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Joint spreading models and uniform approximation
of bounded operators

by

S. A. Argyros (Athens), A. Georgiou (Athens),
A.-R. Lagos (Athens) and Pavlos Motakis (Urbana, IL)

Abstract. We investigate the following property for Banach spaces. ABanach spaceX
satisfies the Uniform Approximation on Large Subspaces (UALS) if there exists C > 0
with the following property: for any A ∈ L(X) and convex compact subset W of L(X)
for which there exists ε > 0 such that for every x ∈ X there exists B ∈ W with
‖A(x)−B(x)‖ ≤ ε‖x‖, there exists a subspace Y of X of finite codimension and a B ∈W
with ‖(A−B)|Y ‖L(Y,X) ≤ Cε. We prove that a class of separable Banach spaces including `p
for 1 ≤ p <∞, and C(K) for K countable and compact, satisfy the UALS. On the other
hand, every Lp[0, 1], for 1 ≤ p ≤ ∞ and p 6= 2, fails the property and the same holds for
C(K) where K is an uncountable metrizable compact space. Our sufficient conditions for
UALS are based on joint spreading models, a multidimensional extension of the classical
concept of spreading model, introduced and studied in the present paper.

Introduction. This paper is devoted to the study of the Uniform Ap-
proximation on Large Subspaces (UALS) for an infinite-dimensional Banach
space X. This concept concerns a special case of the following general ques-
tion. Find conditions such that the ε-pointwise approximation of a function f
by the elements of a family W of functions implies that there exists a g ∈W
which uniformly ε′-approximates f . One of the best results in this framework
is the well known consequence of Hahn–Banach theorem. If X is a Banach
space, it may be viewed as a subspace ofX∗∗ through the natural embedding.
If x0 ∈ X, a closed convex subset W of X and ε > 0 are such that for every
x∗ ∈ X∗ there exists x ∈ W with |x∗(x0) − x∗(x)| ≤ ε‖x∗‖, then for every
ε′ > ε there exists y0 ∈W such that ‖x0− y0‖ ≤ ε′. It is natural to ask how
the above can be extended to the space of bounded linear operators L(X).
The UALS property is an attempt to provide an answer.
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Notice that in the definition of UALS there are two differences from the
above result. The first one is that the setW is norm compact, and this is nec-
essary since the normalized operators of rank one ε-pointwise approximate
the identity for every ε > 0. The second difference is that we expect the uni-
form approximation to happen on a finite-codimensional subspace. This is
also necessary, since as Bill Johnson pointed out, for everyX with dimX ≥ 2
there exist C > 0, A ∈ L(X) and a convex compact W ⊂ L(X) such that,
for every x in the unit ball of X, there is a B in W with ‖A(x)−B(x)‖ = 0,
whereas the norm distance of A from W is greater than C. There are two
classes of Banach spaces satisfying the UALS. The first class is the spaces
with the scalar-plus-compact property [AH], [AF+], and the second is the
spaces with strong asymptotic homogeneity. The latter property concerns the
uniform uniqueness of l-joint spreading models, an extension of the classical
spreading models [BS].

The paper is organized in five sections. In Section 1 we introduce the no-
tion of plegma spreading sequences. These are finite collections of Schauder
basic sequences in a Banach space that interact with one another in a spread-
ing way when indexed by plegma families, a notion which first appeared
in [AKT].

Section 2 is motivated by the definition of plegma spreading sequences
and concerns the problem of whether or not finite collections of Schauder (un-
conditional) basic sequences contain subsequences that form, under a suit-
able order, a common Schauder (unconditional) basic sequence. For Schauder
basic sequences we provide a complete characterization given in the following.

Theorem I. Let (x1n)n, . . . , (xln)n be seminormalized sequences in a Ba-
nach space X such that each one is either weakly null, equivalent to the basis
of `1, or non-trivial weak-Cauchy. Let I ⊂ {1, . . . , l} be such that (xin)n is
a non-trivial weak-Cauchy sequence with w∗-limxin = x∗∗i for every i ∈ I
and set F = span{x∗∗i }i∈I . Then there exist infinite subsets M1, . . . ,Ml of N
such that

⋃l
i=1{xin}n∈Mi is a Schauder basic sequence, under a suitable enu-

meration, if and only if X ∩ F = {0}.
For unconditional sequences the following holds.

Theorem II. Let (ein)li=1, n∈N be a plegma spreading sequence such that
each (ein)n is unconditional. Then (ein)

l
i=1, n∈N is also an unconditional se-

quence.

We also provide a variant of the classical B. Maurey – H. P. Rosenthal
example [MR] of two unconditional sequences (e1n)n, (e2n)n in a space X such
that, for any infinite subsets M,L of N, the sequence (e1n)n∈M ∪ (e2n)n∈L
is not unconditional. This shows that the assumption of a plegma spread-
ing sequence in the above theorem is necessary. Further, it is well known
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that the space generated by two unconditional sequences is not necessarily
unconditionally saturated.

In Section 3 we define joint spreading models, which as already mentioned
are a multidimensional extension of the classical Brunel–Sucheston spreading
models. We also present some of their basic properties.

Section 4 concerns spaces that admit uniformly unique joint spreading
models with respect to certain families of Schauder basic sequences. Exam-
ples of such spaces are `p(Γ ) for 1 ≤ p < ∞, c0(Γ ) and, as we show, all
Asymptotic `p spaces in the sense of [MMT]. We also prove that the James
Tree space admits a uniformly unique l-joint spreading model with respect
to the family of all normalized weakly null Schauder basic sequences in JT .
Each l-joint spreading model generated by a sequence from this family is√
2-equivalent to the unit vector basis of `2, and

√
2 is the best constant

[FG], [Be]. Our proof is a variant of the well known result due to I. Amemiya
and T. Ito [AI] that every normalized weakly null sequence in JT has a
subsequence equivalent to the basis of `2.

Section 5 is devoted to the study of spaces satisfying the UALS and
to classical spaces where this property fails. In the first part we study the
property for spaces with very few operators, namely those with the scalar-
plus-compact property [AH], [AF+]. We prove the following.

Theorem III. Every Banach space with the scalar-plus-compact property
satisfies the UALS.

The basic result for UALS concerns spaces which admit uniformly unique
joint spreading models with respect to families of Schauder basic sequences
that have certain stability properties. For this we first introduce the class of
difference-including families (see Definition 5.9) and we prove the following.

Theorem IV. Let X be a Banach space and assume that for every sep-
arable subspace Z of X we have a difference-including collection FZ of nor-
malized Schauder basic sequences in Z. If there exists a uniform K ≥ 1 such
that each such Z admits a K-uniformly unique l-joint spreading model with
respect to FZ , then X satisfies the UALS property.

A key ingredient of the proof is Kakutani’s Fixed Point Theorem for
multivalued mappings [BK], [Ka]. This argument has appeared in a related
work of W. T. Gowers and B. Maurey (see [GM, Lemma 9]), and was the
motivation for defining the UALS property. As a consequence of the above
theorem, the following spaces and all of their subspaces satisfy the UALS:
the space `p(Γ ) for 1 ≤ p <∞, c0(Γ ), the James Tree space and all Asymp-
totic `p spaces for 1 ≤ p ≤ ∞. The UALS property behaves quite well in
duality. In particular the following hold.
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Theorem V. Let X be a reflexive Banach space with an FDD. Then X
satisfies the UALS if and only if X∗ does.

Theorem VI. Let X be a Banach space with an FDD. Assume that there
exist a uniform constant C > 0 and, for every separable subspace Z of X∗,
a difference-including family FZ of normalized sequences in X∗ such that Z
admits a C-uniformly unique l-joint spreading model with respect to FZ .
Then X satisfies the UALS property.

As a consequence of the above, L∞ spaces with separable dual and their
quotients with an FDD satisfy the UALS. Thus the spaces C(K) for K
countable compact have this property. We also provide an example of a re-
flexive Banach space that admits a uniformly unique spreading model and
fails the UALS property. This example shows that if a space admits a uni-
formly unique spreading model, this does not necessarily imply that it ad-
mits a uniformly unique l-joint spreading model for every l ∈ N, and that
the assumption in Theorems IV and VI of a uniformly unique l-joint spread-
ing model cannot be weakened by assuming a uniformly unique spreading
model. Finally, we prove that the spaces Lp[0, 1] for 1 ≤ p ≤ ∞ and p 6= 2,
and C(K) for any uncountable and metrizable compact space K, fail the
UALS.

1. Plegma spreading sequences. We recall the notion of plegma fami-
lies which first appeared in [AKT] and was used to define higher order spread-
ing models. Interestingly, they were used in a rather different way there and
we slightly modify their definition. We shall refer to the notion from [AKT]
as strict plegma families. We use them to introduce the notion of plegma
spreading sequences. These are finite collections of sequences that interact
with one another in a spreading way when indexed by plegma families. We
start with some notation we will use throughout the paper.

Notation. We denote by N = {1, 2, . . .} the set of all positive integers.
We will use capital letters L,M,N, . . . (resp. lower case letters s, t, u, . . .) to
denote infinite subsets (resp. finite subsets) of N. For every infinite subset L
of N, the notation [L]∞ (resp. [L]<∞) stands for the set of all infinite (resp.
finite) subsets of L. For every s ∈ [N]<∞, we denote by |s| the cardinality
of s. For L ∈ [N]∞ and k ∈ N, [L]k (resp. [L]≤k) is the set of all s ∈ [L]<∞

with |s| = k (resp. |s| ≤ k). For every s, t ∈ [N]<∞, we write s < t if either at
least one of them is the empty set, or max s < min t. Also, for ∅ 6= s ∈ [N]∞
and n ∈ N we write n < s if n < min s.

We shall identify strictly increasing sequences in N with their correspond-
ing range, i.e. we view every strictly increasing sequence in N as a subset of N
and conversely every subset of N as the sequence resulting from the increas-
ing order of its elements. Thus, for an infinite subset L = {l1 < l2 < · · · } of N
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and i ∈ N, we set Li = li, and similarly, for a finite subset s = {n1, . . . , nk}
of N and for 1 ≤ i ≤ k, we set s(i) = ni.

Given a Banach space X with a Schauder basis (en)n, for every x ∈ X
with x =

∑
n anen we write supp(x) to denote the support of x, i.e. supp(x)=

{n ∈ N : an 6= 0}. Generally, we follow [LT] for standard notation and
terminology concerning Banach space theory.

Definition 1.1. Let M ∈ [N]∞ and F be either [M ]k for some k ∈ N
or [M ]∞. A plegma (resp. strict plegma) family in F is a finite sequence
(si)

l
i=1 in F satisfying the following properties:

(i) si1(j1)<si2(j2) for every 1≤ j1<j2≤ k or j1<j2 ∈N and 1≤ i1, i2≤ l.
(ii) si1(j) ≤ si2(j)

(
resp. si1(j) < si2(j)

)
for every 1 ≤ i1 < i2 ≤ l and every

1 ≤ j ≤ k or j ∈ N.
For each l ∈ N, the set of all sequences (si)li=1 which are plegma families in F
will be denoted by Plml(F) and that of strict plegma ones by S-Plml(F).

The following is a consequence of Ramsey’s theorem [Ra].
Theorem 1.2 ([AKT]). Let M be an infinite subset of N and k, l ∈ N.

Then for every finite partition S-Plml([M ]k) =
⋃n
i=1 Pi, there exist L ∈ [M ]∞

and 1 ≤ i0 ≤ n such that S-Plml([L]
k) ⊂ Pi0.

Definition 1.3. Let π = {1, . . . , l}×{1, . . . , k}, s = (si)
l
i=1 be a plegma

family in [N]k and (ein)
l
i=1, n∈N be a sequence in a linear space E.

(i) The plegma shift of π with respect to the plegma family s is the set
s(π) = {(i, si(j)) : (i, j) ∈ π}, and for a subset A of π, the plegma shift
of A with respect to s is the set s(A) = {(i, si(j)) : (i, j) ∈ A}.

(ii) Let x ∈ E with x =
∑

(i,j)∈F aije
i
j and F ⊂ π. The plegma shift of x

with respect to s is the vector s(x) =
∑

(i,j)∈F aije
i
si(j)

.

Recall that a sequence (en)n in a seminormed space E is called spreading
if ‖
∑n

i=1 aiei‖ = ‖
∑n

i=1 aieki‖ for all n∈N, k1< · · ·<kn and a1, . . . , an ∈R.
Then, under Definition 1.3, we have the following reformulation: (en)n is
spreading if ‖

∑n
i=1 aiei‖ = ‖s(

∑n
i=1 aiei)‖ for all n ∈ N, a1, . . . , an ∈ R and

every plegma family s ∈ Plm1([N]n). Next we introduce the notion of plegma
spreading sequences, which are an extension of the above.

Definition 1.4. A sequence (ein)
l
i=1, n∈N in a Banach space E will be

called plegma spreading if each (ein)n is a normalized Schauder basic sequence
and, for every x ∈ span{ein}li=1, n∈N, we have ‖x‖ = ‖s(x)‖ for all plegma
shifts s(x) of x.

Remark 1.5. Let (ein)li=1, n∈N be a plegma spreading sequence.

(i) For every I ⊂ {1, . . . , l} the sequence (ein)i∈I, n∈N is also plegma spread-
ing and in particular the sequence (ein)n is spreading for every 1 ≤ i ≤ l.
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(ii) The set {ein}li=1, n∈N is linearly independent.
(iii) For every (si)

l
i=1 ∈ Plml([N]∞), the sequence (eisi(n))

l
i=1, n∈N is isometric

to (ein)
l
i=1, n∈N under the natural mapping T (ein) = eisi(n).

(iv) For every k ∈ N, x ∈ span{ein}
l,k
i=1, n=1 and sn = (sni )

l
i=1 ∈ Plml([N]k)

such that sml (k) < sn1 (1) for every m < n, the sequence (xn)n with
xn = sn(x) is spreading.

2. Finite families of sequences in Banach spaces. In this section
we study in which cases l-tuples of Schauder (unconditional) basic sequences
in a given Banach space have subsequences indexed by plegma families that
form a common Schauder (unconditional) basic sequence with a natural or-
der. This turns out to be related to the w∗-limits of these sequences in the
second dual. The case where some of the sequences are equivalent to the unit
vector basis of `1 is of interest and we use ultrafilters to deduce the desired
conclusion.

2.1. Finite families of Schauder basic sequences. We first treat
non-trivial weak-Cauchy sequences and sequences equivalent to the unit vec-
tor basis of `1, and eventually we consider weakly null sequences as well. We
include a proof of the following well known lemma for completeness.

Lemma 2.1. Let (xn)n be a normalized sequence in a Banach space X
and x∗1, . . . , x

∗
k ∈ X∗ with limx∗i (xn) = 0 for all 1 ≤ i ≤ k. For every δ > 0,

there exists n0 ∈ N such that d(xn,
⋂k
i=1 kerx

∗
i ) < δ for every n ≥ n0.

Proof. Let Y = span{x∗1, . . . , x∗k} and F be a finite δ/4-net of SY . Then
there exists n0 ∈ N such that f(xn) < δ/4 for every f ∈ F and n ≥ n0.
Pick any n ≥ n0. Then, if d(xn,

⋂k
i=1 kerx

∗
i ) ≥ δ, we may find x∗ ∈ X∗ with

‖x∗‖ = 1 such that x∗(xn) ≥ δ and
⋂k
i=1 kerx

∗
i ⊂ kerx∗. Hence x∗ ∈ Y

and there exists f ∈ F with ‖x∗ − f‖ < δ/4, which is a contradiction to
x∗(xn) ≥ δ since f(xn) < δ/4.

The following is a variation of Mazur’s method [LT, Theorem 1.a.5] for
finding Schauder basic sequences in infinite-dimensional Banach spaces.

Proposition 2.2. Let (e1n)n, . . . , (eln)n be seminormalized sequences in
a Banach space X and let E denote the closed linear span of {ein}li=1, n∈N
and SE the unit sphere of E. Assume that there exist ε > 0 and a collection
{KF : F ⊂ SE finite} of finite subsets of X∗ such that

(i) for every finite F ⊂ SE and x ∈ F there exists x∗ ∈ KF with ‖x∗‖ = 1
and x∗(x) ≥ ε,

(ii) for every finite F ⊂ SE and 1 ≤ i ≤ l, there exists L ∈ [N]∞ such that
limn∈L x

∗(ein) = 0 for all x∗ ∈ KF , and
(iii) for every finite F ′ ⊂ F ⊂ SE, we have KF ′ ⊂ KF .
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Then there exist M1, . . . ,Ml ∈ [N]∞ and a suitable enumeration under which⋃l
i=1{ein}n∈Mi is a Schauder basic sequence.

Proof. We may assume that the sequences (ein)n, 1 ≤ i ≤ l, are normal-
ized. Indeed, if we normalize the given sequences then conditions (i)–(iii)
will not be affected. If we obtain the result for the normalized versions of the
given sequences, then we can revert to subsequences of the initial ones. Let
(εn)n be a sequence in (0, 1/2) such that

∑∞
n=1 εn < ε/5. We will construct,

by induction on N, a Schauder basic sequence (xk)k with xk = eiknk
, where

ik = (k − 1 mod l) + 1 and nk+1 > nk. Hence the sets Mi = {nk : ik = i}
for 1 ≤ i ≤ l, and the lexicographic order on N×{1, . . . , l}, yield the desired
result.

We set x1 = y1 = e11 and F1 = {x1/‖x1‖,−x1/‖x1‖}. Assume that
x1, . . . , xk, y1, . . . , yk, and F1 ⊂ · · · ⊂ Fk have been chosen, for some k ∈ N,
such that the following are satisfied: for 1 ≤ m ≤ k each xm is of the
form eimnm

, each Fm is an εm/2-net of the unit sphere ofXm = span{x1, y1, . . . ,
xm, ym}, and for m > 1 each ym is in Ym =

⋂
{E ∩ kerx∗ : x∗ ∈ KFm−1}

with ‖xm− ym‖ < εm. We describe the next inductive step. By property (ii)
there is L ∈ [N]∞ such that for all x∗ ∈ KFk

we have limn∈L x
∗(e

ik+1
n ) = 0.

Apply Lemma 2.1 to the sequence (e
ik+1
n )n and the subset {x∗|E : x∗ ∈ Fk}

of E∗ to find xk+1 = e
ik+1
nk+1 such that

d(xk+1,
⋂
{Y ∩ kerx∗ : x∗ ∈ KFk

}) < εk+1/2.

