ON THE STRUCTURE OF SEPARABLE \mathcal{L}_{∞}-SPACES

SPIROS A. ARGYROS, IOANNIS GASPARIS and PAVLOS MOTAKIS

Abstract

Based on a construction method introduced by Bourgain and Delbaen, we give a general definition of a Bourgain-Delbaen space and prove that every infinite-dimensional separable \mathcal{L}_{∞}-space is isomorphic to such a space. Furthermore, we provide an example of a \mathcal{L}_{∞} and asymptotic c_{0} space not containing c_{0}.

§1. Introduction. In the late 1960s Lindenstrauss and Pełczyński introduced the class of \mathcal{L}_{∞}-spaces, which naturally extends the class of L_{∞}-spaces [11]. Whether such spaces always contain a copy of c_{0} remained a long standing open problem, which was solved in the negative direction by Bourgain and Delbaen in [6]. In particular, they introduced a method for constructing \mathcal{L}_{∞}-spaces and any example constructed with its use has been customarily called a BourgainDelbaen space. This method proved to be very fruitful, as it has been used extensively to construct a wide variety of \mathcal{L}_{∞}-spaces, including the first example of a Banach space satisfying the "scalar plus compact" property [5], as well as to obtain other structural results in the geometry of Banach spaces [4, 7].

The main framework of the Bourgain-Delbaen method concerns the construction of an increasing sequence $\left(Y_{n}\right)_{n}$ of finite-dimensional subspaces of a $\ell_{\infty}(\Gamma)$-space, with Γ countably infinite, each one uniformly isomorphic to some ℓ_{∞}^{n}. This is achieved by carefully defining a sequence of extension operators $\left(i_{n}\right)_{n}$, each one defined on $\ell_{\infty}\left(\Gamma_{n}\right)$ with Γ_{n} an appropriate finite subset of Γ, and taking Y_{n} to be the image of i_{n}. If the sequence $\left(i_{n}\right)_{n}$ satisfies a certain compatibility property, then the closure of the union of the $Y_{n}, n \in \mathbb{N}$, is a $\mathcal{L}_{\infty^{-}}$ space whose properties depend on the definition of the aforementioned extension operators.

Based on this method, we give a broad definition of a Bourgain-Delbaen space. We include a brief study of the basic properties of such spaces and, using techniques rooted in the early theory of \mathcal{L}_{∞}-spaces (i.e. [9-14]), we prove that every separable infinite-dimensional \mathcal{L}_{∞}-space is isomorphic to such a space. We use this result to deduce that every separable infinite-dimensional \mathcal{L}_{∞}-space X has an infinite-dimensional \mathcal{L}_{∞}-subspace Z, so that the quotient X / Z is isomorphic to c_{0}.

In the final section of this paper we provide an example of an asymptotic c_{0} isomorphic ℓ_{1}-predual (i.e. a space whose dual is isomorphic to ℓ_{1}) \mathfrak{X}_{0} that does not contain c_{0}. This result in particular yields that the proximity of a Banach space to c_{0} in a local setting, in the sense of being \mathcal{L}_{∞}, as well as in an asymptotic
setting, in the sense of being asymptotic c_{0}, does not imply proximity to c_{0} in an infinite-dimensional level. We think of this example as a step towards the solution of a problem in [8, Question IV.2], namely whether every isomorphic ℓ_{1}-predual satisfying Pełczyński's property-(u) is isomorphic to c_{0}. The question of the existence of an asymptotic $c_{0} \mathcal{L}_{\infty}$-space not containing c_{0} was asked by B. Sari.
§2. Bourgain-Delbaen spaces. In the present section we give a general definition of the spaces that shall be called Bourgain-Delbaen spaces and prove some of their basic properties. It turns out that every infinite-dimensional separable \mathcal{L}_{∞}-space is isomorphic to a Bourgain-Delbaen space. We recall the definition of a \mathcal{L}_{∞}-space, which was introduced in [11, Definition 3.1].

Definition 2.1. A Banach space X is called a $\mathcal{L}_{\infty, C}$-space, for some $C \geqslant 1$, if for every finite-dimensional subspace F of X there exists a finite-dimensional subspace G of X, containing F, which is C-isomorphic to ℓ_{∞}^{n}, where $n=\operatorname{dim} G$. A Banach space X will be called a \mathcal{L}_{∞}-space if it is a $\mathcal{L}_{\infty, C}$-space for some $C \geqslant 1$.

Remark 2.2. If X is an infinite-dimensional separable Banach space, then it is well known, and not difficult to prove, that X is a \mathcal{L}_{∞}-space if and only if there exist a constant C and an increasing sequence $\left(Y_{n}\right)_{n}$ of finite-dimensional subspaces of X, whose union is dense in X, such that Y_{n} is C-isomorphic to $\ell_{\infty}^{k_{n}}$, where $k_{n}=\operatorname{dim} Y_{n}$, for all $n \in \mathbb{N}$.
2.1. The definition of a Bourgain-Delbaen space. We give a broad definition of what kind of spaces we will refer to as Bourgain-Delbaen spaces.

Definition 2.3. Let Γ_{1}, Γ be non-empty sets with $\Gamma_{1} \subset \Gamma$. A linear operator $i: \ell_{\infty}\left(\Gamma_{1}\right) \rightarrow \ell_{\infty}(\Gamma)$ will be called an extension operator if, for every $x \in$ $\ell_{\infty}\left(\Gamma_{1}\right)$ and $\gamma \in \Gamma_{1}$, we have that $x(\gamma)=i(x)(\gamma)$.

Definition 2.4. Let $\left(\Gamma_{q}\right)_{q=0}^{\infty}$ be a strictly increasing sequence of non-empty sets and $\Gamma=\bigcup_{q} \Gamma_{q}$. A sequence of extension operators $\left(i_{q}\right)_{q=0}^{\infty}$, with $i_{q}: \ell_{\infty}\left(\Gamma_{q}\right) \rightarrow \ell_{\infty}(\Gamma)$ for all $q \in \mathbb{N} \cup\{0\}$, will be called compatible if, for every $p, q \in \mathbb{N} \cup\{0\}$ with $p<q$ and $x \in \ell_{\infty}\left(\Gamma_{p}\right)$, the following holds:

$$
i_{p}(x)=i_{q}\left(r_{q}\left(i_{p}(x)\right)\right)
$$

i.e. $i_{p}=i_{q} \circ r_{q} \circ i_{p}$, where $r_{q}: \ell_{\infty}(\Gamma) \rightarrow \ell_{\infty}\left(\Gamma_{q}\right)$ denotes the natural restriction operator.

