreading model. Recall that the norm of the summing basis is the minimum condi-
tional spreading norm and thus, we may assume that (T xk)k generates the summing
basis of c0 as a spreading model as well. We conclude that if yk = x2k−1 − x2k for
all k, then both (yk)k and (T yk)k generate the unit vector basis of c0 spreading model.
Proposition 8.3 yields a contradiction. �
Remark 8.13 A proof identical to the one of [8, Proposition 5.23] yields that every
infinite dimensional closed subspace X of XT admits non-compact strictly singular
operators, in fact all such operators define a non-separable subset of L(X).
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