Then we may choose a yk+1 ∈
⋂
{Y ∩ kerx∗ : x∗ ∈ KFk

} with ‖xk+1 −
yk+1‖ < εk+1. Finally, pick an εk+1-net Fk+1 of the unit sphere of Xk+1 =
span{x1, y1, . . . , xk+1, ym+1}.

Note that for each k ∈ N and x ∈ Xm there exists x∗ ∈ KFm with
‖x∗‖ = 1 and x∗(x) ≥ (ε − εm/2)‖x‖ ≥ (9ε/10)‖x‖. Also, because for
m ≤ n we have KFm ⊂ KFn , we also have yn+1 ∈ Yn+1 ⊂ Ym and hence
for x∗ ∈ KFm we deduce x∗(yn+1) = 0. We use these facts to first observe
that (yk)k is K-Schauder basic for K = 10/(9ε). Indeed, if m ≤ n and
a1, . . . , an ∈ R then x =

∑m
i=1 aiyi ∈ Xm and for some x∗ ∈ Fm with

‖x∗‖ = 1 we have∥∥∥ m∑
i=1

aiyi

∥∥∥ ≤ 6

5ε
x∗
( m∑
i=1

aiyi

)
=

10

9ε
x∗
( n∑
i=1

aiyi

)
≤ 10

9ε

∥∥∥ n∑
i=1

aiyi

∥∥∥.
By the principle of small perturbations, for (xk)k to be Schauder basic it
suffices to show that 2K

∑
k ‖xk − yk‖/‖yk‖ < 1. But this follows from∑

k ‖xk − yk‖/‖yk‖ < 2
∑

n εk < 2ε/5.

Remark 2.3. Let us observe that (Mi)
l
i=1, as constructed in the previous

proof, is a plegma family in [N]∞. In general, for every M1, . . . ,Ml ∈ [N]∞,
there exists a plegma family (si)

l
i=1 in [N]∞ with si ⊂Mi.
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Moreover, with any plegma family (si)
l
i=1 ∈ Plml([N]∞) we associate

a natural order on {si(n)}li=1, n∈N and that is the lexicographic order on
[N]× {1, . . . , l}.

The following lemma is an immediate consequence of the principle of
local reflexivity [LR], but we also give the following easy proof.

Lemma 2.4. Let X be a Banach space and F be a linear subspace of X∗∗
with finite dimension and X ∩ F = {0}. Then, for every δ > 0 and x ∈ X
with ‖x‖ = 1, there exists x∗ ∈ X∗ with ‖x∗‖ ≤ 1 + δ such that x∗(x) ≥ ε =
d(SX , F ) and x∗∗(x∗) = 0 for every x∗∗ ∈ F .

Proof. Let x ∈ X with ‖x‖ = 1 and Y = span{F ∪ {x}}. Then there
exists x∗∗∗ ∈ SY ∗ such that x∗∗∗(x) ≥ ε and x∗∗∗(x∗) = 0 for every x∗∗ ∈ F .
Then we consider the identity map I : Y → X∗∗ and recall that its conjugate
I∗ : X∗∗∗ → Y ∗ is w∗-w∗-continuous. Since BX∗ is a w∗-dense subset of
BX∗∗∗ and Y is of finite dimension, it follows that I∗(BX∗) is norm dense
in BY ∗ and hence, for every δ > 0, we see that BY ∗ ⊂ I∗((1+ δ)BX∗), which
yields the desired result.

Recall that a sequence (xn)n in a Banach space X is called non-trivial
weak-Cauchy if there exists x∗∗ ∈ X∗∗ \X such that w∗-limxn = x∗∗. The
next proposition provides a complete characterization for the aforementioned
problem for finite collections of such sequences.

Proposition 2.5. Let (e1n)n, . . . , (e
l
n)n be seminormalized non-trivial

weak-Cauchy sequences in a Banach space X and F = span{e∗∗i }li=1, where
w∗-lim ein = e∗∗i . Then there exists an (si)

l
i=1 ∈ Plml([N ]∞) such that

{eisi(n)}
l
i=1, n∈N is a Schauder basic sequence, enumerated according to the

natural plegma order, if and only if X ∩ F = {0}.

Proof. Let X ∩ F 6= {0}. Then there exists x =
∑l

i=1 aie
∗∗
i ∈ X with

x 6= 0. If there exists a plegma family (si)
l
i=1 ∈ Plml([N]∞) such that⋃l

i=1{ein}n∈Mi is a Schauder basic sequence, we consider the sequence (xn)n
with xn =

∑l
i=1 aie

i
si(n)

. Notice that (xn)n is a Schauder basic sequence with
w-limxk = x, which is a contradiction since x 6= 0.

Suppose now that X ∩ F = {0} and let ε = d(SE , F ). Then for every
x ∈ SE , by Lemma 2.4, there exists an fx ∈ E∗ with ‖fx‖ = 1 such that
fx(x) ≥ ε/2 and x∗∗(fx) = 0 for every x∗∗ ∈ F and hence limx∗(ein) = 0 for
every 1 ≤ i ≤ l. Finally, applying Proposition 2.2 (with KF = {fx : x ∈ F})
and Remark 2.3 completes the proof.

Next we give an example of a plegma spreading sequence, formed by two
non-trivial weak-Cauchy sequences, that is not Schauder basic.
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Definition 2.6 ([J1]). On the space c00(N) we define the following norm:

‖x‖J = sup
( n∑
i=1

(∑
k∈Ii

x(k)
)2)1/2

,

where the supremum is taken over all finite collections I1, . . . , In of disjoint
intervals of natural numbers. The James space, denoted by J , is the comple-
tion of c00(N) with respect to ‖ · ‖J .

Example 2.7. Let (en)n denote the standard basis of the James space
and recall that it is a non-trivial weak-Cauchy sequence. We consider the se-
quences (e1n)n and (e2n)n in J with e1n = e2n + e1 and e2n = e2n+1 − e1, which
are also non-trivial weak-Cauchy, and denote by e∗∗1 , e

∗∗
2 their w∗-limits.

Notice that (ein)
2
i=1, n∈N is a plegma spreading sequence in J . Moreover,

since e1 ∈ J ∩ span{e∗∗1 , e∗∗2 } and T (ein) = eisi(n) is an isometry for every
(si)

2
i=1 ∈ Plml([N]∞), the same arguments as in Proposition 2.5 show that

(ein)
2
i=1, n∈N is not Schauder basic.

We now pass to study the case of finite families of `1 sequences in a
Banach space. As is well known, βN denotes the Stone–Čech compactification
of N and therefore `∞(N) is isometric to C(βN). It is also known that the
elements of βN are the ultrafilters on N. The identification of `∞(N) with
C(βN) implies that the conjugate space of `∞(N) is isometric to M(βN),
the set of all regular measures on βN.

For f ∈ `∞(N) and p an ultrafilter on N, the evaluation of the Dirac mea-
sure δp on the function f is given as δp(f) = limp f(n), where limp f(n) is the
unique limit of (f(n))n with respect to the ultrafilter p. Let us also observe
that if T : `1 → X is an isomorphic embedding, then T ∗∗ :M(βN) → X∗∗

and for any p ∈ βN and x∗ ∈ X∗ we have T ∗∗δp(x∗) = limp x
∗(Ten). For

further information on ultrafilters we refer to [CN].

Lemma 2.8. Let X be a Banach space and T : `1 → X be an isomorphic
embedding. Let α ∈ R, x∗1, . . . , x∗k ∈ X∗ and p be a non-principal ultrafilter
on N such that T ∗∗δp(x∗i ) = α for all 1 ≤ i ≤ k. Then there exists M ∈ [N]∞
such that limn∈M x∗i (Ten) = α for every 1 ≤ i ≤ k.

Proof. Notice that T ∗∗δp(x∗i ) = limp x
∗
i (Ten) and also that, for any

n ∈ N, the set Mn = {m ∈ N : |x∗i (Tem) − α| < 1/n for all 1 ≤ i ≤ l}
is in p and is not finite, since p is a non-principal ultrafilter. Let M be a
diagonalization of (Mn)n, i.e. M(n) ∈ Mn for all n ∈ N. Then (Ten)n∈M is
the desired subsequence.

Lemma 2.9. Let X be a separable Banach space and F be a finite-
dimensional subspace of X∗∗ with X ∩ F = {0}. Let also (e1n)n, . . . , (e

l
n)n

be sequences in X such that each one is equivalent to the basis of `1 and
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denote by Ti the corresponding embedding. Then there exist non-principal
ultrafilters p1, . . . , pl on N such that

(i) the set F ∪ {T ∗∗i δpi}li=1 is linearly independent,
(ii) X ∩ span{F ∪ {T ∗∗i δpi}li=1} = {0}.

Proof. Let us observe that the cardinality of βN is 2c whereas that of
any separable Banach space is less than or equal to c. Also recall that the
family {δp : p ∈ βN} is equivalent to the basis of `1(2c) and hence linearly
independent. The same remains valid for a fixed 1 ≤ i ≤ l and the family
{T ∗∗i δp : p ∈ βN}, since T ∗∗i is an isomorphism. We consider the linear space
X∗∗/X and we denote by Q the natural quotient map Q : X∗∗ → X∗∗/X.

Claim. For every 1 ≤ i ≤ l, there exists an uncountable subset Ai of βN
such that the family {QT ∗∗i δp : p ∈ Ai} is linearly independent.

Proof of Claim. If not, there would exist a countable subset Ai of βN such
that {QT ∗∗i δp : p ∈ Ai} is a maximal independent subfamily of {QT ∗∗i δp :
p ∈ βN} for some 1 ≤ i ≤ l. Then {T ∗∗i δp : p ∈ βN} ⊂ span{X ∪ {T ∗∗i δp :
p ∈ Ai}}, which yields a contradiction, since the algebraic dimension of X
is less than or equal to c.

Since F satisfies X∩F = {0}, it follows that Q|F is an isomorphism, and
by induction we will choose, for every 1 ≤ i ≤ l, an ultrafilter pi on N such
that pi ∈ Ai and QT ∗∗i δpi /∈ span{Q[F ] ∪ {QT ∗∗j δpj}j<i}. For i = 1, there
exists p1 ∈ A1 with QT ∗∗1 δp1 /∈ Q[F ], since F has finite dimension and A1 is
uncountable. Suppose that p1, . . . , pi have been chosen for some i < l. Then
there exists pi+1 ∈ Ai+1 with QT ∗∗i+1δpi+1 /∈ span{Q[F ] ∪ {QT ∗∗j δpj}j≤i}, for
the same reason as above, and this completes the inductive construction.
Notice that the ultrafilters p1, . . . , pl are non-principal since T ∗∗δpi /∈ X for
every 1 ≤ i ≤ l.

Corollary 2.10. Let (e1n)n, . . . , (e
l
n)n be sequences in a separable Ba-

nach space X such that each one is equivalent to the basis of `1 and de-
note by Ti the corresponding embedding. Then, for every k ∈ N and every
1 ≤ i ≤ l and 1 ≤ j ≤ k, there exists a non-principal ultrafilter pij on N
such that

(i) the set {T ∗∗i δpij}
l,k
i=1, j=1 is linearly independent,

(ii) X ∩ span{T ∗∗i δpij}
l,k
i=1, j=1 = {0}.

The following lemma is an immediate consequence of the above, and it
will be used in the next subsection.

Lemma 2.11. Let (e1n)n, . . . , (e
l
n)n be sequences in a separable Banach

space X such that each one is equivalent to the basis of `1 and denote by Ti
the corresponding embedding. Then there exist x∗1 . . . , x

∗
l ∈ X∗ such that
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(i) for every 1 ≤ i ≤ l, there exists Mi ∈ [N]∞ with limn∈Mi x
∗
i (e

i
n) = 1,

(ii) for every 1 ≤ i, j ≤ l, there exists M i
j ∈ [N]∞ with limn∈M i

j
x∗i (e

j
n) = 0.

Proof. FromCorollary 2.10, there exist non-principal ultrafilters p1, . . . ,pl,
q1, . . . , ql on N such that the set {T ∗∗i δpi}li=1 ∪ {T ∗∗i δqi}li=1 is linearly inde-
pendent. Then, for each 1 ≤ i ≤ l, we choose x∗∗∗i ∈ X∗∗∗ such that
x∗∗∗i (T ∗∗j δpj ) = δij and x∗∗∗i (T ∗∗j δqj ) = 0 for every 1 ≤ j ≤ l. The principle
of local reflexivity then yields an x∗i ∈ X∗ such that T ∗∗j δpj (x

∗
i ) = δij and

T ∗∗j δqj (x
∗
i ) = 0 for every 1 ≤ j ≤ l. Finally, applying Lemma 2.8 we obtain

the desired subsequences.

Next we give a characterization in the general case. Recall that by Rosen-
thal’s `1 theorem [Ro] and the theory of Schauder bases, if (xn)n is a Schauder
basic sequence in a Banach space X, then it contains a subsequence which
is either weakly null or equivalent to the basis of `1 or non-trivial weak-
Cauchy.

Theorem 2.12. Let (e1n)n, . . . , (e
l
n)n be seminormalized sequences in a

Banach space X such that each one is either weakly null, equivalent to the
basis of `1, or non-trivial weak-Cauchy. Let I ⊂ {1, . . . , l} be such that (ein)n
is a non-trivial weak-Cauchy sequence with w∗-lim ein = e∗∗i for every i ∈ I
and let F = span{e∗∗i }i∈I . Then there exists (si)

l
i=1 ∈ Plml([N ]∞) such that

{eisi(n)}
l
i=1, n∈N is a Schauder basic sequence, enumerated according to the

natural plegma order, if and only if X ∩ F = {0}.
Proof. Let J ⊂ {1, . . . , l} be such that (ein)n is equivalent to the basis

of `1 for each i ∈ J and denote by Ti the corresponding embedding. Then
Lemma 2.9 yields for every i ∈ J a non-principal ultrafilter pi on N such that
X∩Y = {0}, where Y = span{F ∪{T ∗∗i δpi}i∈J}. For ε = d(SX , Y ) it follows
from Lemma 2.4 that, for every x ∈ X with ‖x‖ = 1, there exists fx ∈ X∗
with ‖fx‖ = 1 such that fx(x) ≥ ε/2 and x∗∗(fx) = 0 for every x∗∗ ∈ Y . For
every finite F ⊂ SX , we set KF = {fx : x ∈ F}. Note that limx∗(ein) = 0 for
every i ∈ I, every finite F ⊂ SX and every x∗ ∈ KF . Also, from Lemma 2.8,
for each i ∈ J , there exists Mi ∈ [N]∞ with limn∈Mi x

∗(ein) = 0 for all
x∗ ∈ Kf . Applying Proposition 2.2, we derive the desired result.

More specifically, for a plegma spreading sequence (ein)
l
i=1, Rosenthal’s

theorem shows that each (ein) is either weakly null, equivalent to the unit
vector basis of `1, or non-trivial weak-Cauchy, since it is spreading. Taking
also into account the behavior of plegma spreading sequences we give a
corollary of the above theorem.

Corollary 2.13. Let (ein)li=1, n∈N be a plegma spreading sequence in a
Banach space X and I ⊂ {1, . . . , l} be such that (ein)n is a non-trivial weak-
Cauchy sequence with w∗-lim ein = e∗∗i for every i ∈ I. Set F = span{e∗∗i }i∈I .



68 S. A. Argyros et al.

Then (ein)
l
i=1, n∈N is a Schauder basic sequence, enumerated according to the

lexicographic order on [N]× {1, . . . , l}, if and only if X ∩ F = {0}.

Proof. Theorem 2.12 yields a plegma family (si)
l
i=1 in [N]∞ such that

(eisi(n))
l
i=1, n∈N is a Schauder basic sequence if and only if X ∩ F = {0}, and

since T (ein) = eisi(n) is an isometry, the same holds for (ein)li=1, n∈N.

2.2. Finite families of unconditional sequences. We now study the
case of unconditional sequences. We start with plegma spreading sequences.
Recall that every weakly null spreading sequence in a Banach space is uncon-
ditional. The following proposition extends this result to plegma spreading
sequences, using similar arguments to those in the classical case.

Proposition 2.14. Let (ein)li=1, n∈N be a plegma spreading sequence such
that each (ein)n is weakly null. Then (ein)

l
i=1, n∈N is an unconditional sequence.

Proof. Let π = {1, . . . , l} × {1, . . . , k} and x =
∑

(i,j)∈π aije
i
j . Since

each (ein)n is weakly null, we see that for every ε > 0 and (i0, j0) ∈ π
there exist s1(x), . . . , sm(x) plegma shifts of x and a convex combination∑m

t=1 λtst(x) such that

(i) st1(eij) = st2(e
i
j) for every (i, j) ∈ π′ = π \{(i0, j0)} and 1 ≤ t1, t2,≤ m,

(ii) ‖
∑n

t=1 λtst(e
i0
j0
)‖ < ε‖x‖/ai0j0 ,

(iii)
∑m

t=1 λtst(x) =
∑

(i,j)∈π′ aijs1(e
i
j
) +

∑n
t=1 λtai0j0st(e

i0
j0
).

Then since (ein)
l
i=1, n∈N is plegma spreading, we have ‖st(x)‖ = ‖x‖ for all

1 ≤ t ≤ m and also ‖
∑

(i,j)∈π′ aijs1(e
i
j)‖ = ‖

∑
(i,j)∈π′ aije

i
j‖ and hence∥∥∥ ∑

(i,j)∈π′
aije

i
j

∥∥∥ ≤ (1 + ε)
∥∥∥ ∑
(i,j)∈π

aije
i
j

∥∥∥.
Finally, applying iteration we show that for every ε > 0 and every F ⊂ π,∥∥∥ ∑

(i,j)∈F

aije
i
j

∥∥∥ ≤ (1 + ε)
∥∥∥ ∑
(i,j)∈π

aije
i
j

∥∥∥.
Proposition 2.15. Let (ein)li=1, n∈N be a plegma spreading sequence. If

each (ein)n is equivalent to the basis of `1, then the same holds for (ein)li=1, n∈N.