Definition 2.5. Let $\left(\Gamma_{q}\right)_{q=0}^{\infty}$ be a strictly increasing sequence of non-empty finite sets, $\Gamma=\bigcup_{q} \Gamma_{q}$ and $\left(i_{q}\right)_{q=0}^{\infty}$, with $i_{q}: \ell_{\infty}\left(\Gamma_{q}\right) \rightarrow \ell_{\infty}(\Gamma)$ for all $q \in$ $\mathbb{N} \cup\{0\}$, be a sequence of compatible extension operators such that $C=\sup _{q}\left\|i_{q}\right\|$ is finite.
(i) We define the sets $\Delta_{0}=\Gamma_{0}$ and $\Delta_{q}=\Gamma_{q} \backslash \Gamma_{q-1}$ for $q \in \mathbb{N} \cup\{0\}$.
(ii) For every $\gamma \in \Gamma$, we define d_{γ}, a vector in $\ell_{\infty}(\Gamma)$, as follows: if $\gamma \in \Delta_{q}$ for some $q \in \mathbb{N} \cup\{0\}$, then $d_{\gamma}=i_{q}\left(e_{\gamma}\right)$.
The space $\mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}}=\overline{\left\langle\left\{d_{\gamma}: \gamma \in \Gamma\right\}\right\rangle}$, i.e. the closed subspace of $\ell_{\infty}(\Gamma)$ spanned by the vectors $\left(d_{\gamma}\right)_{\gamma \in \Gamma}$, will be called a Bourgain-Delbaen space.

Remark 2.6. Since the operators $i_{q}: \ell_{\infty}\left(\Gamma_{q}\right) \rightarrow \ell_{\infty}(\Gamma)$ are extension operators, it easily follows that i_{q} is a C-isomorphism for all $q \in \mathbb{N} \cup\{0\}$, where $C=\sup _{q}\left\|i_{q}\right\|$. In particular, the following hold:
(i) if $Y_{q}=i_{q}\left[\ell_{\infty}\left(\Gamma_{q}\right)\right]$, then Y_{q} is C-isomorphic to $\ell_{\infty}\left(\Gamma_{q}\right)$; and
(ii) the vectors $\left(d_{\gamma}\right)_{\gamma \in \Delta_{q}}$ are C-equivalent to the unit vector basis of $\ell_{\infty}\left(\Delta_{q}\right)$ for all $q \in \mathbb{N} \cup\{0\}$.

Remark 2.7. The above Remark 2.6 and Proposition 2.12 from $\S 2.2$ provide an equivalent definition of a Bourgain-Delbaen space, namely the following.

Let $\left(\Gamma_{q}\right)_{q}$ be a strictly increasing sequence of finite non-empty sets and $\left(Y_{q}\right)_{q}$ be an increasing sequence of subspaces of $\ell_{\infty}(\Gamma)$, where $\Gamma=\bigcup_{q} \Gamma_{q}$. If there exists a constant $C>0$ such that for every $q \in \mathbb{N}$, when restricted onto the subspace Y_{q}, the restriction operator $r_{q}: Y_{q} \rightarrow \ell_{\infty}\left(\Gamma_{q}\right)$ is an onto C isomorphism, then the space $X=\overline{\bigcup_{q} Y_{q}}$ is a Bourgain-Delbaen space.

Indeed, it is straightforward to check that the maps $i_{q}: \ell_{\infty}\left(\Gamma_{q}\right) \rightarrow \ell_{\infty}(\Gamma)$ with $i_{q}=r_{q}^{-1}: \ell_{\infty}\left(\Gamma_{q}\right) \rightarrow Y_{q} \hookrightarrow \ell_{\infty}(\Gamma)$ are uniformly bounded compatible extension operators and $\mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}}=X$.
2.2. Properties of a Bourgain-Delbaen space. We present some basic properties of a Bourgain-Delbaen space, which can be deduced from Definition 2.5.

Proposition 2.8. Let $\mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}}$ be a Bourgain-Delbaen space. For all $q \in$ $\mathbb{N} \cup\{0\}$, we denote $M_{q}=\left\langle\left\{d_{\gamma}: \gamma \in \Delta_{q}\right\}\right\rangle$. Then $\left(M_{q}\right)_{q=0}^{\infty}$ forms a finitedimensional decomposition (FDD) for the space $\mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}}$. More precisely, for every $p, q \in \mathbb{N} \cup\{0\}$ with $p<q$ and $x_{\ell} \in M_{\ell}$ for $\ell=0,1, \ldots, q$, the following holds:

$$
\begin{equation*}
\left\|\sum_{\ell=0}^{p} x_{\ell}\right\| \leqslant C\left\|\sum_{\ell=0}^{q} x_{\ell}\right\|, \tag{1}
\end{equation*}
$$

where $C=\sup _{q}\left\|i_{q}\right\|$.
Proof. Let $x_{\ell}=i_{\ell}\left(y_{\ell}\right)$ for some $y_{\ell} \in\left\langle\left\{e_{\gamma}: \gamma \in \Delta_{\ell}\right\}\right\rangle$ for $\ell=0,1, \ldots, q$. Then, by the compatibility of the operators, we have that $x_{\ell}=i_{p}\left(r_{p}\left(i_{\ell}\left(y_{\ell}\right)\right)\right)$, i.e. $x_{\ell}=i_{p} \circ r_{p}\left(x_{\ell}\right)$ for $\ell=0,1, \ldots, p$ and hence

$$
\begin{equation*}
\left\|\sum_{\ell=0}^{p} x_{\ell}\right\|=\left\|i_{p} \circ r_{p}\left(\sum_{\ell=0}^{p} x_{\ell}\right)\right\| \leqslant C\left\|r_{p}\left(\sum_{\ell=0}^{p} x_{\ell}\right)\right\| . \tag{2}
\end{equation*}
$$

On the other hand, once more by the extension property of the operators, we have that $r_{p}\left(x_{\ell}\right)=0$ (which also yields that $i_{p} \circ r_{p}\left(x_{\ell}\right)=0$) for $\ell=p+1, \ldots, q$ and therefore we obtain

$$
\begin{equation*}
\left\|\sum_{\ell=0}^{q} x_{\ell}\right\| \geqslant\left\|r_{p}\left(\sum_{\ell=0}^{q} x_{\ell}\right)\right\|=\left\|r_{p}\left(\sum_{\ell=0}^{p} x_{\ell}\right)\right\| \tag{3}
\end{equation*}
$$

The desired inequality immediately follows from (2) and (3).
Remark 2.9. By the proposition above, for every interval $E=\{p, \ldots, q\}$ of $\mathbb{N} \cup\{0\}$ we can define the projection $P_{E}: \mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}} \rightarrow M_{p}+\cdots+M_{q}$ associated to the FDD $\left(M_{q}\right)_{q}$ and the interval E. The above proof implies that

$$
\begin{equation*}
P_{[0, q]} x=i_{q} \circ r_{q}(x) \tag{4}
\end{equation*}
$$

for all $q \in \mathbb{N} \cup\{0\}$ and $x \in \mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}}$ and hence also

$$
\begin{equation*}
P_{(p, q]} x=i_{q} \circ r_{q}(x)-i_{p} \circ r_{p}(x) \tag{5}
\end{equation*}
$$

for all $p, q \in \mathbb{N} \cup\{0\}$ with $p<q$ and $x \in \mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}}$. We shall call P_{E} the Bourgain-Delbaen projection onto E. Note that $\left\|P_{E}\right\| \leqslant 2 C$ for every interval E of $\mathbb{N} \cup\{0\}$.