Proof. Let 0 < ε < 1, 0 < δ < (1 − ε)/2l, and x =
∑k

j=1

∑l
i=1 aije

i
j

with
∑k

j=1

∑l
i=1 |aij | = 1. Then either for x or for −x there exists 1 ≤

i0 ≤ l such that
∑

j∈J+
i0

ai0j ≥ 1/2l, where J+
i0

= {j : ai0j > 0}. Moreover,
from Lemma 2.11, for any 1 ≤ i, j ≤ l, there exist xi ∈ X∗ and Mi,M

i
j

in [N]∞ such that limn∈Mi x
∗
i (e

i
n) = 1 and limn∈M i

j
x∗i (e

j
n) = 0. We set M =
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max{‖x∗i ‖ : i = 1, . . . , l} and choose a plegma family (si)
l
i=1 in [N]k such

that

(i) si0(j) ∈Mi0 and x∗(eisi0 (j)) > 1− ε for every j ∈ J+
i0
,

(ii) si0(j) ∈M
i0
i0

for every j ∈ J−i0 = {j : ai0j < 0},
(iii) sj ⊂M i0

j for every 1 ≤ j ≤ l with j 6= i0,
(iv) x∗i0(

∑k
j=1

∑l
i=1, i 6=i0 aije

i
si(j)

+
∑

j∈J−i0
ai0je

i0
si0 (j)

) < δ.

Hence x∗i0(x) ≥
1−ε
2l − δ and therefore ‖x‖ ≥

(
1−ε
2l − δ

)
/M , which yields the

desired result.

Combining the previous two propositions we have the following final re-
sult.

Theorem 2.16. Let (ein)
l
i=1, n∈N be a plegma spreading sequence such

that each (ein)n is unconditional. Then (ein)
l
i=1, n∈N is also an unconditional

sequence.

Proof. Let I ⊂ {1, . . . , l} be such that the sequence (ein)n is weakly null
for every i ∈ I and denote its complement by J . We denote by E0 the closed
linear span of {ein}i∈I, n∈N and by E1 that of {ein}i∈J, n∈N. Then, for any x ∈
E0 + E1 with x =

∑k
j=1(

∑
i∈I aije

i
j +

∑
i∈J bije

i
j), using similar arguments

to those in the proof of Proposition 2.14, we find that for every ε > 0,∥∥∥ k∑
j=1

∑
i∈J

bije
i
j

∥∥∥ ≤ (1 + ε)
∥∥∥ k∑
j=1

(∑
i∈I

aije
i
j +

∑
i∈J

bije
i
j

)∥∥∥.
Hence E0 + E1 = E0 ⊕ E1 and since both (ein)i∈I, n∈N and (ein)i∈J, n∈N are
unconditional sequences, as follows from the previous two propositions, the
same holds for their union.

2.3. Unconditional sequences in singular position. The following
is a variant of the Maurey–Rosenthal classical example [MR]. As Theo-
rem 2.16 asserts, the strong assumption of being plegma spreading implies
that l-tuples of unconditional sequences are jointly unconditional. The pur-
pose of this example is to demonstrate that this strong condition is in fact
necessary.

Proposition 2.17. Let N1, N2 be a partition of N into two infinite sets.
There exists a Banach space X with a Schauder basis (en)n such that

(i) the sequences (en)n∈N1 and (en)n∈N2 are unconditional,
(ii) for every M ⊂ N such that M ∩N1 and M ∩N2 are both infinite sets,

the sequence (en)n∈M is not unconditional.
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We fix a strictly increasing sequence of natural numbers (µi)i such that
∞∑
i=1

∑
j>i

√
µ
i√
µ
j

≤ 1

2
.

Denote by P the collection of all finite sequences (Ek)
n
k=1 of successive

non-empty finite subsets of N. Take an injection σ : P → N such that
σ((Ek)

n
k=1) > max{#Ek}nk=1 for every (Ek)

n
k=1 ∈ P, and finally fix a parti-

tion of N into two infinite subsets N1 and N2.

Definition 2.18. A sequence (Eik)
2,n
i=1,k=1 of non-empty finite subsets

of N is called a special sequence if

(i) E1
k ⊂ N1 and E2

k ⊂ N2 for every 1 ≤ k ≤ n,
(ii) the sets E1

k and E2
k are successive for every 1 ≤ k ≤ n,

(iii) the sets E2
k and E1

k+1 are successive for every 1 ≤ k < n,
(iv) #E1

1 = #E2
1 = µj1 for some j1 ∈ N,

(v) #E1
k0

= #E2
k0

= µjk0 , where jk0 = σ((Eik)
2,k0−1
i=1, k=1) for every 1 < k0 ≤ n.

Remark 2.19. Let (Eik)
2,n
i=1, k=1 and (F ik)

2,m
i=1, k=1 be special sequences and

set k0 = min{k : #E1
k 6= #F 1

k }. If k0 > 1 then since σ is an injection,

(i) if k0 > 2 then E1
k = F 1

k and E2
k = F 2

k for every 1 ≤ k < k0 − 1,
(ii) #E1

k0−1 = #F 1
k0−1 and E1

k0−1 6= F 1
k0−1 or E2

k0−1 6= F 2
k0−1,

(iii) #E1
k 6= #F 1

k for every k0 ≤ k ≤ min{n,m}.

Let (e∗i )i as well as (ei)i denote the unit vector basis of c00(N) and for
every f, x ∈ c00(N) with f =

∑n
i=1 aie

∗
i and x =

∑m
i=1 biei set f(x) =∑min{n,m}

i=1 aibi. Finally, for f, g ∈ c00(N) with f =
∑n

k=1 aike
∗
ik

and g =∑n
k=1 bjke

∗
jk
, where aik , bjk 6= 0, we will say that f and g are consistent if

sgn(aik) = sgn(bjk) for every 1 ≤ k ≤ n.

Definition 2.20. Consider the following subsets of c00(N):
W0 = {0} ∪ {±e∗i : i ∈ N},

W1 =

{
1
√
µj

∑
i∈E

εie
∗
i : E⊂N1 or E⊂N2, #E=µj , εi ∈{−1, 1} for i∈E

}
,

W2 =
{ 2∑
i=1

n∑
k=1

f ik : f
i
k ∈W0 ∪W1, (supp(f ik))

2,n
i=1, k=1 is a special sequence,

f1k and f2k are consistent for every 1 ≤ k ≤ n
}
,

and set W = {PE(f) : f ∈ W0 ∪W1 ∪W2, E is an interval of N}. Define
a norm on c00(N) by setting ‖x‖ = sup{f(x) : f ∈ W} and let X(2)

MR denote
its completion with respect to this norm.
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Remark 2.21. For any f =
∑n

i=1 aie
∗
i in W and 1 ≤ k < l ≤ n,∑l

i=k aie
∗
i is in W as well. That is, (ei)i forms a normalized and bimonotone

Schauder basis for X(2)
MR.

Remark 2.22. For any f =
∑n

i=1 aie
∗
i in W and any signs (εi)i∈N1 (or

(εi)i∈N2), there exist (bi)
n
i=1 such that bi = εiai for all i ∈ N1 ∩ {1, . . . , n}

(or i ∈ N2 ∩ {1, . . . , n}) and g =
∑n

i=1 bie
∗
i is in W . Hence, the sequences

(ei)i∈N1 and (ei)i∈N2 are 1-unconditional.

Definition 2.23. We will call an x in X
(2)
MR a weighted vector if x =

1√
µ`

∑
i∈E εiei with #E = µ` and εi ∈ {−1, 1}. We also define the weight

of x as w(x) = µ`.
Moreover, any f = 1√

µ`

∑
i∈E εie

∗
i in W with #E = µ` and εi ∈ {−1, 1}

will be called a weighted functional and we define the weight of f asw(f) = µ`.

Lemma 2.24. Let x1, . . . , xn be successive weighted vectors with increas-
ing weights, and f1, . . . , fm be successive functionals with increasing weights.
If w(xi) 6=w(fj) for all 1≤ i≤n and 1≤j≤m, then

∑m
i=1

∑n
i=1 |fj(xi)|≤

1
2 .

Proof. For x, f weighted with w(x)=µ` and w(f)=µk such that µ` 6=µk,
we have |f(x)| ≤ min{√µ`,

√
µk}

max{√µ`,
√
µk} and hence |f(x)| ≤√µ`/

√
µk if µ`<µk, and

|f(x)| ≤√µk/
√
µ` if µk < µ`. Let w(xi) = µ`i and w(fj) = µkj . Then

|fj(xi)| ≤ min
{ √

µ`i√
µkj

,

√
µkj√
µ`i

}
for each pair (i, j), and since each pair (µ`i , µkj )

appears only once, we have
m∑
j=1

n∑
i=1

|fj(xi)| ≤
∞∑
j=1

∑
j>i

√
µi
√
µj
≤ 1

2
.

Proposition 2.25. Let (Eik)
2,n
i=1, k=1 be a special sequence. Define the

vector xik = (1/
√

#Eik)
∑

i∈Ei
k
ei for 1 ≤ k ≤ n and i = 1, 2. Then∥∥∥ 2∑
i=1

n∑
k=1

xik

∥∥∥ ≥ 2n

whereas ‖
∑2

i=1

∑n
k=1(−1)ixik‖ ≤ 5.

Proof. Set µjk = #E1
k for 1 ≤ k ≤ n. The first part follows easily from

the fact that f =
∑2

i=1

∑n
k=1(1/

√
#Eik)

∑
j∈Ei

k
e∗j is in W . For the second

part set y =
∑2

i=1

∑n
k=1(−1)ixik and let g =

∑2
i=1

∑m
k=1

1√
µjk

∑
j∈F i

k
e∗j

in W2 and also k0 = min{k : #E1
k 6= #F 1

k }, under the convention min ∅ =
m + 1. If k0 = 1, then the previous lemma yields |g(y)| ≤ 1/2. Otherwise,
by Remark 2.19 and Lemma 2.24,
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(i) if k0 > 2, then g1k(y) = −g2k(y) for every 1 ≤ k < k0 − 1,
(ii) |gik0−1(y)| ≤ 1 and

∑m
k=k0

|gik(y)| ≤ 1/2 for i = 1, 2.

Hence |g(y)| ≤ 3. Finally, in the general case of g ∈ W , using similar argu-
ments we conclude that |g(y)| ≤ 5.

Proposition 2.26. Let M ⊂ N be such that M ∩ N1 and M ∩ N2 are
both infinite sets. Then the sequence (ei)i∈M is not unconditional.

Proof. We may choose for each n ∈ N a special sequence (Eik)
2,n
i=1, k=1

such that E1
k ⊂ M ∩N1 and E2

k ⊂ M ∩N2 for every 1 ≤ k ≤ n, and apply
Proposition 2.25 to conclude that

sup
{∥∥∥∑

i∈M
εiaiei

∥∥∥ : εi ∈ {−1, 1},
∥∥∥∑
i∈M

εiaiei

∥∥∥ ≤ 1
}
≥ 2n

5
.

Since n is arbitrary, it follows that (ei)i∈M is not unconditional.

The following problem is however open.

Problem 1. Let (e1n)n and (e2n)n be subsymmetric sequences in a Banach
space, i.e. spreading and unconditional. Do there exist infinite subsets M,L
of N such that {e1n}n∈M ∪ {e2n}n∈L is unconditional?

Despite the fact that for (en)n∈N1 and (en)n∈N2 any subsequences fail
to form a common unconditional sequence, the following more general re-
sult shows that we may find further block subsequences which satisfy this
property.

Proposition 2.27. Let (xn)n and (yn)n be unconditional sequences in
a Banach space X. There exist block sequences (zn)n and (wn)n of (xn)n
and (yn)n respectively such that {zn}n∈N ∪ {wn}n∈N is an unconditional se-
quence.

Proof. Assume that there exist subsequences (xn)n∈M1 and (yn)n∈M2

such that d(SZ , SY ) > 0, where Z = span{xn}n∈M1 and Y = span{yn}n∈M2 .
Then Y +Z is closed. Hence Y +Z = Y ⊕Z by the Closed Graph Theorem
and this shows that {xn}n∈M1 ∪ {yn}n∈M2 is unconditional.

Otherwise, we choose by induction normalized blocks (zn)n and (wn)n
of (xn)n and (yn)n respectively with

∑∞
n=1 ‖zn −wn‖ < 1/(2C), where C is

the basis constant of (xn)n, and hence also of (zn)n. Then, by the principle
of small perturbations, {z2n}n∈N ∪{w2n−1}n∈N is equivalent to (zn)n, which
is unconditional.

Remark 2.28. A natural question arising from the previous proposition
is whether every space generated by two unconditional sequences is uncondi-
tionally saturated. The answer is negative and this follows from a well known
more general result. Let X be a Banach space with a Schauder basis (xn)n,
Y be a separable Banach space and (dn)n be a dense subset of the unit ball
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of Y . Then the sequences (xn)n and (yn)n with yn = xn + dn/2
n are equiv-

alent and generate the space X ⊕ Y . Hence if (xn)n is unconditional and Y
contains no unconditional sequence, we obtain the desired result. We thank
Bill Johnson for bringing this classical argument to our attention.

3. Joint spreading models. We introduce the notion of l-joint spread-
ing models which is the central concept of this paper. It describes the joint
asymptotic behavior of a finite collection of sequences. As is demonstrated
in [AM1], in certain spaces this behavior may be radically more rich than
the one of usual spreading models. It is worth pointing out that spreading
models have been tied to the study of bounded linear operators [AM2] and
the present paper clarifies that joint spreading models are no exception.

Definition 3.1. Let l ∈ N, (x1n)n, . . . , (xln)n be Schauder basic sequences
in a Banach space (X, ‖ ·‖) and (ein)

l
i=1, n∈N be a sequence in a Banach space

(E, ‖ · ‖∗).
Let M ∈ [N]∞. We will say that the l-tuple ((xin)n∈M )li=1 generates

(ein)
l
i=1, n∈N as an l-joint spreading model if the following is satisfied. There

exists a null sequence (δn)n of positive reals such that for every k ∈ N,
(aij)

l,k
i=1, j=1 ⊂ [−1, 1] and every strict plegma family (si)

l
i=1 ∈ S-Plml([M ]k)

with M(k) ≤ s1(1), we have∣∣∣∣∣∥∥∥
k∑
j=1

l∑
i=1

aijx
i
si(j)

∥∥∥− ∥∥∥ k∑
j=1

l∑
i=1

aije
i
j

∥∥∥
∗

∣∣∣∣∣ < δk.

We will also say that ((xin)n)li=1 admits (ein)li=1, n∈N as an l-joint spreading
model if there existsM ∈ [N]∞ such that ((xin)n∈M )li=1 generates (e

i
n)
l
i=1, n∈N.

Finally, for a subset A of X, we will say that A admits (ein)
l
i=1, n∈N as

an l-joint spreading model if there exists an l-tuple ((xin)n)
l
i=1 of sequences

in A which admits (ein)li=1, n∈N as an l-joint spreading model.

Notice that for l = 1, the previous definition recovers the classical Brunel–
Sucheston spreading models.

Remark 3.2. Let (x1n)n, . . . , (xln)n be Schauder basic sequences in a Ba-
nach space (X, ‖·‖). Let alsoM ∈ [N]∞ be such that the l-tuple ((xin)n∈M )li=1

generates the sequence (ein)
l
i=1, n∈N as an l-joint spreading model. Then the

following hold:

(i) For every 1 ≤ i ≤ l, the sequence (ein)n is the spreading model admitted
by (xin)n.

(ii) The sequence (ein)li=1, n∈N is plegma spreading. Although l-joint spread-
ing models are defined using strict plegma families, these sequences
behave in a spreading way that involves plegma families.
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(iii) For everyM ′ ∈ [M ]∞, ((xin)n∈M ′)li=1 generates (e
i
n)
l
i=1, n∈N as an l-joint

spreading model.
(iv) For every (δn)n null sequence of positive reals there exists M ′ ∈ [M ]∞

such that ((xin)n∈M ′)
l
i=1 generates (ein)

l
i=1, n∈N as an l-joint spreading

model with respect to (δn)n.
(v) If ||| · ||| is an equivalent norm on X, then every l-joint spreading model

admitted by (X, ‖ ·‖) is equivalent to an l-joint spreading model admit-
ted by (X, ||| · |||).

Next we prove a Brunel–Sucheston type result for l-joint spreadingmodels.

Theorem 3.3. Let l ∈ N and X be a Banach space. Then every l-tuple of
Schauder basic sequences in X admits an l-joint spreading model.

First we present the following combinatorial lemma which will yield the
theorem.

Lemma 3.4. Let (x1n)n, . . . , (x
l
n)n be bounded sequences in a Banach

space X and (δn)n be a decreasing null sequence of positive real numbers.
Then for every M ∈ [N]∞, there exists L ∈ [M ]∞ such that∣∣∣∣∣∥∥∥

k∑
j=1

l∑
i=1

aijx
i
si(j)

∥∥∥− ∥∥∥ k∑
j=1

l∑
i=1

aijx
i
ti(j)

∥∥∥∣∣∣∣∣ < δk

for every k ∈ N, (aij)
l,k
i=1, j=1 ⊂ [−1, 1] and (si)

l
i=1, (ti)

l
i=1 ∈ S-Plml([L]

k)
with s1(1), t1(1) ≥ L(k).

Proof. Let C > 0 be such that ‖xin‖ < C for all i = 1, . . . , l and
n ∈ N, and set L0 = M . We will construct, by induction, a decreasing
sequence (Lk)k≥0 such that for every k ∈ N, (aij)

l,k
i=1, j=1 ⊂ [−1, 1] and

(si)
l
i=1, (ti)

l
i=1 ∈ S-Plml([Lk]

k),∣∣∣∣∣∥∥∥
k∑
j=1

l∑
i=1

aijx
i
si(j)

∥∥∥− ∥∥∥ k∑
j=1

l∑
i=1

aijx
i
ti(j)

∥∥∥∣∣∣∣∣ < δk.

Suppose that L0, . . . , Lk−1 have been chosen for some k ∈ N. Let A be a
finite δk

4klC -net of [−1, 1] and B be a partition of [0, lC] consisting of disjoint
intervals with length less than δk/4. We set F = {f : Akl → B}, and for
f ∈ F ,

Pf =
{
(si)

l
i=1 ∈ S-Plml([Lk−1]

k) :
∥∥∥ k∑
j=1

l∑
i=1

aijx
i
si(j)

∥∥∥ ∈ f(a)
for all a = ((aij)

k
j=1)

l
i=1 ∈ Akl

}
.
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Then S-Plml([Lk−1]
k) =

⋃
f∈F Pf and by Theorem 1.2 there exist Lk ∈ [N]∞

and f ∈ F such that S-Plml([Lk]
k) ⊂ Pf . Hence for all (aij)l,ki=1, j=1 ⊂ A and

(si)
l
i=1, (ti)

l
i=1 ∈ S-Plml([Lk]

k), we have∣∣∣∣∣∥∥∥
n∑
j=1

l∑
i=1

aijx
i
si(j)

∥∥∥− ∥∥∥ n∑
j=1

l∑
i=1

aijx
i
ti(j)

∥∥∥∣∣∣∣∣ < δk
4
.