Remark 2.10. Proposition 2.8 in conjunction with Remark 2.6(ii) yield that $\left(\left(d_{\gamma}\right)_{\gamma \in \Delta_{q}}\right)_{q=0}^{\infty}$ is a Schauder basis of $\mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}}$. Although in some cases it is more convenient to use the FDD $\left(M_{q}\right)_{q}$, in §5 we shall indeed use this basis.

Remark 2.11. Let x be a finitely supported vector in $\mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}}$ with ran $x=E$. Using Remark 2.9, one can see that if $q=\max E$, there exists $y \in \ell_{\infty}\left(\Gamma_{q}\right)$ with $\operatorname{supp} y \subset \bigcup_{p \in E} \Delta_{p}$ such that $x=i_{q}(y)$.

Proposition 2.12. Every Bourgain-Delbaen space $\mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}}$ is a $\mathcal{L}_{\infty^{-}}$ space. More precisely, if $Y_{q}=i_{q}\left[\ell_{\infty}\left(\Gamma_{q}\right)\right]$ for all $q \in \mathbb{N} \cup\{0\}$, then $\left(Y_{q}\right)_{q}$ is a strictly increasing sequence of subspaces of $\mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}}$, whose union is dense in the whole space and for every $q \in \mathbb{N} \cup\{0\} Y_{q}$ is C-isomorphic to $\ell_{\infty}\left(\Gamma_{q}\right)$, where $C=\sup _{q}\left\|i_{q}\right\|$.

Proof. By Remark 2.6(i), we have that Y_{q} is C-isomorphic to $\ell_{\infty}\left(\Gamma_{q}\right)$ for all $q \in \mathbb{N} \cup\{0\}$. It remains to show that the sequence $\left(Y_{q}\right)_{q}$ is strictly increasing and its union is dense in $\mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}}$. We will prove that $Y_{q}=M_{0}+\cdots+M_{q}$, where $M_{q}=\left\langle\left\{d_{\gamma}: \gamma \in \Delta_{q}\right\}\right\rangle$ for all $q \in \mathbb{N} \cup\{0\}$. Note that, in conjunction with Proposition 2.8, the previous fact easily implies the desired result.

Note that for $p, q \in \mathbb{N} \cup\{0\}$ with $p \leqslant q$ and $x \in M_{p}$, there is a $y \in\left\langle\left\{e_{\gamma}\right.\right.$: $\left.\left.\gamma \in \Delta_{p}\right\}\right\rangle$ with $x=i_{p}(y)$. Using the compatibility of the extension operators, we obtain that $x=i_{q}\left(r_{q}(x)\right) \in i_{q}\left(\ell_{\infty}\left(\Gamma_{q}\right)\right)=Y_{q}$. We have hence concluded that $M_{0}+\cdots+M_{q} \subset Y_{q}$. To conclude that the above inclusion cannot be proper, we will show that $\operatorname{dim}\left(M_{0}+\cdots+M_{q}\right)=\operatorname{dim} Y_{q}$. Note that since, by Proposition 2.8,
$\left(M_{q}\right)_{q=0}^{\infty}$ is an FDD, we have that $\operatorname{dim}\left(M_{0}+\cdots+M_{q}\right)=\operatorname{dim}\left(M_{0}\right)+\cdots+$ $\operatorname{dim}\left(M_{q}\right)$. Moreover, Remark 2.6(ii) implies that $\operatorname{dim}\left(M_{p}\right)=\# \Delta_{p}$ for $p=0$, \ldots, q. The definition of the sets Δ_{p} yields that $\operatorname{dim}=\left(M_{0}+\cdots+M_{q}\right)=\# \Gamma_{q}$. Remark 2.6(i) implies that $\operatorname{dim} Y_{q}=\# \Gamma_{q}$ and therefore $\operatorname{dim}\left(M_{0}+\cdots+M_{q}\right)=$ $\operatorname{dim} Y_{q}$.
2.3. The functionals $\left(e_{\gamma}^{*}\right)_{\gamma \in \Gamma}$. Let $\mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}}$ be a Bourgain-Delbaen space. For every $\gamma \in \Gamma$, we denote by $e_{\gamma}^{*}: \mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}} \rightarrow \mathbb{R}$ the evaluation functional on the γ th coordinate, defined on $\ell_{\infty}(\Gamma)$ and then restricted to the subspace $\mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}}$. Note that $\left\|e_{\gamma}^{*}\right\| \leqslant 1$ for all $\gamma \in \Gamma$.

Proposition 2.13. Let $\mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}}$ be a Bourgain-Delbaen space. Then $\left(e_{\gamma}^{*}\right)_{\gamma \in \Gamma}$ is C-equivalent to the unit vector basis of $\ell_{1}(\Gamma)$, where $C=\sup _{q}\left\|i_{q}\right\|$.

Proof. Let A be a non-empty finite subset of Γ and $\left(\lambda_{\gamma}\right)_{\gamma \in A}$ be scalars. Choose $q \in \mathbb{N} \cup\{0\}$ such that $A \subset \Gamma_{q}$ and take the normalized vector $y=$ $\sum_{\gamma \in A} \operatorname{sgn} \lambda_{\gamma} e_{\gamma}$ in $\ell_{\infty}\left(\Gamma_{q}\right)$. Note that $\left\|i_{q}(y)\right\| \leqslant C$. Since i_{q} is an extension operator and $A \subset \Gamma_{q}$, we obtain the following estimate:

$$
\begin{aligned}
C \sum_{\gamma \in A}\left|\lambda_{\gamma}\right| & \geqslant C\left\|\sum_{\gamma \in A} \lambda_{\gamma} e_{\gamma}^{*}\right\| \geqslant \sum_{\gamma \in A} \lambda_{\gamma} e_{\gamma}^{*}\left(i_{q}(y)\right)=\sum_{\gamma \in A} \lambda_{\gamma} i_{q}(y)(\gamma) \\
& =\sum_{\gamma \in A} \lambda_{\gamma} y(\gamma)=\sum_{\gamma \in A} \lambda_{\gamma} \operatorname{sgn} \lambda_{\gamma}=\sum_{\gamma \in A}\left|\lambda_{\gamma}\right|
\end{aligned}
$$

i.e. $C^{-1} \sum\left|\lambda_{\gamma}\right| \leqslant\left\|\sum \lambda_{\gamma} e_{\gamma}^{*}\right\| \leqslant \sum\left|\lambda_{\gamma}\right|$, which is the desired result.