Since A is a net of [−1, 1], it is easy to see that Lk is as desired. Finally,
choosing L to be a diagonalization of (Lk)k completes the proof.

Proof of Theorem 3.3. Let (x1n)n, . . . , (xln)n be Schauder basic sequences.
Observe that Lemma 3.4 yields an infinite subset L of N such that for every
k ∈ N and (aij)

l,k
i=1, j=1 ⊂ [−1, 1] and every sequence ((sni )li=1)n of strict plegma

families in [L]k with lim sn1 (1) =∞, the sequence (‖
∑k,l

j=1, i=1 aijx
i
sni (j)
‖)n is

Cauchy, with the limit independent of the choice of ((sni )
l
i=1)n.

Denote by (en)n the usual basis of c00(N), and for every i = 1, . . . , l
and n ∈ N, set ein = ek(i,n), where k(i, n) = (n − 1)l + in. Using the above
observation, we define a seminorm ‖ · ‖∗ on c00(N) as follows:∥∥∥ k∑

j=1

l∑
i=1

aije
i
j

∥∥∥
∗
= lim

n

∥∥∥ k∑
j=1

l∑
i=1

aijx
i
sni (j)

∥∥∥
where ((sni )

l
i=1)n ⊂ Plml([L]

k) with sn1 (1) → ∞ and (aij)
l,k
i=1, j=1 ∈ [−1, 1].

Since each (xin)n is a Schauder basic sequence and hence does not contain
any norm convergent subsequences, a modification of [BL, Proposition 1.B.2]
shows that ‖·‖∗ is a norm. Denote by E the completion of c00(N) with respect
to this norm and notice that the l-tuple ((xin)n∈L)li=1 generates the sequence
(ein)

l
i=1, n∈N in E as an l-joint spreading model.

The following proposition is an immediate consequence of the definition
of l-joint spreading models and Theorem 2.12.

Proposition 3.5. Let (x1n)n, . . . , (xln)n be Schauder basic sequences in a
Banach space X such that each one is either weakly null, equivalent to the
basis of `1, or non-trivial weak-Cauchy, and the l-tuple (xin)li=1, n∈N generates
the sequence (ein)

l
i=1, n∈N as an l-joint spreading model. Let I ⊂ {1, . . . , l} be

such that (xin)n is a non-trivial weak-Cauchy sequence with w∗-limxin = x∗∗i
for every i ∈ I and let F = span{x∗∗i }i∈I . If X ∩ F = {0}, then (ein)

l
i=1, n∈N

is a Schauder basic sequence.

The next example demonstrates that the opposite statement to the above
is not always true, that is, (ein)

l
i=1, n∈N may be Schauder basic whereas

X ∩ F 6= {0}.
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Example 3.6. Define a norm on c00(N) by ‖x‖ = sup
∑n

i=1 |
∑

k∈Ii x(k)|,
where the supremum is taken over all finite collections I1, . . . , In of successive
intervals of natural numbers with n ≤ min I1. Denote byX the completion of
c00(N) with respect to this norm. Then the usual basis (en)n is a non-trivial
weak-Cauchy sequence that generates a spreadingmodel equivalent to the unit
vector basis of `1. Consider the sequences e1n = e2n−1− e1 and e2n = e2n+ e1.
As follows from Proposition 2.5, none of their subsequences is a common
Schauder basic sequence whereas the l-joint spreading model admitted by
(ein)

2
i=1, n∈N is equivalent to the unit vector basis of `1.

Recall that spreading models generated by weakly null sequences are
unconditional. This is extended to joint spreading models by an easy modi-
fication of the classical case [BL, Proposition 5.1].

Proposition 3.7. Let (x1n)n, . . . , (x
l
n)n be weakly null Schauder basic

sequences in a Banach space X that admit (ein)li=1, n∈N as an l-joint spreading
model. Then (ein)

l
i=1, n∈N is 1-suppression unconditional and hence for every

ε > 0 and k ∈ N there exists n ∈ N such that for every (si)
l
i=1 ∈ S-Plml([N]k)

withn ≤ s1(1) the sequence (xisi(j))
l,k
i=1, j=1 is (1+ε)-suppression unconditional.

Remark 3.8. The notion of l-joint spreading models can be naturally
extended, by a diagonalization argument, to ω-joint spreading models which
are ω-plegma spreading sequences and are generated by countably many
Schauder basic sequences.

4. Spaces with a unique joint spreading model. In this section
we study spaces that admit a uniformly unique joint spreading model with
respect to certain families of sequences. In the first part we prove the uniform
uniqueness of l-joint spreading models for the classical `p and c0 spaces. Then
we pass to Asymptotic `p spaces [MMT] and in the last part we study this
problem for the James Tree space.

Definition 4.1. Let F be a family of normalized sequences in a Banach
space X. We will say that X admits a uniformly unique l-joint spreading
model with respect to F if there exists K > 0 such that, for every l ∈ N,
any two l-joint spreading models generated by sequences from F are K-
equivalent.

Remark 4.2. Let F be a family of normalized sequences in a Banach
space X such that, for some l ∈ N, there exists Kl > 0 such that any two
l-joint spreading models generated by sequences from F are Kl-equivalent.

(i) For every l′ < l, there existsKl′ ≤ Kl such that any two l′-joint spreading
models generated by sequences from F are Kl′-equivalent.
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(ii) The space X may fail to admit a uniformly unique l-joint spreading
model with respect to F . For examples of such spaces see [AM1] and
Definition 5.28 below.

Notation 4.3. For a Banach space X, we will denote by F (X) the set of
all normalized Schauder basic sequences inX, by F0(X) its subset consisting
of the sequences that are weakly null, and by FC(X) the set of all normalized
C-Schauder basic sequences in X. Finally, if X has a Schauder basis, we shall
denote by Fb(X) the set of all normalized block sequences in X.

Next we present some examples of spaces admitting a uniformly unique
l-joint spreading model. We start with the classical sequence spaces `p and c0.

Proposition 4.4. Each of the following spaces admits a uniformly unique
l-joint spreading model which is in fact equivalent to its unit vector basis:

(i) the spaces `p, for 1 < p <∞, with respect to F (`p),
(ii) the space `1 with respect to Fb(`1), but not with respect to F (`1),
(iii) the space c0 with respect to F0(c0), but not with respect to F (c0).

It is immediate to see that the above remain valid for the spaces `p(Γ )
for 1 ≤ p <∞, and c0(Γ ) for any infinite set Γ .

Remark 4.5. For C ≥ 1, the space `1 admits a uniformly unique l-
joint spreading model with respect to FC(`1). To see this, let (xn)n be an
arbitrary normalized C-Schauder basic sequence in `1. Passing, if necessary,
to a subsequence, we see that (xn)n has a pointwise limit x0 in `1. That
is, limn e

∗
i (xn) = e∗i (x0) for all i ∈ N. Also, if we set zn = xn − x0, then

limn ‖zn‖ = λ may be assumed to exist. It follows that ‖x0‖+λ = 1 and that
0 < λ ≤ 1. We can also assume that (λ−1zn)n≥n0 is (1 + 1/n0)-equivalent to
the usual basis of `1. We conclude that for any M ∈ N,

M(1− λ) =M‖x0‖ ≤ lim
k

∥∥∥ M∑
n=1

xn+k

∥∥∥ ≤ C lim
k

∥∥∥ M∑
n=1

xn+k −
2M∑

n=M+1

xn+k

∥∥∥
= C lim

k

∥∥∥ M∑
n=1

zn+k −
2M∑

n=M+1

zn+k

∥∥∥ = C2Mλ.

Therefore, λ ≥ 1/(2C + 1). Hence if (xin)n, 1 ≤ i ≤ l, is an l-tuple of
C-Schauder basic sequences, we may pass to subsequences such that (xin)n
converges pointwise to some xi0 for 1 ≤ i ≤ l and if we set (zin)n = (xin − xi0)
for 1 ≤ i ≤ l then these sequences are pointwise null and they are all bounded
below by 1/(2C + 1). We may then conclude that for any ε > 0, passing to
appropriate subsequences, (xin)n, 1 ≤ i ≤ m, is jointly (2C+1+ε)-equivalent
to the unit vector basis of `1.
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Remark 4.6. Although for any C ≥ 1 the space `1 admits a uniformly
unique l-joint spreadingmodel with respect toFC(`1), this is no longer true for
spaces with the Schur property. For example, define for each n ∈ N the norm
‖ · ‖n on `1 by ‖x‖n = max{‖x‖`2 , n−1‖x‖`1}. Set X = (

∑
n⊕Xn)`1 , where

Xn = (`1, ‖ · ‖n), which has the Schur property. Although every spreading
model of this space is equivalent to the unit vector basis of `1, this does not
happen for a uniform constant.

Another example of spaces admitting a uniformly unique joint spreading
model are asymptotic `p spaces. We start with their definition.

Definition 4.7 ([MT]). A Banach space X with a normalized Schauder
basis is asymptotic `p (resp. asymptotic c0) if there exists C > 0 such that any
finite sequence (xi)ni=1 of normalized vectors in X with n < supp(x1) < · · · <
supp(xn) isC-equivalent to the standard basis of `np for 1 ≤ p <∞ (resp. of cn0 ).

The classical examples of asymptotic `p spaces are Tsirelson’s original
space [T] and its p-convexifications [FJ]. The next proposition follows easily
from the above definition and the fact that an asymptotic `p space, for
1 < p <∞, is reflexive.

Proposition 4.8. Every asymptotic `p or asymptotic c0 space X admits
a uniformly unique l-joint spreading model with respect to Fb(X). Moreover,
every asymptotic `p space, for 1 < p <∞, admits a uniformly unique l-joint
spreading model with respect to F (X).

The following proposition concerns spaces with uniformly unique joint
spreading models with respect to families that have certain stability prop-
erties. The joint spreading models of such spaces are unconditional and
sometimes even equivalent to some `p or to c0. Families with such properties
play an important role in the study of the UALS in the next section.

Proposition 4.9. Let X be a Banach space that admits a K-uniformly
unique l-joint spreading model with respect to a family F of normalized
Schauder basic sequences. Assume that F has the following properties:

(a) If (xj)j is in F then any subsequence of (xj)j is in F .
(b) If (xj)j is in F then there exists an infinite subset L = {li : i ∈ N}

of N such that if zi = ‖xl2i−1
− xl2i‖−1(xl2i−1

− xl2i) for i ∈ N, then the
sequence (zi)i is in F .

(c) If (xj)j is in F and (λi)
N
i=1 is a finite sequence of scalars, not all zero,

then there exists an infinite subset L = {li : i ∈ N} of N such that if

zn =
∥∥∥ N∑
i=1

λixlN(n−1)+i

∥∥∥−1( N∑
i=1

λixlN(n−1)+i

)
for n ∈ N,

then the sequence (zi)i is in F .
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Then the following statements hold:

(i) If F satisfies (a) then every l-joint spreading model admitted by an l-tuple
of sequences in F is spreading when enumerated with the natural plegma
order and it is K-equivalent to the spreading model generated by any
sequence in F .

(ii) If F satisfies (a) and (b) then every l-joint spreading model admitted by
sequences in F is K-suppression unconditional.

(iii) If F satisfies (a) and (c) then every l-joint spreading model admitted by
sequences in F is K-equivalent to the unit vector basis of `p (for p =∞
we mean the unit vector basis of c0).

Proof. (i) follows by taking an arbitrary sequence (xj)j in F , passing to
a subsequence that generates some spreading model (ei)i, and then taking
disjointly indexed subsequences (x1i )i, . . . , (x

l
i)i, which by assumption are all

in F . Clearly, they generate an l-joint spreading model that is isometrically
equivalent to (ei)i. We conclude that any l-joint spreading model generated
by an l-tuple of sequences in F is K-equivalent to (ei)i, when endowed with
the natural plegma order.

For (ii) it is sufficient, by (i), to show that any spreading model admitted
by a sequence in F has the desired property. Pick an arbitrary sequence (xj)j
in F which by (a) may be chosen to generate some spreading model (ej)j .
Applying (b) to (xj)j we can deduce that there is a sequence in F that
generates as a spreading model the sequence (‖e2j−1− e2j‖−1(e2j−1− e2j))j ,
which by [BL, Proposition 4.3] is 1-suppression unconditional. Observe that
any sequence that is K-equivalent to a 1-suppression unconditional sequence
is K-suppression unconditional.

Assume now that (a) and (c) hold. Clearly, (a) and (c) together imply (b)
so we may pick up where we left off, namely having at hand a sequence (xj)j
in F that generates a spreading model that is 1-suppression unconditional.
By [MMT, 1.6.3], as a direct application of Krivine’s theorem [Kr], [L], for any
m ∈ N and ε > 0, we may choose scalars λ1, . . . , λN such that any m terms
of the resulting sequence (zn)n are (1+ ε)-equivalent to the unit vector basis
of `mp for some 1 ≤ p ≤ ∞. This means that there exists a constant K such
that, for any m ∈ N, there exists 1 ≤ pm ≤ ∞ such that the first m terms
of any spreading model generated by a sequence from F are K-equivalent
to the unit vector basis of `pm . Taking a limit point of (pm)m yields the
conclusion.

4.1. Coordinate-free asymptotic `p spaces (Asymptotic `p spaces).
Notice that Definition 4.7 of an asymptotic `p space from [MT] depends on
the Schauder basis of X and not only on X. A coordinate-free version of this
definition can be found in [MMT, Subsection 1.7] and it is based on a game of
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two players (S) and (V). In each turn of the game player (S) chooses a closed
finite-codimensional subspace Y of X and player (V) chooses a normalized
vector y ∈ Y . A Banach space X is called Asymptotic `p if there exists a
constant C such that, for every n ∈ N, player (S) has a winning strategy
in the game G(p, n, C), that is, to force in n steps player (V) to choose a
sequence (yi)

n
i=1 that is C-equivalent to the unit vector basis of `np (or cn0

for p = ∞). We point out that the original formulation of this property is
different. The equivalence of the original definition with this more convenient
version follows from [MMT, Subsection 1.5].

Next we show that for a separable Asymptotic `p space X for 1 ≤ p ≤ ∞,
there exists a certain family of sequences in X, described in Proposition 4.11,
with respect to which X admits a uniformly unique l-joint spreading model.
This family has certain properties that F0(X) fails when X contains `1 and
this result will be used in the next section to prove that an Asymptotic `1
space satisfies the UALS. We start with the following lemma.

Lemma 4.10. Let X be a separable C-Asymptotic `p space for 1 ≤ p ≤ ∞.
Then there exists a countable collection Y of finite-codimensional subspaces
ofX such that, for every ε > 0 and n ∈ N, player (S) has a winning strategy in
the gameG(p, n, C+ε) when choosing finite-codimensional subspaces from Y .

Proof. If X is C-asymptotic `p in the sense described above, we shall,
for fixed n ∈ N, assume the role of player (V) and let player (S) follow a
winning strategy during a multitude of outcomes in a game of G(p, n, C).
More accurately, we will describe how to define a collection of vectors of X of
the form {xnF : ∅ 6= F ∈ [N]≤n} and a collection of closed finite-codimensional
subspaces of X of the form {Y n

F : F ∈ [N]≤n−1} that satisfy:
(i) for all F ∈ [N]≤n−1, the norm-closure of {xnF∪{i} : i > maxF} is the unit

sphere of Y n
F (here, max ∅ = 0), and

(ii) for every {k1, . . . , km} in [N]≤n,
(Y n
∅ , x

n
{k1}), (Y

n
{k1}, x

n
{k1,k2}), . . . , (Y

n
{k1,...,km−1}, x

n
{k1,...,km})

is the outcome of a game of G(p, n, C) after m rounds in which player
(S) has followed a winning strategy.

Player (S) initiates and he chooses a finite-codimensional subspace Y n
∅ . As

player (V), we choose a dense subset {xn{i} : i ∈ N} of the unit sphere
of Y n

∅ . If for some 1 ≤ m < n we have chosen {xnF : ∅ 6= F ∈ [N]≤m} and
{Y n

F : F ∈ [N]≤m−1}, we complete the inductive step as follows: for every
F = {k1 < · · · < km}, by assumption (ii), player (S) may continue following
a winning strategy and choose a closed finite-codimensional subspace Y such
that for every unit vector y ∈ Y the sequence (xnki)

m
i=1

_(y) is C-equivalent
to the unit vector basis of `m+1

p . Set Y n
F = Y and then, for all i > maxF ,
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choose a unit vector xnF∪{i} in YF such that the set {xnF∪{i} : i > maxF} is
dense in the unit sphere of Y n

F .
Set Y = {Y n

F : n ∈ N, F ∈ [N]≤n−1} and fix ε > 0 and n ∈ N.
Let us also take ε̃ > 0 to be determined later. We will describe a win-
ning strategy for player (S) in the game G(p, n, C + ε), choosing finite-
codimensional subspaces from Y . Player (S) initiates the game and chooses
the subspace Y1 = Y n

∅ , and player (V) chooses an arbitrary normalized vec-
tor y1 from Y1. Before the next turn, player (S) also chooses k1 ∈ N such
that ‖y1 − xnk1‖ < ε̃/n. Let (Y1, y1), . . . , (Ym, ym) be the outcome of the
first m turns of the game for 1 ≤ m < n, while player (S) has also chosen
k1, . . . , km ∈ N with ‖yi − xnki‖ < ε̃/n for 1 ≤ i ≤ m. In the next turn,
player (S) chooses the subspace Ym+1 = Y n

{k1,...,km} and km+1 ∈ N such that
‖ym+1−xnkm+1

‖ < ε̃/n, where ym+1 is the vector player (V) chose from Ym+1.
Hence if (Y1, y1), . . . , (Yn, yn) is the final outcome of the game, notice that
the sequence (xnki)

n
i=1 is C-equivalent to the unit vector basis of `np and

‖yi − xnki‖ < ε̃/n for all 1 ≤ i ≤ n. If we take 1 ≤ A,B with AB ≤ C

such that 1/A ≤ (
∑n

i=1 |ai|p)1/p ≤ ‖
∑n

i=1 aix
n
ki
‖ ≤ B(

∑n
i=1 |ai|p)1/p then we

conclude that (yi)ni=1 is C(1 + ε̃)/(1− ε̃C)-equivalent to the unit vector basis
of `np . For ε̃ sufficiently small we deduce the conclusion.