Definition 2.14. Let $\mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}}$ be a Bourgain-Delbaen space. For every $\gamma \in \Gamma$, we define two bounded linear functionals $c_{\gamma}^{*}, d_{\gamma}^{*}: \mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}} \rightarrow \mathbb{R}$ as follows:
(i) if $\gamma \in \Delta_{0}$, then $c_{\gamma}^{*}=0$ and otherwise if $\gamma \in \Delta_{q+1}$ for some $q \in \mathbb{N} \cup\{0\}$, then $c_{\gamma}^{*}=e_{\gamma}^{*} \circ i_{q} \circ r_{q}$; and

$$
\begin{equation*}
d_{\gamma}^{*}=e_{\gamma}^{*}-c_{\gamma}^{*} \text { for all } \gamma \in \Gamma . \tag{ii}
\end{equation*}
$$

Remark 2.15. By Remark 2.9, we obtain that if $q \in \mathbb{N} \cup\{0\}$ and $\gamma \in \Delta_{q+1}$, then $c_{\gamma}^{*}=e_{\gamma}^{*} \circ P_{[0, q]}$ and hence $d_{\gamma}^{*}=e_{\gamma}^{*} \circ P_{(q, \infty)}$. Also, using the extension property of the operators i_{q}, it easily follows from Remark 2.9 that for $p \in \mathbb{N} \cup\{0\}$ and $\gamma \in \Gamma_{p}$ we have that $e_{\gamma}^{*}=e_{\gamma}^{*} \circ P_{[0, p]}$, which also implies that if $\gamma \in \Delta_{p}$, then $d_{\gamma}^{*}=e_{\gamma}^{*} \circ P_{\{p\}}$. Moreover, for $\gamma \in \Delta_{0}, d_{\gamma}^{*}=e_{\gamma}^{*}$.

Lemma 2.16. Let $\mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}}$ be a Bourgain-Delbaen space. For all $q \in \mathbb{N} \cup\{0\}$ and $\gamma_{0} \in \Delta_{q+1}$, the functional $c_{\gamma_{0}}^{*}$ is in the linear span of $\left\{e_{\gamma}^{*}: \gamma \in \Gamma_{q}\right\}$.

Proof. It suffices to show that $\bigcap_{\gamma \in \Gamma_{q}} \operatorname{ker} e_{\gamma}^{*} \subset \operatorname{ker} c_{\gamma_{0}}^{*}$ and to that end let $x \in \mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}}$ with $e_{\gamma}^{*}(x)=0$ for all $\gamma \in \Gamma_{q}$. Recall that x is also a vector in $\ell_{\infty}(\Gamma)$ and in particular we have that $x(\gamma)=e_{\gamma}^{*}(x)=0$ for all $\gamma \in \Gamma_{q}$ and hence $r_{q}(x)=0$. By the definition of $c_{\gamma_{0}}^{*}$, it easily follows that $c_{\gamma_{0}}^{*}(x)=0$.

Proposition 2.17. Let $\mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}}$ be a Bourgain-Delbaen space. The following hold.
(i) The functionals $\left(d_{\gamma}^{*}\right)_{\gamma \in \Gamma}$ are biorthogonal to the vectors $\left(d_{\gamma}\right)_{\gamma \in \Gamma}$.
(ii) For all $q \in \mathbb{N} \cup\{0\}$, we have that $\left\langle\left\{d_{\gamma}^{*}: \gamma \in \Gamma_{q}\right\}\right\rangle=\left\langle\left\{e_{\gamma}^{*}: \gamma \in \Gamma_{q}\right\}\right\rangle$. In particular, the closed linear span of the functionals $\left(d_{\gamma}^{*}\right)_{\gamma \in \Gamma}$ is C isomorphic to ℓ_{1}, where $C=\sup _{q}\left\|i_{q}\right\|$.
(iii) If moreover the FDD $\left(M_{q}\right)_{q}$ is shrinking, then the closed linear span of the functionals $\left(d_{\gamma}^{*}\right)_{\gamma \in \Gamma}$ is $\mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}}^{*}$. In particular, $\mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}}^{*}$ is C-isomorphic to ℓ_{1}.

Proof. The first statement easily follows from Remark 2.15, in particular the fact that for $q \in \mathbb{N} \cup\{0\}$ and $\gamma \in \Delta_{q}$, we have that $d_{\gamma}^{*}=e_{\gamma}^{*} \circ P_{\{q\}}$.

For the proof of (ii), observe that by Lemma 2.16 and $d_{\gamma}^{*}=e_{\gamma}^{*}-c_{\gamma}^{*}$, we have that $\left\langle\left\{d_{\gamma}^{*}: \gamma \in \Gamma_{q}\right\}\right\rangle \subset\left\langle\left\{e_{\gamma}^{*}: \gamma \in \Gamma_{q}\right\}\right\rangle$. Moreover, (i) implies that $\operatorname{dim}\left\langle\left\{d_{\gamma}^{*}: \gamma \in\right.\right.$ $\left.\left.\Gamma_{q}\right\}\right\rangle=\# \Gamma_{q}$ and hence the inclusion cannot be proper. The last part of statement (ii) follows from Proposition 2.13.

To prove the last statement, note that if $\left(M_{q}\right)_{q}$ is shrinking, then so is the basis $\left(\left(d_{\gamma}\right)_{\gamma \in \Delta_{q}}\right)_{q=0}^{\infty}$. From (ii) the desired result follows.
§3. Separable \mathcal{L}_{∞}-spaces are Bourgain-Delbaen spaces. We combine some simple remarks concerning Bourgain-Delbaen spaces with results from [9], [10] and [14] to prove that whenever X is an infinite-dimensional separable $\mathcal{L}_{\infty^{-}}$ space, then X is isomorphic to a Bourgain-Delbaen space.

Lemma 3.1. Let $\left(\mu_{i}\right)_{i}$ be a bounded sequence in $\mathcal{M}[0,1]$. Then there exists a sequence $\left(t_{i}\right)_{i}$ of elements of $[0,1]$ such that if $\nu_{i}=\mu_{i}+\delta_{t_{i}}$ for all $i \in \mathbb{N}$, then the following hold:
(i) the sequence $\left(\nu_{i}\right)_{i}$ is equivalent to the unit vector basis of $\ell_{1}(\mathbb{N})$; and
(ii) the space $Y=\left[\left(\nu_{i}\right)_{i}\right]$ is complemented in $\mathcal{M}[0,1]$.

Proof. Find a sequence $\left(t_{i}\right)_{i}$ of elements of [0,1] so that $\mu_{j}\left(\left\{t_{i}\right\}\right)=0$ for all $i, j \in \mathbb{N}$. Setting $\nu_{i}=\mu_{i}+\delta_{t_{i}}$, it can be shown that $\left(v_{i}\right)_{i}$ is equivalent to the basis of ℓ_{1} and that the map $S \mu=\sum_{i=1}^{\infty} \mu\left(\left\{t_{i}\right\}\right) \nu_{i}$ is a bounded projection onto the space $\left[\left(v_{i}\right)_{i}\right]$.

Lemma 3.2. Let X be an infinite-dimensional and separable \mathcal{L}_{∞}-space. Then there exists a sequence $\left(x_{i}^{*}\right)_{i}$ in X^{*} satisfying the following:
(i) the sequence $\left(x_{i}^{*}\right)_{i}$ is equivalent to the unit vector basis of $\ell_{1}(\mathbb{N})$;
(ii) there exists a constant $\theta>0$ such that $\theta\|x\| \leqslant \sup _{i}\left|x_{i}^{*}(x)\right|$ for all $x \in X$; and
(iii) the space $Y=\left[\left(x_{i}^{*}\right)_{i}\right]$ is complemented in X^{*}.

Proof. As is shown in [14], the dual of X is isomorphic either to $\ell_{1}(\mathbb{N})$ or to $\mathcal{M}[0,1]$ (see also [10]). In the first case, just choose a Schauder basis $\left(x_{i}^{*}\right)_{i}$ of X^{*} which is equivalent to the unit vector basis of $\ell_{1}(\mathbb{N})$.

In the second case, let $T: X^{*} \rightarrow \mathcal{M}[0,1]$ be an onto isomorphism and choose a normalized sequence $\left(z_{i}^{*}\right)_{i}$ in X^{*} such that $\|x\|=\sup _{i}\left|z_{i}^{*}(x)\right|$ for all $x \in X$. Fix $C>\left\|T^{-1}\right\|$ and apply Lemma 3.1 to the sequence $\left(\mu_{i}\right)_{i}$ with $\mu_{i}=C T z_{i}^{*}$ for all $i \in \mathbb{N}$ to find a sequence $\left(t_{i}\right)_{i}$ in $[0,1]$ such that if $\nu_{i}=\mu_{i}+\delta_{t_{i}}$ for all $i \in \mathbb{N}$, then $\left(v_{i}\right)_{i}$ satisfies the conclusion of that lemma. Setting $x_{i}^{*}=T^{-1} \nu_{i}$ for all $i \in \mathbb{N}$, it is not hard to check that, for $\theta=C-\left\|T^{-1}\right\|$, the sequence $\left(x_{i}^{*}\right)_{i}$ is the desired one.

Lemma 3.3. Let X be a $\mathcal{L}_{\infty, \lambda}$-space, Y be a subspace of X^{*} and assume that there exists a constant $\theta>0$ so that for all $x \in X, \theta\|x\| \leqslant \sup \left\{\left|y^{*}(x)\right|: y^{*} \in\right.$ $\left.B_{Y^{*}}\right\}$. Then for every finite-dimensional subspace F of X and every $\varepsilon>0$ there exists a finite-rank operator $T: X \rightarrow X$ satisfying the following:
(i) $\|T x-x\| \leqslant \varepsilon\|x\|$ for all $x \in F$;
(ii) $\|T\| \leqslant \lambda / \theta$;
(iii) $T^{*}\left[X^{*}\right] \subset Y$.

In particular, if X is separable, then there exists a sequence of finite-rank operators $T_{n}: X \rightarrow X$ with $T_{n} x \rightarrow x$ for all $x \in X$ and $T_{n}^{*}\left[X^{*}\right] \subset Y$ for all $n \in \mathbb{N}$.

Proof. Let F be a finite-dimensional subspace of X and $\varepsilon>0$. By passing to a larger subspace, we may assume that $F=\left\langle\left\{y_{i}: i=1, \ldots, n\right\}\right\rangle$, where the map $A: \ell_{\infty}^{n} \rightarrow F$ with $A e_{i}=y_{i}$ is invertible with $\|A\|\left\|A^{-1}\right\| \leqslant \lambda$. By the Hahn-Banach theorem, there is a sequence $\left(y_{i}^{*}\right)_{i=1}^{n}$ in X^{*}, biorthogonal to $\left(y_{i}\right)_{i=1}^{n}$, such that $\left\|y_{i}^{*}\right\| \leqslant\left\|A^{-1}\right\|$ for $i=1, \ldots, n$. A separation theorem yields that $B_{X^{*}} \subset \theta^{-1}{\overline{B_{Y}}}^{w^{*}}$ and hence we may choose $\tilde{y}_{i}^{*} \in\left(\theta^{-1}\left\|A^{-1}\right\|\right) B_{Y}$ such that $\left\|\left.\left(\tilde{y}_{i}^{*}-y_{i}^{*}\right)\right|_{F}\right\|<\varepsilon /\|A\|$ for $i=1, \ldots, n$. Define $T: X \rightarrow X$ with $T x=\sum_{i=1}^{n} \tilde{y}_{i}^{*}(x) y_{i}$. Some standard calculations yield that T is the desired operator.

The following terminology is from [9]. If E_{1}, E_{2} are subspaces of a Banach space X and $\varepsilon>0$, we say that E_{2} is ε-close to E_{1} if there is an invertible operator T from E_{1} onto E_{2} with $\|T x-x\| \leqslant \varepsilon\|x\|$ for all $x \in E_{1}$. Note that if E_{2} is ε-close to E_{1}, then E_{1} is $\varepsilon /(1-\varepsilon)$-close to E_{2}.

Lemma 3.4. Let X be a Banach space and $\left(x_{i}^{*}\right)_{i=1}^{\infty}$ be a sequence in X^{*} which is equivalent to the unit vector basis of $\ell_{1}(\mathbb{N})$. Assume moreover that there exists a sequence of bounded finite-rank projections $\left(Q_{n}\right)_{n}$ satisfying the following.
(i) $Q_{n}: X \rightarrow X, Q_{n}[X] \subset Q_{n+1}[X]$ for all $n \in \mathbb{N}$ and $Q_{n} x \rightarrow x$ for all $x \in X$.
(ii) There are a strictly increasing sequence of natural numbers $\left(k_{n}\right)_{n}$ and $0<$ $\varepsilon<1$ with $\varepsilon /(1-\varepsilon)<\left(\sup _{n}\left\|Q_{n}\right\|\right)^{-1}$ such that $Q_{n}^{*}\left[X^{*}\right]$ is ε-close to the space $\left\langle\left\{x_{i}^{*}: i=1, \ldots, k_{n}\right\}\right\rangle$ for all $n \in \mathbb{N}$.
Then X is isomorphic to a Bourgain-Delbaen space.

Proof. Note that (i) implies that $\bigcup_{n} Q_{n}[X]$ is dense in X. Define a linear operator $U: X \rightarrow \ell_{\infty}(\mathbb{N})$ with $U x=\left(x_{i}^{*}(x)\right)_{i}$ for all $x \in X$; evidently U is bounded. Set $\Gamma_{n}=\left\{1, \ldots, k_{n}\right\}$ for all $n \in \mathbb{N}$ and $Y_{n}=U Q_{n}[X]$. We shall prove that U is an isomorphic embedding and that the restriction operators onto the first k_{n} coordinates $r_{k_{n}}: Y_{n} \rightarrow \ell_{\infty}\left(\left\{1, \ldots, k_{n}\right\}\right)$ are onto C-isomorphisms for all $n \in \mathbb{N}$ for a uniform constant C. Given the aforementioned facts and Remark 2.7, the desired result follows easily.