Proposition 4.11. Let X be a separable C-Asymptotic `p space for
1 ≤ p ≤ ∞. There exists a countable subset A of X∗ such that if

F0,A =
{
(xn)n : (xn)n is normalized and lim

n
f(xn) = 0 for all f ∈ A

}
,

then X admits `p as a C2-uniformly unique l-joint spreading model with
respect to the family F0,A .

Proof. Let Y be as in Lemma 4.10 and, for each Y ∈ Y , choose a
finite subset fY1 , . . . , fYkY of X∗ such that Y =

⋂kY
i=1 ker f

Y
i and set A =⋃

Y ∈Y {fY1 , . . . , fYkY }, which is a countable set. We will show that it is as
desired. To that end, let l ∈ N and (x1n)n, . . . , (x

l
n)n be sequences in F0,A

generating an l-joint spreading model (ein)li=1,n. Let k ∈ N; we will show
that (eij)

l,k
i=1, j=1 is C-equivalent to the unit vector basis of `lkp . Set m = lk,

fix ε > 0 and, using Lemma 2.1, choose by induction normalized vectors
y1, . . . , ym and (si)

l
i=1 in S-Plml([N]k) such that

(i) (Y1, y1), . . . , (Ym, ym) is the outcome of the game G(m, p,C + ε),
(ii) Y1, . . . , Ym ∈ Y ,
(iii) for 1 ≤ i ≤ l and 1 ≤ j ≤ k, if we take n(i, j) = (i − 1)k + j then

‖yn(i,j) − xisi(j)‖ ≤ ε/m.
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It follows that for any scalars (aij)
l,k
i=1, j=1 with |aij | ≤ 1, we have∣∣∣∣∣∥∥∥

k∑
j=1

l∑
i=1

aijx
i
si(j)

∥∥∥− ∥∥∥ k∑
j=1

l∑
i=1

aijyn(i,j)

∥∥∥∣∣∣∣∣ < ε.

As (yi)mi=1 is (C+ ε)-equivalent to the unit vector basis of `mp , the conclusion
follows.

The following is an immediate corollary of the above. In the general case,
all Asymptotic `p spaces admit a uniformly unique joint spreading model with
respect to the family of normalized weakly null Schauder basic sequences.

Corollary 4.12. Every Asymptotic `p space X, for 1 ≤ p ≤ ∞, admits
a uniformly unique l-joint spreading model with respect to F0(X). Moreover,
every l-joint spreading model generated by a sequence from this family is
equivalent to the unit vector basis of `p (or of c0 if p =∞).

4.2. James Tree space. We show that the James Tree space JT admits
a uniformly unique joint spreading model with respect to F0(JT ). This
is however not true for joint spreading models with respect to F (JT ) or
Fb(JT ).

Notation 4.13. We denote by D the dyadic tree, i.e. D = {0, 1}<∞,
ordered by the initial part order. We will use S to denote segments of D ,
and B to denote branches. For m < n, the band Q[m,n] is the set {s ∈ D :
m ≤ |s| ≤ n}. We set c00(D) to be the linear space of all eventually zero
sequences x : D → R. For a segment S of D we denote by S∗ the linear
functional on c00(D) defined as S∗(x) =

∑
s∈S x(s).

Definition 4.14 ([J2]). On c00(D) we define the norm

‖x‖JT = sup
( n∑
i=1

(∑
s∈Si

x(s)
)2)1/2

where the supremum is taken over all finite collections S1, . . . , Sn of pairwise
disjoint segments. The James Tree space, denoted by JT , is the completion
of c00(D) with respect to the above norm.

Remarks 4.15. (i) The following set is norming for JT :

W =
{ n∑
i=1

biS
∗
i : n ∈ N,

n∑
i=1

b2i ≤ 1, {Si}ni=1 pairwise disjoint segments
}
.

(ii) Let ε > 0, x ∈ JT with ‖x‖ = 1 and {Si}i∈I be pairwise disjoint
segments with the property that |S∗i (x)| ≥ ε for every i ∈ I. Then#I ≤ 1/ε2.
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(iii) Let S1, . . . , Sn be pairwise disjoint segments and b1, . . . , bn ∈ R. Then∥∥∥ n∑
i=1

biS
∗
i

∥∥∥2 ≤ n∑
i=1

b2i .

We will prove the following theorem.

Theorem 4.16. The space JT admits a uniformly unique l-joint spreading
model with respect to F0(JT ), and every l-joint spreading model generated by
sequences from this family is

√
2-equivalent to the unit vector basis of `2.

This is a variant of the well known result due to I. Amemiya and T. Ito [AI]
that every normalized weakly null sequence in JT contains a subsequence
which is 2-equivalent to the usual basis of `2. From this it follows that
every spreading model generated by a normalized weakly null sequence is
2-equivalent to the unit vector basis of `2. Our approach implies that every
l-joint spreading model generated by sequences from F0(JT ) is equivalent to
the unit vector basis of `2 with equivalence constant

√
2, which as mentioned

in [FG], [Be] is the best possible.
As a consequence of the fact that the James space (see Definition 2.6)

is isometric to a subspace of JT , it follows that J also admits a uniformly
unique l-joint spreading model with respect to F0(J).

We break up the proof of the theorem into several lemmas and we start
with the following Ramsey type result.

Definition 4.17. Let (Q[pn,qn])n be successive bands in D and let (Fn)n
be a sequence of finite subsets of JT . We will say that (Fn)n is a weakly null
level block family with respect to (Q[pn,qn])n if

(i) supp(x) ⊂ Q[pn,qn] and ‖x‖ = 1 for every n ∈ N and x ∈ Fn,
(ii) the sequence (xn)n is weakly null for any choice of xn ∈ Fn.

Lemma 4.18. Let (Fn)n be a weakly null level block family with
supn#Fn < ∞. Then, for every ε > 0, there exists an L ∈ [N]∞ such that
for every initial segment S there exists at most one n ∈ L with |S∗(x)| ≥ ε
for some x ∈ Fn.

Proof. If the conclusion is false, then using Ramsey’s theorem [Ra] we
may assume that there exists L ∈ [N]∞ such that, for any m < n in L, there
exist an initial segment Sm,n and x ∈ Fm, y ∈ Fn such that |S∗m,n(x)| ≥ ε
and |S∗m,n(y)| ≥ ε.

Claim. Set µ = maxn#Fn/ε
2. Then #{Sm,n|[0,pn] : m ∈ L, m < n} ≤ µ

for every n ∈ L, where for a segment S and p, q ∈ N we denote S|[p,q] =
S ∩Q[p,q].

Proof of Claim. If #{Sm,n|[0,pn] : m ∈ L, m < n} > µ for some
n ∈ L, then using the pigeon hole principle, we may find an x ∈ Fn
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and F ⊂ {1, . . . , n − 1} with #F > 1/ε2 such that |Sm,n(x)| ≥ ε and
the segments Sm,n|[pn,qn] are pairwise disjoint for m ∈ F . This contradicts
Remark 4.15(ii).

Hence, for everyn ∈ L, let {Sm,n|[0,pn] : m ∈ L, m < n} = {Sn1 , . . . , Snµ(n)}
with µ(n) ≤ µ and set Lni = {m ∈ L : m < n and Sm,n|[0,pn] = Sni } for
1 ≤ i ≤ µ(n), and Lni = ∅ for µ(n) < i ≤ µ. Notice that {m ∈ L : m < n} =⋃µ
i=1 L

n
i for all n ∈ L. Passing to a further subsequence we may assume

that, for every 1 ≤ i ≤ µ, (Lni )n∈L converges pointwise and we denote that
limit by Li. Then it is easy to see that L =

⋃µ
i=1 Li and hence some Li0 is

an infinite subset of L such that, for every n ∈ Li0 , there exists an initial
segment Sn such that, for all m < n in Li0 , we have |S∗n(xm)| ≥ ε for some
xm ∈ Fm. Then there existM ∈ [Li0 ]

∞ and a sequence (xn)n∈M with xn ∈ Fn
such that (Sn)n∈M converges pointwise to a branch B and |S∗m(xn)| ≥ ε for
all m > n in M . Hence |B(xn)| ≥ ε for all n ∈ M , which contradicts
Definition 4.17(ii).

Lemma 4.19. Let ε > 0 and (Fn)n be a weakly null level block family with
respect to (Q[pn,qn])n and assume that supn#Fn < ∞. Then there exist an
increasing sequence (nk)k in N and a decreasing sequence (εk)k of positive
reals such that

(i) for every k ∈ N and every initial segment S there exists at most one
k′ > k such that |S∗(x)| ≥ εk for some x ∈ Fnk′ ,

(ii)
∑∞

k=1 2
qnk
∑∞

i=k(i+ 1)εi < ε.

Proof. Let (δn)n be a sequence of positive reals such that
∑∞

n=1 δn < ε.
We construct (nk)k and (εk)k by induction on N as follows. We set n1 = 1
and L1 = N and choose ε1 such that 2q12ε1 < δ1. Suppose that n1, . . . , nk
and ε1, . . . , εk have been chosen for some k in N. Then Lemma 4.18 yields
anLk ∈ [Lk−1]

∞ such that for every segment S there exists atmost one n ∈ Lk
with |S∗(x)| ≥ εk for some x ∈ Fn. We then choose nk+1 ∈ Lk with nk+1 > nk
and εk+1 < εk such that

(a) 2qnk+1 (k + 2)εk+1 < δk+1,
(b) 2qnm

∑k+1
i=m(i+ 1)εi < δm for every m ≤ k.

It is easy to see that (nk)k and (εk)k are as desired.

Lemma 4.20. Let ε > 0 and (εn)n be a decreasing sequence of positive reals.
Let also (Fn)n be a weakly null level block family with respect to (Q[pn,qn])n
and assume that supn#Fn <∞ and

(i) for every n ∈ N and every initial segment S there exists at most one
m > n such that |S∗(x)| ≥ εn for some x ∈ Fm,

(ii)
∑∞

n=1 2
qn
∑∞

i=n(i+ 1)εi < ε.
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Then for every n ∈ N and every choice of x1, . . . , xn with xi ∈ Fi and scalars
a1, . . . , an we have( n∑

i=1

a2i

)1/2
≤
∥∥∥ n∑
i=1

aixi

∥∥∥ ≤ (
√
2 + ε)

( n∑
i=1

a2i

)1/2
.

Proof. First observe that if (xn)n is a sequence with each xn in Fn, then
for every n ∈ N and every segment S with |M(xn−1)| < |minS| ≤ |M(xn)|,
where for x ∈ c00(D) we denote M(x) = max supp(x), the following hold
due to (i):

(a) #{i > n : |S∗(xi)| ≥ εn} ≤ 1,
(b) #{i > n : εk−1 > |S∗(xi)| ≥ εk} ≤ k for every k > n.

Now for each 1 ≤ i ≤ n, there exist pairwise disjoint segments Si1, . . . , Simi

such that Sij ⊂ Q[pi,qi] and
∑mi

j=1(S
i∗
j (xi))

2 = ‖xi‖ and hence∥∥∥ n∑
i=1

aixi

∥∥∥ ≥ ( n∑
i=1

a2i

mi∑
j=1

(Si∗j (xi))
2
)1/2

≥
( n∑
i=1

a2i

)1/2
.

Pick pairwise disjoint segments S1, . . . , Sm and reals b1, . . . , bm with∑m
j=1 b

2
j ≤ 1. For given 1 ≤ j ≤ m, denote by ij,1 the unique 1 ≤ i ≤ n such

that |M(xij,1−1)| < |minSj | ≤ |M(xij,1)| and also by ij,2 the unique, if any,
ij,1 < i ≤ n such that |S∗j (xij,2)| ≥ εij,1 . We set Sj,k = Sj ∩ Q[pij,k ,qij,k ]

for
k = 1, 2, and Sj,3 = Sj \ (Sj,1 ∪ Sj,2), and Ji = {j : ij,1 = i or ij,2 = i} for
1 ≤ i ≤ n. Note that, by (a), each j appears in Ji for at most two i and so∑n

i=1

∑
j∈Ji b

2
j ≤ 2

∑m
j=1 b

2
j . We thus calculate

∣∣∣ m∑
j=1

bjS
∗
j,1

( n∑
i=1

aixi

)
+

m∑
j=1

bjS
∗
j,2

( n∑
i=1

aixi

)∣∣∣ = ∣∣∣ n∑
i=1

ai
∑
j∈Ji

bjS
∗
j (xi)

∣∣∣
≤
( n∑
i=1

a2i

)1/2( n∑
i=1

(∑
j∈Ji

bjS
∗
j (xi)

)2)1/2
≤
( n∑
i=1

a2i

)1/2( n∑
i=1

∑
j∈Ji

b2j

)1/2
≤
√
2
( n∑
i=1

a2i

)1/2
.

Finally, we set Gi = {j : |M(xi−1)| < |minSj | ≤ |M(xi)|} and we see
that {1, . . . ,m} =

⋃n
i=1Gi. Notice that #Gi ≤ 2qi and |S∗j,3(

∑n
k=1 xk)| <∑∞

k=i(k + 1)εk for any j ∈ Gi. Then due to (b) and (ii), it follows that∑m
j=1 |S∗j,3(

∑n
i=1 xi)| < ε and hence∣∣∣ m∑

j=1

bjS
∗
j,3

( n∑
i=1

aixi

)∣∣∣ = ∣∣∣ n∑
i=1

ai

m∑
j=1

bjS
∗
j,3(xi)

∣∣∣ < ε
( n∑
i=1

a2i

)1/2
.
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Proof of Theorem 4.16. Let (x1n)n, . . . , (x
l
n)n in F0(JT ) be such that

((xin)n)
l
i=1 generates a sequence (ein)

l
i=1, n∈N as an l-joint spreading model

and by a sliding hump argument we may assume that each sequence (xin)n
is block. Hence we may choose L ∈ [N]∞ such that the family (Fn)n∈L with
Fn = {x1n, . . . , xln} is a weakly null level block family in JT which satisfies (i)
and (ii) in Lemma 4.20. Then, since ((xin)n∈L)li=1 also generates (ein)li=1, n∈N
as an l-joint spreading model, (ein)li=1, n∈N is

√
2-equivalent to the usual basis

of `2 and therefore any two l-joint spreading models generated by sequences
from F0(JT ) are 2-equivalent.

Remark 4.21. The notion of asymptotic models, which appeared in [HO],
also concerns the asymptotic behavior of countably many basic sequences. Al-
though asymptotic models are different from joint spreadingmodels, as B. Sari
pointed out, a Banach space admits a uniformly unique asymptotic model
with respect to a family F if and only if it admits a uniformly unique joint
spreading model with respect to F .

5. Uniform approximation of bounded operators. We now pass to
the study of the UALS property on certain classes of spaces. First we consider
spaces with very few operators, namely spaces with the scalar-plus-compact
property. The second class includes spaces admitting a uniformly unique joint
spreading model with respect to certain families of Schauder basic sequences.
Here, the notion of joint spreading models and the UALS property come
together in the sense that the first property yields the second one. The third
subsection is devoted to the study of the UALS property under duality.
A consequence of the main result, Theorem 5.23, is that the spaces C(K)
with K countable compact satisfy the UALS. In the fourth subsection we
show that the spaces Lp[0, 1] for 1 ≤ p ≤ ∞ and p 6= 2, and C(K) for
uncountable compact metric spaces K, fail the UALS property. We close
with some final remarks and open problems.

Definition 5.1. We will say that a Banach spaceX satisfies the Uniform
Approximation on Large Subspaces (UALS ) property if there existsC > 0 such
that the following is satisfied. For every convex compact subset W of L(X),
every A ∈ L(X) and ε > 0 with the property that, for every x ∈ BX , there
is a B ∈W such that ‖A(x)−B(x)‖ ≤ ε, there exist a finite-codimensional
subspace Y of X and a B ∈W such that ‖(A−B)|Y ‖L(Y,X) ≤ Cε.

Definition 5.2. A Banach space X will be called UALS-saturated if
there exists C > 0 such that for every convex compact subset W of L(X),
every A ∈ L(X) and ε > 0 with the property that, for every x ∈ BX , there
is a B ∈ W such that ‖(A − B)x‖ ≤ ε, every subspace Y of X contains a
further subspace Z such that ‖(A−B)|Z‖L(Z,X) ≤ Cε for some B ∈W .
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5.1. The UALS property for compact operators. The first class
of spaces satisfying the UALS includes spaces with very few operators. We
prove that Banach spaces with the scalar-plus-compact property satisfy the
UALS and are in fact UALS-saturated. Hence, the main result of [AF+] shows
that a large class of spaces, which includes all superreflexive spaces, embed
into spaces that satisfy the UALS. We start with the following variation of
Mazur’s theorem [LT, Theorem 1.a.5].

Lemma 5.3. LetX be a Banach space, T ∈ L(X) and let ε > 0 be such that
‖T |Y ‖L(Y,X) > ε for every subspace Y of X of finite codimension. Then there
exists a normalized sequence (xn)n in X such that (Txn)n is seminormalized
Schauder basic.

Proof. Let δ > 0. Pick x1 in the unit sphere of X with ‖Tx1‖ ≥ ε
and assume that x1, . . . , xn have been chosen for some n ∈ N. Let G be a
finite subset of X∗ such that, for every x ∈ span{Tx1, . . . , Txn}, we have
‖x‖ ≤ (1 + δ)max{g(x) : g ∈ G}, and choose xn+1 in the unit sphere of⋂
g∈G kerT ∗g with ‖Txn+1‖ ≥ ε. It follows quite easily that (Txn)n is a

Schauder basic sequence.

Proposition 5.4. Let X be a Banach space and T ∈ L(X) be a compact
operator. Then inf ‖T |Y ‖L(Y,X) = 0, where the infimum is taken over all
subspaces Y of X of finite codimension.

Proof. If the conclusion is false, then the previous lemma shows thatT [BX ]
contains a seminormalized Schauder basic sequence, and this contradicts the
fact that T is compact.

Notation 5.5. Let X be a Banach space. We will denote by K(X) the
ideal of all compact operators in the unital algebra L(X).

Corollary 5.6. Let X be a Banach space, W be a compact subset
of K(X) and A ∈ L(X). Assume that there exists ε > 0 such that, for
every x ∈ BX , there is a B ∈ W such that ‖A(x) − B(x)‖ ≤ ε. Then, for
every δ > 0, there exists a finite-codimensional subspace Y of X such that
‖(A−B)|Y ‖L(Y,X) ≤ ε+ δ for all B ∈W .