Since $\bigcup_{n} Q_{n}[X]$ is dense in X, to show that U is an isomorphic embedding, it is enough to find a uniform constant $c>0$ such that $\|U x\| \geqslant c\|x\|$ for every $x \in Q_{n}[X]$ and for every $n \in \mathbb{N}$. To this end, let $S:\left[\left(x_{i}^{*}\right)_{i}\right] \rightarrow \ell_{1}(\mathbb{N})$ be the onto isomorphism with $S x_{i}^{*}=e_{i}$ for all $i \in \mathbb{N}$. Let $n \in \mathbb{N}$ and $x \in Q_{n}[X]$. The HahnBanach theorem and the fact that $\left\langle\left\{x_{i}^{*}: i=1, \ldots, k_{n}\right\}\right\rangle$ is $\varepsilon /(1-\varepsilon)$-close to $Q_{n}^{*}\left[X^{*}\right]$, in conjunction with some tedious computations, yield that there exists an $i_{0} \in\left\{1, \ldots, k_{n}\right\}$ such that

$$
\begin{equation*}
\left|x_{i_{0}}^{*}(x)\right| \geqslant(1-\varepsilon) \frac{1-(\varepsilon /(1-\varepsilon))\left\|Q_{n}\right\|}{\|S\|\left\|Q_{n}\right\|}\|x\| . \tag{6}
\end{equation*}
$$

Setting $c=(1-\varepsilon)\left(1-(\varepsilon /(1-\varepsilon)) \sup _{k}\left\|Q_{k}\right\|\right) /\left(\|S\| \sup _{k}\left\|Q_{k}\right\|\right)$, we conclude that $\|U x\| \geqslant c\|x\|$.

It remains to show that there a exists a constant $C>0$ such that $r_{k_{n}}: Y_{n} \rightarrow$ $\ell_{\infty}\left(\left\{1, \ldots, k_{n}\right\}\right)$ is an onto C-isomorphism for every $n \in \mathbb{N}$. Let $n \in \mathbb{N}$ and $z \in Y_{n}$. Set $x=U^{-1} z \in Q_{n}[X]$. Then, by (6), there is an $i_{0} \in\left\{1, \ldots, k_{n}\right\}$ such that

$$
\|z\| \geqslant\left\|r_{k_{n}}(z)\right\| \geqslant\left|x_{i_{0}}^{*}(x)\right| \geqslant c\|x\| \geqslant \frac{c}{\|U\|}\|z\| .
$$

Setting $C=\|U\| / c$, we conclude that $r_{k_{n}} \mid Y_{n}$ is a C-isomorphic embedding. Finally, observe that $\operatorname{dim} Y_{n}=\operatorname{dim} Q_{n}[X]=\operatorname{dim} Q_{n}^{*}\left[X^{*}\right]=k_{n}$ and hence $r_{k_{n}} \mid Y_{n}$ is also onto.

The following lemma and its proof can be found in [9, Lemma 4.3].
Lemma 3.5. Let X be a separable Banach space and Y be a separable subspace of X^{*}. Assume moreover that $\left(P_{n}\right)_{n},\left(T_{n}\right)_{n}$ are bounded finite-rank operators satisfying the following conditions.
(a) $P_{n}: X \rightarrow X, P_{n}^{*}\left[X^{*}\right] \subset Y$ and $T_{n}: X^{*} \rightarrow Y$ for all $n \in \mathbb{N}$.
(b) $\quad P_{n} x \rightarrow x$ for all $x \in X, T_{n} y \rightarrow y$ for all $y \in Y$ and $\sup _{n}\left\|T_{n}\right\|<\infty$.
(c) The operators $\left(T_{n}\right)_{n}$ are projections.

If E, F are finite-dimensional subspaces of X, Y respectively and $0<\varepsilon<1$, then there exists a projection $Q: X \rightarrow X$ with finite-dimensional range such that:
(i) $Q e=e$ for all $e \in E$;
(ii) $Q^{*} f=f$ for all $f \in F$;
(iii) $Q^{*}\left[X^{*}\right] \subset Y$;
(iv) $\|Q\| \leqslant 2 c+2 K+4 c K$, where $c=\sup _{n}\left\|P_{n}\right\|$ and $K=\sup _{n}\left\|T_{n}\right\|$;
(v) $Q^{*}\left[X^{*}\right]$ is ε-close to $T_{n}\left[X^{*}\right]$ for some integer n.

THEOREM 3.6. Every separable infinite-dimensional \mathcal{L}_{∞}-space is isomorphic to a Bourgain-Delbaen space.

Proof. Let X be a separable infinite-dimensional \mathcal{L}_{∞}-space. By Lemma 3.2, there exist a sequence $\left(x_{i}^{*}\right)_{i}$ in X^{*} which is equivalent to the unit vector basis of $\ell_{1}(\mathbb{N})$, a constant $\theta>0$ such that $\theta\|x\| \leqslant \sup _{i}\left|x_{i}^{*}(x)\right|$ for all $x \in X$ and a bounded linear projection $P: X^{*} \rightarrow Y=\left[\left(x_{i}^{*}\right)_{i}\right]$. For $n \in \mathbb{N}$, define $T_{n}: X^{*} \rightarrow Y$ with $T_{n}=S_{n} \circ P$, where $S_{n}: Y \rightarrow Y$ denotes the basis projection of $\left(x_{i}^{*}\right)_{i}$ onto the first n coordinates. Also apply Lemma 3.3 to find a sequence of finite-rank operators $P_{n}: X \rightarrow X$ such that $P_{n} x \rightarrow x$ for all $x \in X$ and $P_{n}^{*}\left[X^{*}\right] \subset Y$ for all $n \in \mathbb{N}$. Assumptions (a), (b) and (c) of Lemma 3.5 are evidently satisfied.

Choose $\varepsilon>0$ with $\varepsilon /(1-\varepsilon)<1 /(2 c+2 K+4 c K)$, where $c=\sup _{n}\left\|P_{n}\right\|$ and $K=\sup _{n}\left\|T_{n}\right\|$. Recursively, setting $E_{n}=P_{n}[X]+Q_{n-1}[X]$, where Q_{0} is the zero operator on X, and $F_{n}=\{0\}$, using Lemma 3.5, choose $\left(Q_{n}\right)_{n}$, a sequence of bounded linear projections on X, such that $P_{n}[X] \subset Q_{n}[X] \subset Q_{n+1}[X]$, $\left\|Q_{n}\right\| \leqslant 2 c+2 K+4 c K$ for all $n \in \mathbb{N}$ and there exist natural numbers $\left(k_{n}\right)_{n}$ such that $Q_{n}^{*}\left[X^{*}\right]$ is ε-close to $T_{k_{n}}\left[X^{*}\right]=\left\langle\left\{x_{i}^{*}: i=1, \ldots, k_{n}\right\}\right\rangle$ for all $n \in \mathbb{N}$. Note that $\operatorname{dim} Q_{n}[X] \rightarrow \infty$ and hence, by passing to a subsequence, we may assume that $\left(k_{n}\right)_{n}$ is strictly increasing. We conclude that the sequences $\left(x_{i}^{*}\right)_{i=1}^{\infty}$ and $\left(Q_{n}\right)_{n}$ witness the fact that the space X satisfies the assumptions of Lemma 3.4 and therefore it is isomorphic to a Bourgain-Delbaen space.
§4. Separable infinite-dimensional \mathcal{L}_{∞}-spaces contain \mathcal{L}_{∞}-subspaces of infinite co-dimension. Using the main result of $\S 3$, we prove that every infinitedimensional \mathcal{L}_{∞}-space X contains an infinite-dimensional \mathcal{L}_{∞}-subspace Z, so that the quotient X / Z is isomorphic to c_{0}.

Lemma 4.1. Let $\mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}}$ be a Bourgain-Delbaen space and assume that there exists a decreasing sequence of positive real numbers $\left(\varepsilon_{q}\right)_{q=1}^{\infty}$, with $2 C^{2} \sum_{q} \varepsilon_{q}<1$, where $C=\sup _{q}\left\|i_{q}\right\|$, so that for every $q \in \mathbb{N}$ there exist $\gamma_{1}^{q}, \gamma_{2}^{q} \in \Delta_{q}$ with $\gamma_{1}^{q} \neq \gamma_{2}^{q}$ satisfying $\left\|e_{\gamma_{1}^{q}}^{*} \circ i_{p} \circ r_{p}-e_{\gamma_{2}^{q}}^{*} \circ i_{p} \circ r_{p}\right\|<\varepsilon_{q}$ for $p=0,1, \ldots, q-1$. Then $\mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}}$ contains an infinite-dimensional $\mathcal{L}_{\infty^{-}}$ subspace Z.

Proof. Define $R_{q}=\left\{\gamma_{1}^{q}, \gamma_{2}^{q}\right\}, S_{q}=\bigcup_{p=1}^{q} R_{p}$ for $q \in \mathbb{N}$ and $S=\bigcup_{q=1}^{\infty} S_{q}$. Define $N_{0}=M_{0}=\left\langle\left\{d_{\gamma}: \gamma \in \Delta_{0}\right\}\right\rangle$ and

$$
N_{q}=\left\langle\left\{d_{\gamma}: \gamma \in \Delta_{q} \backslash R_{q}\right\} \cup\left\{d_{\gamma_{1}^{q}}+d_{\gamma_{2}^{q}}\right\}\right\rangle
$$

for $q \in \mathbb{N}$. Note that N_{q} is a subspace of M_{q} of co-dimension one for every $q \in \mathbb{N}$. Define

$$
Z_{q}=\left\langle\left\{d_{\gamma}: \gamma \in \Gamma_{q} \backslash S_{q}\right\} \cup\left\{d_{\gamma_{1}^{p}}+d_{\gamma_{2}^{p}}: p=1, \ldots, q\right\}\right\rangle
$$

for all $q \in \mathbb{N}$. Observe that $Z_{q}=N_{0}+\cdots+N_{q}$ for all $q \in \mathbb{N}$ and that $\left(Z_{q}\right)_{q}$ is an increasing sequence of finite-dimensional spaces whose union is dense in the space

$$
Z=\overline{\left\langle\left\{d_{\gamma}: \gamma \in \Gamma \backslash S\right\} \cup\left\{d_{\gamma_{1}^{q}}+d_{\gamma_{2}^{q}}: q \in \mathbb{N}\right\}\right\rangle}
$$

We shall prove that Z is the desired subspace. To begin, Z is clearly infinite dimensional. More precisely, the spaces $\left(N_{q}\right)_{q}$ form an FDD for the space Z with a projection constant C.

To conclude that Z is indeed a \mathcal{L}_{∞}-space, it suffices to show that for each $q \in \mathbb{N}$ the space Z_{q} is $((1+\varepsilon) /(1-\varepsilon)) C$-isomorphic to $\ell_{\infty}^{n_{q}}$, where $\varepsilon=$ $2 C^{2} \sum_{q=1}^{\infty} \varepsilon_{q}$ and $n_{q}=\operatorname{dim} Z_{q}=\# \Gamma_{q}-q$. For $q \in \mathbb{N}$, we define a subspace of $\ell_{\infty}\left(\Gamma_{q}\right)$ as follows:

$$
W_{q}=\left\langle\left\{e_{\gamma}: \gamma \in \Gamma_{q} \backslash S_{q}\right\} \cup\left\{e_{\gamma_{1}^{p}}+e_{\gamma_{2}^{p}}: p=1, \ldots, q\right\}\right\rangle .
$$

Also define $\widetilde{W}_{q}=i_{q}\left[W_{q}\right]$. Observe that W_{q} is isometric to $\ell_{\infty}^{n_{q}}$ and, therefore, by Remark 2.6, \widetilde{W}_{q} is C-isomorphic to $\ell_{\infty}^{n_{q}}$. Hence, if we find a linear map T_{q} : $Z_{q} \rightarrow \widetilde{W}_{q}$ with $\left\|T_{q} x-x\right\| \leqslant \varepsilon\|x\|$ for all $x \in Z_{q}$, the proof will be complete.

Let us fix $q \in \mathbb{N}$ and observe that if $x \in N_{p}$, for some $0 \leqslant p \leqslant q$, then $x=i_{p}(y)$, where $y \in\left\langle\left\{e_{\gamma}: \gamma \in \Delta_{q} \backslash S_{q}\right\} \cup\left\{e_{\gamma_{1}^{q}}+e_{\gamma_{2}^{q}}\right\}\right\rangle$. For $p=0, \ldots, q$, we define $T_{q, p}: N_{p} \rightarrow W_{q}$ as follows:

$$
T_{q, p}(x)(\gamma)= \begin{cases}y(\gamma) & \text { if } \operatorname{rank}(\gamma) \leqslant p, \\ i_{p}(y)(\gamma) & \text { if } \operatorname{rank}(\gamma)>p \text { and } \gamma \notin S_{q}, \\ i_{p}(y)\left(\gamma_{1}^{s}\right) & \text { if } \operatorname{rank}(\gamma)>p \text { and } \gamma=\gamma_{1}^{s} \text { for some } s \in(p, q], \\ i_{p}(y)\left(\gamma_{1}^{s}\right) & \text { if } \operatorname{rank}(\gamma)>p \text { and } \gamma=\gamma_{2}^{s} \text { for some } s \in(p, q] .\end{cases}
$$