Proof. Let δ > 0 and {Bi}ni=1 be a δ-net ofW . Applying Proposition 5.4,
we choose a finite-codimensional subspace Y of X such that ‖Bi|Y ‖ < δ for
every 1 ≤ i ≤ n. Note that ‖B|Y ‖ ≤ 2δ for all B ∈ W . Then, for every x in
the unit ball of Y , there is a B inW such that ‖A(x)−B(x)‖ ≤ ε and hence
‖A(x)‖ < ε+2δ. That is, ‖A|Y ‖ ≤ ε+2δ. Therefore ‖(A−B)|Y ‖L(Y,X) ≤ ε+4δ
for every B ∈W .

Theorem 5.7. Every Banach space with the scalar-plus-compact property
satisfies the UALS.
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Proof. Let W,A, ε be as in Definition 5.1, with A = λAI +KA and KA

compact. Let δ > 0 and {Bi}ni=1 be a δ-net of W with Bi = λiI +Ki and
Ki ∈ K(X) for i = 1, . . . , n. Proposition 5.4 then yields a finite-codimensional
subspace Y ofX such that ‖KA|Y ‖ ≤ δ and ‖Ki|Y ‖ ≤ δ for all 1 ≤ i ≤ n. Pick
an x∈Y with ‖x‖=1 and B∈W with B=λBI+KB and ‖A(x)−B(x)‖≤ε.
Then, for 1 ≤ i ≤ n such that ‖B−Bi‖ ≤ δ, we have ‖A(x)−Bi(x)‖ ≤ ε+ δ
and hence |λA− λi| = ‖λAx− λix‖ ≤ ‖Ax−Bix‖+ ‖KAx+Kix‖ ≤ ε+2δ.
Therefore, for every y in the unit ball of Y , we have ‖A(y)−Bi(y)‖ ≤ ε+4δ,
which proves the desired result.

Theorem 5.8. Let X be a Banach space such that, for every A ∈ L(X),
there is a strictly singular operator S and λ ∈ R such that A = λI + S.
Then X is UALS-saturated.

Proof. Let W,A, ε be as in Definition 5.2, with A = λAI + SA and SA
a strictly singular operator. Let δ > 0 and {Bi}ni=1 be a δ-net of W with
Bi = λiI + Si and Si strictly singular, 1 ≤ i ≤ n. Recall that for every
infinite-dimensional subspace of X there exists a further subspace Y such
that SA|Y and Si|Y , for 1 ≤ i ≤ n, are compact operators. Applying the same
arguments used in the previous proof we obtain the desired conclusion.

5.2. Uniformly unique joint spreading models and the UALS
property. In this subsection we study spaces that admit uniformly unique
l-joint spreading models with respect to families with sufficient stability
properties, described in the following definition, to deduce that in certain
cases they satisfy the UALS property. Such spaces are, for example, all
Asymptotic `p spaces. This should be compared to the examples of the
following subsection that fail the UALS and the proof of this fact is based
on the existence of diverse plegma spreading sequences in these spaces.

The families of sequences that we restrict our study to are very rich, in
the sense that any sequence has a subsequence whose successive differences
are in F , and it is also closed under taking subsequences. Moreover, if a space
has a uniformly unique l-joint spreading model with respect to such a family
then, as already shown in Proposition 4.9, it has to be at least unconditional
and in most cases it has to be some `p or c0.

Definition 5.9. Let X be a Banach space. A collection F of normalized
and Schauder basic sequences in X will be called difference-including if

(i) for every (xn)n in F any subsequence of (xn)n is in F ,
(ii) for every sequence (xn)n in X without a norm convergent subsequence

there exists an infinite subset L of N such that, for any further infinite
subset M = {mk : k ∈ N} of L, the sequence (zk)k defined by zk =
‖xm2k−1

− xm2k
‖−1(xm2k−1

− xm2k
) is in F .
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Remark 5.10. Adifference-including collection clearly satisfies (a) and (b)
of Proposition 4.9. In fact, most naturally defined families of normalized
Schauder basic sequences in a Banach space X are difference-including. Such
families include

(i) F (X), the collection of all normalized Schauder basic sequences in X;
(ii) F(1+ε)(X), the collection of all normalized (1 + ε)-Schauder basic se-

quences in X for some fixed ε > 0;
(iii) F0,A for a countable subset A of the dual, where

F0,A =
{
(xn)n : (xn)n is normalized and lim

n
f(xn)= 0 for all f ∈A

}
;

(iv) F̃b(X) = F0,(e∗n)n
if X has a Schauder basis (en)n, where (e∗n)n are the

biorthogonal functionals associated to the basis; notice that a Banach
space X admits a uniformly unique l-joint spreading model with respect
to Fb(X) if and only if it does so with respect to F̃b(X);

(v) F0(X) if X does not contain `1;
(vi) Fsu(X), the collection of all normalized Schauder basic sequences that

generate a 1-suppression unconditional spreading model.

In certain cases, for X non-separable it is convenient to consider different
collections FZ for different separable subspaces Z of X. This is included in
the statement of the following theorem.

Theorem 5.11. Let X be a Banach space and assume that for every
separable subspace Z of X we have a difference-including collection FZ of
normalized Schauder basic sequences in Z. If there exists a uniform K ≥ 1
such that each such Z admits a K-uniformly unique l-joint spreading model
with respect to FZ , then X satisfies the UALS property.

We postpone the proof of Theorem 5.11 in order to first state and prove
its corollaries. Note that if X is a Banach space and F is a collection of
normalized Schauder basic sequences in X with respect to which it admits
a uniformly unique l-joint spreading model, then we may consider, for every
separable subspace Z of X, the family FZ = {(xn)n in F : xi ∈ Z for
all i ∈ N}. This is in fact sufficient to prove most cases stated below.

Corollary 5.12. In the following cases, a Banach space X and all of its
subspaces satisfy the UALS property:

(i) X has a Schauder basis and it admits a uniformly unique l-joint spreading
model with respect to Fb(X).

(ii) X is an arbitrary Banach space that admits a uniformly unique l-joint
spreading model with respect to F (X).

(iii) X does not contain `1 and it admits a uniformly unique l-joint spreading
model with respect to F0(X).
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(iv) X is an arbitrary Banach space and, for some ε > 0, it admits a uniformly
unique l-joint spreading model with respect to F(1+ε)(X).

Proof. All cases follow from Theorem 5.11. We describe some of the
details. Case (i) follows from the fact that such an X admits a uniformly
unique l-joint spreading model with respect to F̃b(X) = F0,(e∗i )i

, which is
difference-including. Case (ii) follows directly from the fact that F (X) is
difference-including. In case (iii), by Rosenthal’s `1 theorem [Ro], F0(X) is
difference-including. For (iv), F(1+ε) is difference-including as well.

Corollary 5.13. The following Banach spaces and all of their subspaces
satisfy the UALS property:

(a) the space `p(Γ ) for 1 ≤ p <∞ and any infinite set Γ ,
(b) the space c0(Γ ) for any infinite set Γ ,
(c) the James Tree space,
(d) every Asymptotic `p space for 1 ≤ p ≤ ∞.

Proof. The case of `p(Γ ) follows from item (ii) of Corollary 5.12 for
1 < p < ∞ and from (i) for p = 1, while that of c0(Γ ) and the James
Tree space follows from item (iii). Moreover, for case (d), if 1 < p ≤ ∞
and X is an Asymptotic `p space, then it does not contain `1 and admits
a uniformly unique l-joint spreading model with respect to F0(X), so the
result follows from case (iii) as well. Finally, if X is C-Asymptotic `1, use
Proposition 4.11 to choose for every separable subspace Z of X a countable
subset AZ of Z∗ such that Z admits a C2-uniformly unique l-joint spreading
model with respect to FZ = F0,AZ

.

We break up the proof of Theorem 5.11 into several steps.

Lemma 5.14. Let X be a Banach space that admits a K-uniformly unique
l-joint spreading model with respect to a difference-including collection F
of normalized Schauder basic sequences. Then for any D > 2K2 and any
sequences (zin)n, (yin)n, i = 1, . . . , l, in F , there exists an infinite subset L
of N such that, for any scalars a1, . . . , al, θ1, . . . , θl and n1 < · · · < nl in L,

(1) min
1≤i≤l

|θi|
1

D

∥∥∥ l∑
i=1

aiz
i
ni

∥∥∥ ≤ ∥∥∥ l∑
i=1

aiθiy
i
ni

∥∥∥ ≤ max
1≤i≤l

|θi|D
∥∥∥ l∑
i=1

aiz
i
ni

∥∥∥.
Proof. Choose C > K and pass to an infinite set L so that the l-tuples

((zin)n∈L)
l
i=1 and ((yin)n∈L)

l
i=1 generate some l-joint spreading models that

are K-equivalent to each other. This means that, after perhaps passing to a
further subset of L, for any n1 < · · · < nl in L, the sequences (zini

)li=1 and
(yini

)li=1 are C-equivalent and each of them is C-suppression unconditional
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and hence 2C-unconditional. For any scalars a1, . . . , al, θ1, . . . , θl, we calculate∥∥∥ l∑
i=1

aiθiy
i
ni

∥∥∥ ≥ 1

2C
min
1≤i≤l

|θi|
∥∥∥ l∑
i=1

aiy
i
ni

∥∥∥ ≥ 1

2C2
min
1≤i≤l

|θi|
∥∥∥ l∑
i=1

aiz
i
ni

∥∥∥.
The other inequality is obtained identically. Therefore, anyD > 2K2 satisfies
the conclusion.

The following is another variant of Mazur’s theorem [LT, Theorem 1.a.5].

Lemma 5.15. Let X be a separable Banach space. Let also Tij ∈ L(X)
for 1 ≤ i ≤ n, 1 ≤ j ≤ mi and c > 0 be such that, for every i = 1, . . . , n
and each finite-codimensional subspace Y of X, there is an xi ∈ Y with
‖xi‖ = 1 and ‖Tijxi‖ > c for all 1 ≤ j ≤ mi. Then, for every ε > 0,
there exist normalized sequences (xik)k, i = 1, . . . , n, in X such that if we set
Zk = span{{xik}ni=1 ∪ {Tijxik}

n,mi
i=1, j=1} for k ∈ N and Z = span

⋃
k Zk, then

(i) (Zk)k forms an FDD for the space Z, with projection constant at most
1 + ε,

(ii) ‖Tij(xik)‖ > c for all i = 1, . . . , n, j = 1, . . . ,mi, and k ∈ N.

Proof. Set A = {I} ∪ {Tij}n,mi
i=1, j=1 and, for every 1 ≤ i ≤ n, choose a

normalized vector xi1 in X with ‖Tijxi1‖ > c for all j = 1, . . . ,mi. Assume
that we have chosen (xik)

d
k=1 up to some d ∈ N for 1 ≤ i ≤ n, so that the

spaces (Zk)dk=1 satisfy (i) for the space they generate and (ii) for 1 ≤ k ≤ d.
Choose a finite subset G of the unit sphere of X∗ such that, for all x in the
linear span of

⋃d
k=1 Zk, we have ‖x‖ ≤ (1 + ε)max{g(x) : g ∈ G}, and set

F =
⋃
T∈A{T ∗g : g ∈ G}. Finally, for i = 1, . . . , n, choose xid+1 in the unit

sphere of
⋂
f∈F ker f such that ‖Tijxid+1‖ > c for all 1 ≤ j ≤ mi. It then

follows quite easily that the sequences are as desired.

Lemma 5.16. LetX be a Banach space and assume that for every separable
subspace Z of X we have a difference-including collection FZ of normalized
Schauder basic sequences in Z. Let T1, . . . , Tl be bounded linear operators
on X and assume that there is c > 0 such that, for every finite-codimensional
subspace Y of X and every i = 1, . . . , l, we have ‖Ti|Y ‖L(Y,X) ≥ c. Assume
moreover that, for some 0 < δ < c and i = 1, . . . , l, we have Ti1, . . . , Timi

in L(X) with ‖Tij − Ti‖ ≤ δ for j = 1, . . . ,mi. If c̃ = c− δ, then there exist
a separable subspace Z of X and normalized sequences (zik)k, i = 1, . . . , l,
in FZ such that

(i) for any n1 < · · · < nl, the sequence (zini
)li=1 is 9/8-Schauder basic,

(ii) ‖Tijzik‖ > c̃/3 for i = 1, . . . , n, j = 1, . . . ,mi and k ∈ N,
(iii) if yijk = ‖Tijzik‖−1Tijzik then (yijk )k is in FZ for i = 1, . . . , n and

j = 1, . . . ,mi.
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Proof. Note that, for any finite-codimensional subspace Y of X, we may
choose xi in the unit ball of Y such that ‖Tixi‖ > c − (c − δ)/4, which
means that, for j = 1, . . . ,mi, we have ‖Tijxi‖ > 3(c − δ)/4 = 3c̃/4. Apply
Lemma 5.15 to find normalized sequences (xik)k, i = 1, . . . , n, such that
‖Tijxik‖ > 3c̃/4 for all k ∈ N, i = 1, . . . , n and j = 1, . . . ,mi, and the
sequence (Zk)k defined in Lemma 5.15 is an FDD with constant 9/8. Let Z =
span

⋃
k Zk. ChooseL so that if we set zik = ‖xim2k−1

−xim2k
‖−1(xim2k−1

−xim2k
),

then (zik)k as well as (‖Tijzik‖−1Tijzik)k are in FZ for i = 1, . . . , n, j =
1, . . . ,mi. By the fact that (Tijxik)k is 9/8-Schauder basic we obtain

‖Tijzik‖ =
1

‖xim2k−1
− xim2k

‖
‖Tijxim2k−1

− Tijxim2k
‖

≥ 1

2

1

9/8
‖Tijxim2k−1

‖ > 3c̃/4

9/4
.

Statement (i) follows from the fact (Zk)k is an FDD with constant 9/8 and
(zini

)li=1 is a block sequence.

S. Kakutani [Ka] proved the finite-dimensional analog of the following
theorem, also known as Kakutani’s Fixed Point Theorem. We present the
infinite-dimensional case by H. F. Bohnenblust and S. Karlin [BK], which as
already mentioned is a key ingredient in the proof of Theorem 5.11. Recall
that a multivalued mapping φ : X � Y between topological spaces has closed
graph if for every (xn)n ∈ X with limxn = x and (yn)n ∈ Y with yn ∈ φ(xn)
and lim yn = y, we have y ∈ φ(x).

Theorem 5.17. LetX be a Banach space,K a non-empty compact convex
subset of X and let φ : K � K have closed graph and non-empty convex
values. Then φ has a fixed point, i.e. there exists x ∈ X such that x ∈ φ(x).

Proof of Theorem 5.11. Let D > 2K2, i.e. a constant for which the
conclusion of Lemma 5.14 can be applied to all families FZ . Set C = 7D.
Let W be a convex and compact subset of L(X), A ∈ L(X), and ε > 0 such
that, for all x in the unit ball of X, there is T ∈W with ‖A(x)− T (x)‖ ≤ ε.
We claim that there is a finite-codimensional subspace Y of X and T ∈ W
such that ‖(A− T )|Y ‖L(Y,X) < Cε. Assume that the conclusion is false. Set
c = Cε, δ = c/2, and c̃ = c − δ = C/2. Choose a maximal δ-separated
subset (Ti)li=1 of W , set η = ε/(27l), and for i = 1, . . . , l choose a maximal
η-separated subset (Tij)mi

j=1 of BW (Ti, δ) = {T ∈ W : ‖Ti − T‖ ≤ δ}. Apply
Lemma 5.16 to the operators A − Ti and A − Tij for i = 1, . . . , l and
j = 1, . . . ,mi to find a separable subspace Z and normalized 9/8-Schauder
basic sequences (zik)k in FZ such that for i = 1, . . . , l, j = 1, . . . ,mi if
yijk = ‖(A − Tij)zik‖−1(A − Tij)zik for k ∈ N, then ‖(A − Tij)zik‖ ≥ c̃/3 and
the sequence (yijk )k is in FZ . Iterate Lemma 5.14 to find an infinite subset L
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of N such that (1) is satisfied for (zik)k∈L and (yijik )k∈L for all i = 1, . . . , l and
for any choice of 1 ≤ ji ≤ mi.

Fix k1 < · · · < kl in L and take a partition of unity f1, . . . , fl ofW subor-
dinate to T1, . . . , Tl. That is, fi :W → [0, 1] is continuous,

∑l
i=1 fi(T ) = 1 for

all T in W and fi(Tj) = δij . We define a continuous mapping x :W → X by

x(T ) =

∑l
i=1 fi(T )z

i
ni

‖
∑l

i=1 fi(T )z
i
ni
‖
.

Let T be an arbitrary element ofW , and if IT = {i = 1, . . . , l : ‖T −Ti‖ ≤ δ},
then for i ∈ IT choose 1 ≤ ji ≤ mi such that ‖T − Tiji‖ ≤ η. Recall that
(zini

)i is 9/8-Schauder basic and therefore

(2)
∥∥∥ l∑
i=1

fi(T )z
i
ni

∥∥∥ ≥ 4

9l

l∑
i=1

|fi(T )| =
4

9l
.

We observe that

(3) ‖(A− T )x(T )‖ = 1

‖
∑

i∈IT fi(T )z
i
ni
‖

∥∥∥∑
i∈IT

fi(T )(A− T )zini

∥∥∥
≥
‖
∑

i∈IT fi(T )(A− Tiji)z
i
ni
‖

‖
∑

i∈IT fi(T )z
i
ni
‖

−
∑

i∈IT |fi(T )| ‖T − Tiji‖
‖
∑

i∈IT fi(T )z
i
ni
‖

≥
‖
∑

i∈IT fi(T )(A− Tiji)z
i
ni
‖

‖
∑

i∈IT fi(T )x
i
ni
‖

− η
∑

i∈IT |fi(T )|
(4/(9l))

∑
i∈IT |fi(T )|

(by (2))

=
‖
∑

i∈IT fi(T )‖(A− Tiji)z
i
ni
‖yijni‖

‖
∑

i∈IT fi(T )x
i
ni
‖

− 9lη

4

≥ min
1≤i≤l

‖(A− Tiji)zini
‖ 1
D

‖
∑

i∈IT fi(T )x
i
ni
‖

‖
∑

i∈IT fi(T )x
i
ni
‖
− 9lη

4
(by (1))

≥ c̃

3D
− 9lη

4
=

7D

6D
ε− 1

12
ε =

13

12
ε.

We now define a multivalued mapping φ :W �W by

φ(T ) = {S ∈W : ‖(A− S)x(T )‖ ≤ ε}.
By assumption, the values of φ are non-empty and they are also closed and
convex. It also easily follows that φ has closed graph. Hence, from Theo-
rem 5.17, there exists T ∈ W with T ∈ φ(T ), i.e., ‖(A− T )x(T )‖ ≤ ε. This
contradicts (3), which completes the proof of Theorem 5.11.

The following lemma shows that if X is a Banach space with a shrinking
FDD that satisfies the UALS property, then the finite-codimensional sub-
spaces of X on which the approximations happen can be assumed to be tail
subspaces.
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Lemma 5.18. LetX be a Banach space with a shrinking FDD (Xn)n and Y
be a finite-codimensional subspace of X. Then, for every ε > 0, there exists a
tail subspace Z of X such that BZ ⊂ BY + εBX .

Proof. Let x1, . . . , xn ∈BX withX =Y ⊕span{x1, . . . , xn} and x∗1, . . . , x∗n
∈ X∗ be such that x∗i (xj) = δij for all 1 ≤ i, j ≤ n. Notice that Y =⋂n
i=1 kerx

∗
i . Since (Xn)n is a shrinking FDD, we may choose n0 ∈ N such

that ‖x∗i −P ∗n0
(x∗i )‖ < ε/l‖xi‖ for all 1 ≤ i ≤ n, and set Z = span

⋃
n>n0

Xn.
Pick z ∈ BZ and set x =

∑l
i=1 x

∗
i (z)xi/ε. Then |x∗i (z)| < ε/l‖xi‖ and

x∗i (x) = x∗i (z)/ε for all 1 ≤ i ≤ n. Hence ‖x‖ < 1 and z − εx ∈
⋂n
i=1 kerx

∗
i ,

from which it follows that z ∈ BY + 2εBX .

The next example demonstrates that a shrinking FDD is necessary above
to assume that the uniform approximation happens on tail subspaces. Let us
recall that the basis of `1 is not shrinking.

Example 5.19. Let (en)n denote the unit vector basis of `1 and consider
the operator A : `1 → `1 with

A
(
(xn)n

)
=

∞∑
n=1

x2n−1e1 +

∞∑
n=1

x2ne2,

and for z ∈ `1 the operators B+
z , B

−
z : `1 → `1 with

B+
z ((xn)n) =

∞∑
n=1

xnz and B−z ((xn)n) =
( ∞∑
n=1

x2n−1 −
∞∑
n=1

x2n

)
z.

Set W = co{B±z : z ∈ span{e1, e2} and ‖z‖ ≤ 1}.
Let x ∈ `1 with ‖x‖ ≤ 1 and A(x) = a1e1+a2e2, where a1 =

∑∞
n=1 x2n−1

and a2 =
∑∞

n=1 x2n. Suppose A(x) 6= 0 and set a = max{|a1+a2|, |a1−a2|}.
Notice that a = |a1|+ |a2|. If a = |a1 + a2|, then setting z = 1

a1+a2
A(x) we

have ‖z‖ = 1 and B+
z (x) = A(x). If a = |a1 − a2|, then the same hold for

z = 1
a1−a2A(x). Hence, for every x ∈ `1 with ‖x‖ ≤ 1, there is a B ∈W such

that ‖(A−B)x‖ = 0.
Pick any B ∈W and n0 ∈ N. Then there exists a convex combination in

W such that B =
∑n

i=1 aiB
+
yi +

∑m
i=1 biB

−
zi and, for every k ∈ N, we have

B(e2k−1) =
∑n

i=1 aiyi +
∑m

i=1 bizi and B(e2k) =
∑n

i=1 aiyi −
∑m

i=1 bizi and
hence ∥∥∥∥(A−B)

e2k−1 + e2k
2

∥∥∥∥ =

∥∥∥∥e1 + e2
2

−
n∑
i=1

aiyi

∥∥∥∥ ≥ 1−
n∑
i=1

ai.

Similarly,
∥∥(A−B)

e2k−1−e2k
2

∥∥ ≥∑n
i=1 ai and thus, for any k0 ∈ N with n0 ≤

2k0 − 1, either
∥∥(A−B)

e2k0−1+e2k0
2

∥∥ ≥ 1/2 or
∥∥(A−B)

e2k0−1−e2k0
2

∥∥ ≥ 1/2.
Therefore, ‖(A−B)|span{en:n≥n0}‖ ≥ 1/2 while, for every x in the unit ball
of `1, there exists a B ∈W such that ‖A(x)−B(x)‖ = 0.
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5.3. The UALS property and duality. Wemake a connection between
the UALS property of a space and its dual. In particular, for reflexive spaces
with an FDD we show that the UALS forX is equivalent to the UALS forX∗.
We also show that if X has an FDD and X∗ has a unique l-joint spreading
model with respect to a difference-including family, then X must satisfy the
UALS as well. This allows us to show indirectly that certain spaces, such
as L∞ spaces with separable dual, satisfy the UALS.

Proposition 5.20. Let X be a Banach space, A ∈ L(X) and W be a
convex and WOT-compact subset of L(X). If there is an ε > 0 such that W
ε-pointwise approximates A, then the set W ∗ = {T ∗ : T ∈ W} ε-pointwise
approximates A∗.

Proof. If the conclusion is false, then there exists x∗ ∈ SX∗ and δ > 0
such that if W ∗x∗ = {T ∗x∗ : T ∈ W}, then dist(A∗x∗,W ∗x∗) ≥ ε + δ. As
W ∗x∗ is a convex and w∗-compact subset of X∗, a separation theorem shows
that there exists x ∈ SX such that x(A∗x∗) + (ε + δ/2) ≤ infT∈W x(T ∗x∗),
so

‖Ax− Tx‖ ≥ x∗(Tx−Ax) ≥ ε+ δ/2

for all T ∈W .

Remark 5.21. The compactness of W is necessary in Proposition 5.20.
To see this, consider the case whenX = `1, A is the identity operator, andW
is the closed convex hull of all natural projections onto finite subsets of N
with respect to the unit vector basis.

We state the main results and prove them afterwards.

Theorem 5.22. Let X be a reflexive Banach space with an FDD. Then X
satisfies the UALS if and only if X∗ does.

Theorem 5.23. LetX be a Banach space with an FDD. Assume that there
exist a uniform constant C > 0 and, for every separable subspace Z of X∗,
a difference-including family FZ of normalized sequences in X∗ such that Z
admits a C-uniformly unique l-joint spreading model with respect to FZ .
Then X satisfies the UALS property.

Recall that results from [H], [HS], [LS], and [S] imply that if X is an
infinite-dimensional L∞ space with separable dual then X∗ is isomorphic
to `1. Also, this is the case if and only if `1 is not isomorphic to a subspace
of X. As proved in [FOS], every Banach space with separable dual embeds
in an L∞ space with separable dual.

Corollary 5.24. Every L∞ space with separable dual satisfies the UALS
property. In particular,

(i) every hereditarily indecomposable L∞ space satisfies the UALS,
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(ii) every Banach space with separable dual embeds in a space that satisfies
the UALS,

(iii) for every countable compact metric space K, the space C(K) satisfies
the UALS.

Corollary 5.25. If X is Banach space such thatX∗ is an Asymptotic `p
space for some 1 ≤ p ≤ ∞, then every quotient of X with an FDD satisfies
the UALS.

Lemma 5.26. Let X be a Banach space, let R : X → X be a finite rank
operator, and let Q = I −R. If T is in L(X), then there exists a subspace Y
of X of finite codimension such that ‖T |Y ‖L(Y,X) ≤ ‖QT‖.

Proof. Since RT is a finite rank operator, the subspace Y = kerRT is of
finite codimension. So, ‖T |Y ‖ ≤ ‖RT |Y ‖+ ‖QT |Y ‖ ≤ ‖QT‖.

Proof of Theorem 5.22. It is clearly enough to show one implication. Let
us assume thatX∗ satisfies the UALS with constant C > 0 and let A ∈ L(X)
and W be a compact and convex subset of L(X) that ε-approximates A.
Then by Proposition 5.20 the set W ∗ = {T ∗ : T ∈ W} ε-approximates A∗
and so there exists a subspace Z of X∗ of finite codimension such that
‖(T ∗ − A∗)|Z‖ ≤ Cε. By Lemma 5.18, and perhaps with some additional
error, wemay assume thatZ is a tail subspacewith an associated projectionQ∗n
and hence

‖Qn(T −A)‖ = ‖(T ∗ −A∗)Q∗n‖ ≤ C‖Qn‖ε.
Applying Lemma 5.26, we may find a subspace Y of X of finite codimension
such that ‖(T −A)|Y ‖ ≤ ‖Qn(T −A)‖ and hence ‖(T −A)|Y ‖ ≤ C‖Qn‖ε.

Lemma 5.27. Let X be a Banach space with a bimonotone FDD and
let (Qn)n denote the basis tail projections (i.e. Qn = I − Pn for all n ∈ N).
Assume that for every separable subspaceZ ofX∗ we have a difference-including
collection FZ of normalized Schauder basic sequences in Z. Let T1, . . . , Tl be
bounded linear operators on X and assume that there is c > 0 such that, for
every n ∈ N and every i = 1, . . . , l, we have ‖T ∗i Q∗n‖ ≥ c. Assume moreover
that, for some 0 < δ < c and every i = 1, . . . , l, we have Ti1, . . . , Timi in L(X)
with ‖Tij−Ti‖ ≤ δ for j = 1, . . . ,mi. Then, if c̃ = c−δ, there exist a separable
subspace Z of X∗ and normalized sequences (zik)k, i = 1, . . . , l, in FZ such
that

(i) for any n1 < · · · < nl, the sequence (zini
)li=1 is 9/8-Schauder basic,

(ii) ‖T ∗ijzik‖ > c̃/3 for i = 1, . . . , n, j = 1, . . . ,mi and k ∈ N,
(iii) if yijk = ‖T ∗ijzik‖−1T ∗ijzik, then (yijk )k is in FZ for i = 1, . . . , n and

j = 1, . . . ,mi.

Proof. For every i = 1, . . . , l, we choose a normalized sequence (xi∗n )n
such that ‖T ∗i Q∗nxi∗n ‖ ≥ c − (c − δ)/4. Since the FDD is bimonotone, we
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may assume that min supp(xi∗n ) > n for all n ∈ N and 1 ≤ i ≤ l and that
‖T ∗i xi∗n ‖ ≥ c − (c − δ)/4. This means that all sequences (xi∗n )n, (T ∗xi∗n )n for
1 ≤ i ≤ l are w∗-null (by w∗-continuity). We may now reason as for Lemmas
5.15 and 5.16 to achieve the desired conclusion.

Proof of Theorem 5.23. We renorm the space X so that its FDD is
bimonotone. Let D > 2K2, i.e. a constant for which the conclusion of
Lemma 5.14 can be applied to all families FZ for all separable subspaces Z
ofX∗. SetC = 14D. We will show thatX satisfies the UALS with constantC.
Let A ∈ L(X) and W be a convex compact subset of L of X that ε-
approximates A. It is sufficient to find T ∈ W and n0 ∈ N such that
‖(T ∗ −A∗)Q∗n0

‖ < Cε. Indeed, then ‖Qn0(A− T )‖ = ‖(T ∗ −A∗)Q∗n0
‖ < Cε

and by Lemma 5.26 we will be done. If we assume that the conclusion is
false, we may follow the proof of Theorem 5.11 to the letter, only replacing
Lemma 5.16 with Lemma 5.27, to reach the desired conclusion.

5.4. Spaces failing the UALS property. In this section we present an
archetypal example of a reflexive Banach space X that fails the UALS and
admits a unique spreading model isometric to `2. The proof that X fails the
property is based on the fact that it does not admit a uniformly unique joint
spreading model. This reasoning may then be modified and utilized to show
that classical spaces such as Lp[0, 1] for 1 ≤ p ≤ ∞ and p 6= 2, and C(K) for
uncountable compact metric spaces K, fail the UALS.

Definition 5.28. For each n ∈ N, we set Xn = (
∑2n

i=1⊕`2)1 and Yn =

(
∑2n

i=1⊕`2)∞ and let X = (
∑
⊕Xn ⊕ Yn)2.

For a vector x in X , we write x =
∑∞

n=1 xn+yn to mean that xn ∈ Xn and
yn ∈ Yn, and xn =

∑n
j=1 xn(j), yn =

∑2n
j=1 yn(j) to denote the coordinates of

xn and yn with respect to the natural decomposition ofXn and Yn respectively.
Under this notation we compute the norm of x as follows:

‖x‖2 =
∞∑
n=1

(( 2n∑
j=1

‖xn(j)‖
)2

+
(

max
1≤j≤2n

‖yn(j)‖
)2)

.

By taking an orthonormal basis for each `2-component of Xn as well as
of Yn and taking the union over all n ∈ N and for j = 1, . . . , 2n, we obtain
a 1-unconditional basis for X . Henceforth, a block sequence in X will be
understood to be with respect to a fixed enumeration of the aforementioned
basis.

Proposition 5.29. The space X fails the UALS property.

Proof. Assume that X satisfies the UALS with constant C > 0 and pick
n ∈ N with C/n < 1/2. For G ⊂ {1, . . . , 2n}, consider the bounded operator
IG : Xn → Yn with IG(

∑2n
i=1 xi) =

∑
i∈G xi and set An = I{1,...,2n} and
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Wn = co{IG : #G = n}. Let x ∈ Xn with x =
∑2n

i=1 xi and ‖x‖ = 1,
that is,

∑2n
i=1 ‖xi‖ = 1, and σ be a permutation of {1, . . . , 2n} such that

‖xσ(1)‖ ≥ · · · ≥ ‖xσ(2n)‖. Then notice that ‖xσ(n+1)‖ ≤ 1
n+1 and hence

‖An(x)− IG(x)‖ ≤ 1
n+1 for G = {σ(1), . . . , σ(n)}.

The basis (en)n of X is shrinking, since X is reflexive, and therefore
Lemma 5.18 yields a tail subspace Y = span{en : n ≥ n0} of X such that
‖(An − B)|Y ‖ < C/n for some B ∈ W . Then B is a convex combination
B =

∑k
i=1 λiIGi and we have

	∑k
i=1 λiχGi = 1/2, where the integral is with

respect to the normalized counting measure on {1, . . . , 2n}. Hence there exists
a 1 ≤ j ≤ 2n such that

∑k
i=1 λiχGi

(j) ≤ 1
2 . Pick any x ∈ Xn(j) with ‖x‖ = 1

and supp(x) ≥ n0 and notice that ‖An(x) − B(x)‖ ≥ 1 −
∑k

i=1 λiχGi
(j).

Thus ‖(An −B)|Y ‖ ≥ 1
2 , a contradiction.

The space X is a first example of a space failing the UALS property.
As we show next, it admits a uniformly unique spreading model while it
fails to admit a uniformly unique l-joint spreading model. We start with the
following lemmas.

Lemma 5.30. Let (xk)k be a block sequence in X with xk =
∑n1

n=n0
xkn+y

k
n

and assume that ‖xk1n(j)‖ = ‖x
k2
n(j)‖ and ‖y

k1
n(j)‖ = ‖y

k2
n(j)‖ for all k1, k2 ∈ N,

n0 ≤ n ≤ n1 and 1 ≤ j ≤ 2n. Set ε = ‖xk‖ for k ∈ N. Then, for all m ∈ N
and λ1, . . . , λm ∈ R, we have ‖

∑m
k=1 λkx

k‖ = ε(
∑m

k=1 λ
2
k)

1/2.

Proof. Let k0 ∈ N. For every k ∈ N and n0 ≤ n ≤ n1, since (xk)k is block,
we have∥∥∥ m∑

k=1

λkx
k
n(j)

∥∥∥ =
( m∑
k=1

λ2k‖xkn(j)‖
2
)1/2

= ‖xk0n(j)‖
( m∑
k=1

λ2k

)1/2
.

We thus calculate

(4)
∥∥∥ m∑
k=1

λkx
k
n

∥∥∥ =

2n∑
j=1

∥∥∥ m∑
k=1

λkx
k
n(j)

∥∥∥ = ‖xk0n ‖
( m∑
k=1

λ2k

)1/2
and similarly

(5)
∥∥∥ m∑
k=1

λky
k
n

∥∥∥ = max
1≤j≤2n

∥∥∥ m∑
k=1

λky
k
n(j)

∥∥∥ = ‖yk0n ‖
( m∑
k=1

λ2k

)1/2
.

Finally, using (4) and (5), we conclude that∥∥∥ m∑
k=1

λkx
k
∥∥∥2 = n1∑

n=n0

(∥∥∥ m∑
k=1

λkx
k
n

∥∥∥2 + ∥∥∥ m∑
k=1

λky
k
n

∥∥∥2)(6)

=
m∑
k=1

λ2k

n1∑
n=n0

(‖xk0n ‖2 + ‖yk0n ‖2) =
m∑
k=1

λ2k‖xk0‖2.
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Lemma 5.31. Let (nk)k≥0 be an increasing sequence of natural numbers
and (xk)k be a block sequence in X such that

(i) there exist c1, c2 > 0 such that c1 ≤ ‖xk‖ ≤ c2 for every k ∈ N,
(ii) xk =

∑n1
n=n0

(xkn + ykn) +
∑nk+1

n=nk+1(x
k
n + ykn) for every k ∈ N,

(iii) ‖xk1n(j)‖ = ‖x
k2
n(j)‖ and ‖y

k1
n(j)‖ = ‖y

k2
n(j)‖ for all k1, k2 ∈ N, n0 ≤ n ≤ n1

and 1 ≤ j ≤ 2n.

Then, for all m ∈ N and λ1, . . . , λm ∈ R,

c1

( m∑
k=1

λ2k

)1/2
≤
∥∥∥ m∑
k=1

λkx
k
∥∥∥ ≤ c2( m∑

k=1

λ2k

)1/2
.

Proof. Using (6), we have∥∥∥ m∑
k=1

λkx
k
∥∥∥2

=

n1∑
n=n0

(∥∥∥ m∑
k=1

λkx
k
n

∥∥∥2 + ∥∥∥ m∑
k=1

λky
k
n

∥∥∥2)+ m∑
k=1

nk+1∑
n=nk+1

(‖λkxkn‖2 + ‖λkykn‖2)

=
m∑
k=1

λ2k

n1∑
n=n0

(‖xkn‖2 + ‖ykn‖2) +
m∑
k=1

λ2k

nk+1∑
n=nk+1

(‖xkn‖2 + ‖ykn‖2)

=

m∑
k=1

λ2k

( n1∑
n=n0

(‖xkn‖2 + ‖ykn‖2) +
nk+1∑

n=nk+1

(‖xkn‖2 + ‖ykn‖2)
)
=

m∑
k=1

λ2k‖xk‖2,

which, due to (i), yields the desired result.

Proposition 5.32. Let (xk)k be a normalized block sequence in X . For
every ε > 0, (xk)k has a subsequence (xki)i such that for every m ∈ N and
λ1, . . . , λm ∈ R,

(1− ε)
( m∑
i=1

λ2i

)1/2
≤
∥∥∥ m∑
i=1

λix
ki
∥∥∥ ≤ (1 + ε)

( m∑
i=1

λ2i

)1/2
.

Proof. We choose L ∈ [N]∞ with limk∈L ‖xkn(j)‖ = an,j and limk∈L ‖ykn(j)‖
= bn,j for all n∈N and 1≤ j≤ 2n. Set limk∈L ‖xkn‖= an and limk∈L ‖ykn‖= bn.
As
∑∞

n=1(‖xkn‖2+‖ykn‖2) ≤ 1 for all k ∈ N, we deduce that
∑∞

n=1 a
2
n+b

2
n ≤ 1.

Let (εi)i and (δi)i be sequences of positive reals such that
∑∞

i=1 εi < ε and∑∞
i=1 δi < ε. We then choose, by induction, increasing sequences (ni)i ⊂ N

and (ki)i ⊂ L such that for every i ∈ N,

(i) ni > max{n : x
ki−1
n 6= 0 or yki−1

n 6= 0} when i > 1,
(ii)

∑
n>ni

a2n + b2n < εi,
(iii)

∑ni
n=1

∑2n
j=1

∣∣‖xkin(j)‖ − an,j∣∣2 + ∣∣‖ykin(j)‖ − bn,j∣∣2 < δi.
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For each i ∈ N, due to (iii), we may assume that ‖xkin(j)‖ = an,j and
‖ykin(j)‖ = bn,j for all 1 ≤ n ≤ ni and 1 ≤ j ≤ 2n, with an error δi. Then
Lemma 5.30 yields∥∥∥ m∑
i=2

m∑
j=i

λj

ni∑
n=ni−1+1

(x
kj
n +y

kj
n )
∥∥∥ ≤ ( m∑

i=2

εi−1

m∑
j=i

λ2j

)1/2
+
( m∑
i=2

δi

m∑
j=i

λ2j

)1/2
.

Hence, applying Lemma 5.31, we calculate∥∥∥ m∑
i=1

λix
ki
∥∥∥ ≥ ∥∥∥ m∑

i=1

λi

( n1∑
n=1

(xkin + ykin ) +

ni+1∑
n=ni+1

(xkin + ykin )
)∥∥∥

− 2
√
ε
( m∑
i=1

λ2i

)1/2
≥
√
1− 4ε

( m∑
i=1

a2i

)1/2
− 2
√
ε
( m∑
i=1

a2i

)1/2
and ∥∥∥ m∑

i=1

λix
ki
∥∥∥ ≤ ∥∥∥ m∑

i=1

λi

( n1∑
n=1

(xkin + ykin ) +

ni+1∑
n=ni+1

(xkin + ykin )
)∥∥∥

+ 2
√
ε
( m∑
i=1

λ2i

)1/2
≤
√
1 + 4ε

( m∑
i=1

λ2i

)1/2
+ 2
√
ε
( m∑
i=1

λ2i

)1/2
.

Corollary 5.33. Every spreading model generated by a basic sequence
in X is isometric to `2 and hence X admits a uniformly unique spreading
model with respect to F (X).

Remark 5.34. Using similar arguments we may show that every l-joint
spreading model generated by a basic sequence in X is isomorphic to `2,
while this does not happen with a uniform constant and (as already shown)
X fails the UALS property. This exhibits a strong connection between the
UALS and spaces with uniformly unique joint spreading models, which fails
when the space only admits a uniformly unique spreading model.

As mentioned in Section 3, the space from [AM1] is another example of
a space that admits a uniformly unique spreading model and fails to have
a uniform constant for which all of its l-joint spreading models, for every
l ∈ N, are equivalent. This space however satisfies the stronger property that
none of its subspaces admits a uniformly unique l-joint spreading model, in
contrast to the space X which contains `2.
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Motivated by the definition of X , we modify the above arguments to
show that every Lp[0, 1], for 1 ≤ p ≤ ∞, as well as C(K) for an uncountable
compact metric space K, fail the UALS.

Proposition 5.35. For every 1 < p < q < ∞, the spaces (
∑
⊕`p)q and

(
∑
⊕`q)p fail the UALS property.

Proof. For each n ∈ N, we set Xn = (
∑2n

i=1⊕`p)p, Yn = (
∑2n

i=1⊕`p)q
and X = (

∑
Xn ⊕ Yn)q. Assume that X satisfies the UALS property with

constant C > 0 and pick n ∈ N with C/nr < 1/2, where r = (q − p)/(pq).
For every G ⊂ {1, . . . , 2n}, consider the operator IG : Xn → Yn such

that IG(
∑2n

i=1 aixi) =
∑

i∈G aixi and set An = I{1,...,2n} and Wn = co{IG :

#G = n}. Let x ∈ Xn with x =
∑2n

i=1 xi and
∑2n

i=1 ‖xi‖p = 1 and let σ be a
permutation of {1, . . . , 2n} such that ‖xσ(1)‖p ≥ · · · ≥ ‖xσ(2n)‖p. Hence for
G = {σ(1), . . . , σ(n)} we have ‖An(x)− IG(x)‖ < 1/nr, and using the same
arguments as in the proof of Proposition 5.29, we derive a contradiction. The
case of (

∑
⊕`q)p is similar.

Remark 5.36. It is immediate that if some infinite-dimensional comple-
mented subspace of Banach space X fails the UALS property, then the same
holds for X.

Proposition 5.37. The space Lp[0, 1] for 1 < p <∞ and p 6= 2 fails the
UALS property.

Proof. Recall that, as follows from Khinchin’s inequality, `2 embeds iso-
morphically as a complemented subspace into Lp[0, 1] for all 1 < p < ∞.
If p > 2, for each n ∈ N set Xn = (

∑2n
i=1⊕`2)2 and Yn = (

∑2n
i=1⊕`2)p,

and if p < 2, set Xn = (
∑2n

i=1⊕`2)p and Yn = (
∑2n

i=1⊕`2)2. Then, by the
proof of Proposition 5.29, X = (

∑
⊕Xn ⊕ Yn)p fails the UALS, and since

it is complemented in Lp[0, 1] = (
∑
⊕Lp[0, 1])p, the latter also fails that

property.

Proposition 5.38. The space L1[0, 1] fails the UALS property.

Proof. Assume that L1[0, 1] satisfies the UALS with constant C > 0 and
pick n ∈ N with C/n < 1/9. Set Xn = (

∑2n
i=1⊕`1)1 and Yn = (

∑2n
i=1⊕`2)2.

Since `1 is isometric to a complemented subspace of L1[0, 1], the same
holds for (

∑
⊕Xn)1. Moreover, Khinchin’s inequality shows that `2 embeds

isomorphically into L1[0, 1] and hence so does (
∑
⊕Yn)2.

For every G ⊂ {1, . . . , 2n}, consider the operator IG : Xn → Yn such that
IG(
∑2n

i=1 aixi)=
∑

i∈G aixi and set An=I{1,...,2n} and Wn=co{IG :#G=n}.
As above, for all x∈Xn with ‖x‖≤1, we may find G⊂{1, . . . , 2n} such
that ‖An(x) − IG(x)‖<1/n. Let B=

∑k
i=1 λiIGi in Wn and Y be a finite-

codimensional subspace of L1[0, 1] such that ‖(An−B)|Y ‖<C/n and choose,
as in the proof of Proposition 5.29, 1≤j≤2n with

∑k
i=1 λiχGi

(j)≤1/2.
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Let x∗1, . . . , x∗l ∈L∞[0, 1] with Y =
⋂l
i=1 kerx

∗
i . Denote by (em)m the basis

of Xn(j) and choose M ∈ [N]∞ such that (x∗i (em))m∈M converges for all
1≤ i≤ l. Using Lemma 2.1 we choose m1,m2∈M such that d(x, Y )<1/8 for
x=(em1−em2)/2. Then ‖An(x)−B(x)‖≥1/4 and hence ‖(An−B)|Y ‖≥1/9,
a contradiction.

Proposition 5.39. The space L∞[0, 1] fails the UALS property.

Proof. Fix n ∈ N. The σ-algebra B[0, 1] of all Borel sets of [0, 1] is
homeomorphic to that of [0, 1]2n and hence L∞[0, 1] is isometric to L∞[0, 1]2n.
For 1 ≤ i ≤ 2n, denote by Bi the σ-algebra generated by {B ∈

∏2n
i=1 B[0, 1] :

Bj = [0, 1] for j > i} and for f ∈ L∞[0, 1]2n set Ei(f) = E[f |Bi] and
consider the operator ∆i : L∞[0, 1]2n → L2([0, 1]

i,⊗j≤i λ) with ∆i(f) =
Ei(f) − Ei−1(f), where E0(f) = 0 and λ denotes the Lebesgue measure
on [0, 1].

For every G ⊂ {1, . . . , 2n}, let

∆G : L∞[0, 1]2n →
( 2n∑
i=1

⊕L2([0, 1]
i,⊗j≤i λ)

)
∞

with ∆G=
∑

i∈G∆i and set An=∆{1,...,2n} andWn=co{∆G : #G=n}. Ob-
serve that (

∑2n
i=1⊕L2([0, 1]

i,⊗j≤i λ))∞ embeds isometrically into L∞[0, 1]2n

and hence ∆G : L∞[0, 1] → L∞[0, 1]. Let f ∈ L∞[0, 1]2n and notice that
(Ei(f))

2n
i=1 is a martingale, since Bi is a subalgebra of Bj for every 1 ≤

i < j ≤ 2n. Then for the martingale differences (∆i(f))
2n
i=1 the Burkholder

inequality [B] yields a c2 > 0 such that

(7)
( 1�

0

2n∑
i=1

∆i(f)
2
)1/2

≤ c2‖f‖2.

Claim 1. For every ε > 0, there exists n0 ∈ N such that, for every n ≥ n0
and f ∈ L∞[0, 1]2n, there is a B ∈Wn such that ‖(An −B)f‖ ≤ ε‖f‖.

Proof of Claim 1. Pick n0 ∈ N such that c2/
√
n0 < ε. Let n ≥ n0 and f be

in L∞[0, 1]2n with ‖f‖ = 1. Then, as a direct consequence of (7), we see that
#{i : ‖∆i(f)‖2 > c2/

√
n+ 1} ≤ n. Let σ be permutation of {1, . . . , 2n} such

that ‖∆σ(1)(f)‖2 ≥ · · · ≥ ‖∆σ(2n)(f)‖2. Hence for G = {σ(1), . . . , σ(n)}, we
conclude that ‖(An −∆G)f‖ < c2/

√
n and this yields the desired result.

Claim 2. For every n ∈ N, every finite-codimensional subspace Y of
L∞[0, 1]2n and B ∈Wn, we have ‖(A−B)|Y ‖ ≥ 1/9.

Proof of Claim 2. There exist x∗1, . . . , x
∗
l ∈ (L∞[0, 1]2n)∗ with Y =⋂l

i=1 kerx
∗
i and also B is a convex combination

∑k
i=1 λi∆Gi inWn. Then, as

in Proposition 5.29, choose 1 ≤ j ≤ 2n with
∑k

i=1 λiχGi
(j) ≤ 1/2. Denote

by (Rm)m the Rademacher system and consider a natural extension (R̃m)m
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into L∞[0, 1]2n such that R̃m(t1, . . . , t2n) = Rm(tj). We choose M ∈ [N]∞
such that (x∗i (R̃m))m∈M converges for all 1 ≤ i ≤ l, and applying Lemma 2.1
we find m1,m2 ∈ M such that d(f, Y ) < 1/8 for f = (R̃m1 − R̃m2)/2.
We recall that (R̃m)m is isomorphic to the unit vector basis of `1 in
the L∞-norm and hence ‖f‖∞ = 1. Notice that, for every m ∈ M , we
have ∆i(R̃m) = δijR̃m and ‖R̃m‖2 = 1, and since Rm are orthogonal,
‖R̃m1 − R̃m2‖2 = (‖R̃m1‖2 + ‖R̃m2‖2)1/2. Hence ‖(An −B)f‖ ≥ 1/4 and so
we conclude that ‖(An −B)|Y ‖ ≥ 1/9, since d(f, Y ) < 1/8.

Assume that L∞[0, 1] satisfies the UALS with constant C > 0 and pick
ε > 0 such that Cε < 1/9. The first claim yields an n ∈ N such that, for every
f ∈ L∞[0, 1]2n with ‖f‖ ≤ 1, there exists B ∈ Wn with ‖(An − B)f‖ < ε.
Hence there exist a subspace Y of L∞[0, 1]2n of finite codimension and
a B ∈ Wn such that ‖(A − B)|Y ‖ < Cε, and this contradicts our second
claim, since Cε < 1/9.

Proposition 5.40. Let K be an uncountable compact metrizable space.
Then the space C(K) fails the UALS property.

Proof. We set Ω = {−1, 1}N, and Milyutin’s theorem [M] implies that
the space C(K) is isomorphic to C(Ω) for every K uncountable compact
metrizable. We now fix n ∈ N, consider a partition of N into disjoint infinite
sets N1, . . . , N2n and set Ωi = {−1, 1}Ni for 1 ≤ i ≤ 2n. Clearly C(Ω) is
isometric to C(

∏2n
i=1Ωi).

In a similar manner to the previous proposition, for every 1 ≤ i ≤ 2n, we
define Ei, ∆i : C(

∏2n
i=1Ωi) → L2(

∏
j≤iΩj ,⊗j≤i µj), where by µj we denote

the Haar probability measure on Ωj . Moreover, for every G ⊂ {1, . . . , 2n},
we define the operator

∆G : C
( 2n∏
i=1

Ωi

)
→
( 2n∑
i=1

L2

(∏
j≤i

Ωj ,⊗j≤i µj
))
∞

with ∆G =
∑

i∈G∆i. Observe that (
∑2n

i=1 L2(
∏
j≤iΩj ,⊗j≤i µj))∞ is iso-

metric to a subspace of C(Ω) and hence ∆G : C(Ω) → C(Ω). Also set
An = ∆{1,...,2n} and Wn = co{∆G : #G = n}.

The family (πn)n of the projections ofΩ onto its coordinates corresponds to
the Rademacher system in L∞[0, 1]. Therefore, assuming that C(Ω) satisfies
the UALS property, we arrive at a contradiction applying the corresponding
arguments of Proposition 5.39.

5.5. Final remarks. This last subsection contains some final remarks
and open problems concerning the UALS property.We start with the following
example suggested by W. B. Johnson which shows that in the definition of
the UALS we cannot expect the uniform approximation to happen on the
whole space.
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Example 5.41. Let ‖ · ‖ be a norm on R2 and for x, x∗ ∈ R2 define the
operator x∗ ⊗ x : R2 → R2 with x∗ ⊗ x(y) = x∗(y)x and set

W = co{x∗ ⊗ x : x, x∗ ∈ R2 and ‖x‖, ‖x∗‖ ≤ 1}.

Let y ∈ R2 with ‖y‖ ≤ 1 and x∗ ∈ R2 with ‖x∗‖ = 1 be such that x∗(y) = ‖y‖.
Then for x = y/‖y‖, we have x∗⊗ x ∈W and ‖x∗⊗ x(y)− I(y)‖ = 0, where
I denotes the identity operator.

For any B ∈ W , there exists a convex combination
∑5

i=1 aiBi in W

such that B =
∑5

i=1 aiBi. Then ai0 ≥ 1/5 for some 1 ≤ i0 ≤ 5, and for
x ∈ kerBi0 with ‖x‖ = 1 we have ‖x−

∑4
i=1 aiBi(x)‖ ≥ 1−

∑4
i=1 ai. Hence

‖I −B‖ ≥ 1/5 for all B ∈W .

This example is extended to every Banach space of dimension greater
than two by the following easy modification.

Proposition 5.42. Let X be a Banach space with dimX ≥ 2. There
exist C > 0 and a convex compact subset W of L(X) with the property that,
for every x ∈ BX , there exists a B ∈ W such that ‖x − B(x)‖ = 0 whereas
‖I −B‖ ≥ C for all B ∈W , where I : X → X denotes the identity operator.

Proof. Let e1, e2 be linearly independent vectors in X, denote by Y their
linear span and let Z be a subspace of X such that X = Y ⊕ Z. Set

W = co{x∗ ⊗ x|Y + I|Z : x, x∗ ∈ Y and ‖x‖, ‖x∗‖ ≤ 1}

and notice that, using similar arguments to those in the previous example,
we obtain the desired result.

Remark 5.43. I. Gasparis pointed out that in the case of c0, the UALS
can be proved without the use of Kakutani’s theorem. This is a consequence
of the following fact. Let T ∈ L(c0) and (xin)n, 1 ≤ i ≤ l, be normal-
ized block sequences such that for some ε > 0, we have ‖T (x1n)‖ ≥ ε for
all n ∈ N. Then, for every δ > 0, there exists a choice n1 < · · · < nl
such that ‖T (

∑l
i=1 x

i
ni
)‖ > ε − δ. Assume now that T1, . . . , Tl ∈ L(c0)

and ε > 0 are such that, for every x in the unit ball of c0, there exists
1 ≤ i ≤ l such that ‖Ti(x)‖ ≤ ε. Then, for every ε′ > ε, there exist
1 ≤ i ≤ l and n0 ∈ N such that ‖Ti|span{en:n≥n0}‖ ≤ ε′. If not, we may
choose for each i = 1, . . . , l a normalized block sequence (xin)n such that
‖Ti(xin)‖ ≥ ε′ for all n ∈ N. Then applying simultaneously the above ob-
servation for the operators T1, . . . , Tl, we may select n1 < · · · < nl such
that ∥∥∥Ti( l∑

i=1

xini

)∥∥∥ > ε for all i = 1, . . . , l,

and this yields a contradiction.
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Remark 5.44. There exist Banach spaces which satisfy the UALS while
this is not true for all of their subspaces. As already shown, every Lp[0, 1]
for 1 < p <∞ and p 6= 2 fails the UALS whereas item (ii) of Corollary 5.24
implies that it embeds in a space satisfying this property.

Another open problem in a similar context is the following. Notice that
all spaces in the previous subsection failing the UALS contain a subspace
which satisfies that property.

Problem 2. Does there exist a Banach space such that none of its subspaces
satisfies the UALS property?
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