Observe that the map is linear and well defined. Also observe that if $x(\gamma) \neq$ $T_{q, p}(x)(\gamma)$, for some $\gamma \in \Gamma_{q}$, then necessarily there is an $s \in(p, q]$ so that $\gamma=\gamma_{2}^{s}$ and $T_{q, p}(x)(\gamma)=i_{p}(y)\left(\gamma_{1}^{s}\right)=e_{\gamma_{1}^{s}}^{*} \circ i_{p} \circ r_{p}(x)$. Hence, for such a $\gamma \in \Gamma_{q}$,
$\left|x(\gamma)-T_{q, p}(x)(\gamma)\right|=\left|e_{\gamma_{2}^{s}}^{*} \circ i_{p} \circ r_{p}(x)-e_{\gamma_{1}^{s}}^{*} \circ i_{p} \circ r_{p}(x)\right|<\varepsilon_{s}\|x\| \leqslant \varepsilon_{p+1}\|x\|$.
We conclude that $\left\|r_{q}(x)-T_{q, p}(x)\right\| \leqslant \varepsilon_{p+1}\|x\|$ (actually observe that if $p=q$, then $\left.r_{q}(x)=T_{q, q}(x)\right)$ and hence if we define $\widetilde{T}_{q, p}: N_{p} \rightarrow \widetilde{W}_{q}$ with $\widetilde{T}_{q, p}=$ $i_{q} \circ T_{q, p}$, then

$$
\left\|x-\widetilde{T}_{q, p}(x)\right\| \leqslant C \varepsilon_{p+1}\|x\|
$$

for all $x \in N_{p}$ and $p=0, \ldots, q$. As we previously mentioned, $\left(N_{p}\right)_{p}$ is an FDD for Z with a projection constant C, so we may consider the associated projections $Q_{\{p\}}: Z \rightarrow N_{p}$ for all p. Define $T_{q}: Z_{q} \rightarrow \widetilde{W}_{q}$ with $T_{q}=\sum_{p=0}^{q} \widetilde{T}_{q, p} \circ Q_{\{p\}}$. Some simple calculations using $\left\|Q_{\{p\}}\right\| \leqslant 2 C$ for all p yield that T_{q} is the desired operator.

We recall that it is known that separable \mathcal{L}_{∞}-spaces have c_{0} as a quotient [2, 13].

LEMMA 4.2. Let $\mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}}$ be a Bourgain-Delbaen space satisfying the assumptions of Lemma 4.1. If Z is the subspace constructed in that lemma, then the quotient $\mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}} / Z$ is isomorphic to $c_{0}(\mathbb{N})$.

Proof. Following the notation of the proof of Lemma 4.1, let Z be the constructed subspace and let also W be the closed linear span of the vectors $d_{\gamma_{1}^{q}}-d_{\gamma_{2}^{q}}, q \in \mathbb{N}$. Let $Q: \mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}} \rightarrow \mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}} / Z$ denote the corresponding quotient map and for $q \in \mathbb{N}$ define $y_{q}=Q\left(d_{\gamma_{1}^{q}}-d_{\gamma_{2}^{q}}\right)$. It is not very difficult to prove that $\left(y_{q}\right)_{q}$ is a Schauder basis of $\mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}} / Z$ with projection constant $C=$ $\sup _{q}\left\|i_{q}\right\|$. Let $w_{q}^{*}=1 / 2\left(d_{\gamma_{1}^{q}}^{*}-d_{\gamma_{2}^{q}}^{*}\right)$ for all $q \in \mathbb{N}$ and $\left(y_{q}^{*}\right)_{q} \subset\left(\mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}} / Z\right)^{*}$ be the biorthogonal sequence of $\left(y_{q}\right)_{q}$. It follows that the sequences $\left(w_{q}^{*}\right)_{q}$ and $\left(y_{q}^{*}\right)_{q}$ are naturally isometrically equivalent and that $\left\|w_{q}^{*}-2\left(e_{\gamma_{1}^{q}}^{*}-e_{\gamma_{2}^{q}}^{*}\right)\right\| \leqslant 2 \varepsilon_{q}$ for all q. Proposition 2.13 yields that $\left(y_{q}^{*}\right)_{q}$ is equivalent to the unit vector basis of ℓ_{1}, which indeed implies that $\left(y_{q}\right)_{q}$ is equivalent to the unit vector basis of $c_{0}(\mathbb{N})$.

Proposition 4.3. Every separable infinite-dimensional \mathcal{L}_{∞}-space X contains an infinite-dimensional \mathcal{L}_{∞}-subspace Z, so that the quotient X / Z is isomorphic to $c_{0}(\mathbb{N})$. In other words, every separable infinite-dimensional \mathcal{L}_{∞}-space X is the twisted sum of a \mathcal{L}_{∞}-space Z and $c_{0}(\mathbb{N})$.

Proof. By virtue of Theorem 3.6, we may assume that X is a BourgainDelbaen space $\mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}}$. We start by observing that for every strictly increasing sequence $\left(q_{s}\right)_{s=0}^{\infty}$ of $\mathbb{N} \cup\{0\}$, the Bourgain-Delbaen spaces $\mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}}$ and $\mathfrak{X}_{\left(\Gamma_{q_{s}}, i_{q s}\right)_{s}}$ are actually equal. This follows from Proposition 2.12, in particular the fact that $\bigcup_{q} Y_{q}$ is dense in $\mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}}$. It is therefore sufficient to find an appropriate increasing sequence $\left(q_{s}\right)_{s=0}^{\infty}$ so that the space $\mathfrak{X}_{\left(\Gamma_{q_{s}}, i_{q_{s}}\right)_{s}}$ satisfies the assumptions of Lemma 4.1 (and hence also those of Lemma 4.2).

Fix a decreasing sequence of positive real numbers $\left(\varepsilon_{q}\right)_{q=1}^{\infty}$, with $\sum_{q} \varepsilon_{q}<$ $1 /\left(2 C^{2}\right)$, where $C=\sup _{q}\left\|i_{q}\right\|$. A compactness argument yields that for every $\varepsilon>0$ and $q \in \mathbb{N} \cup\{0\}$, there exist non-equal $\gamma_{1}, \gamma_{2} \in \Gamma \backslash \Gamma_{q}$ so that $\| e_{\gamma_{1}}^{*} \circ$ $i_{p} \circ r_{p}-e_{\gamma_{2}}^{*} \circ i_{p} \circ r_{p} \|<\varepsilon$ for $p=0, \ldots, q$. Set $q_{0}=0$ and, using the above, recursively choose a strictly increasing sequence $\left(q_{s}\right)_{s=0}^{\infty}$ so that for every $s \in \mathbb{N}$ there are distinct $\gamma_{1}^{s}, \gamma_{2}^{s} \in \Gamma_{q_{s}} \backslash \Gamma_{q_{s-1}}$ with $\left\|e_{\gamma_{s}^{\prime}}^{*} \circ i_{q_{t}} \circ r_{q_{t}}-e_{\gamma_{s}^{2}}^{*} \circ i_{q_{t}} \circ r_{q_{t}}\right\| \leqslant \varepsilon_{s}$ for $t=0, \ldots, s-1$.
§5. A \mathcal{L}_{∞} and asymptotic c_{0} space not containing c_{0}. We employ the Bourgain-Delbaen method to define an isomorphic ℓ_{1}-predual \mathfrak{X}_{0}, which is asymptotic c_{0} and does not contain a copy of c_{0}. We follow notation similar to that used in [6] and [5].
5.1. Definition of the space \mathfrak{X}_{0}. We fix a natural number $N \geqslant 3$ and a constant $1<\theta<N / 2$. Define $\Delta_{0}=\{0\}$ and assume that we have defined the sets Δ_{0}, $\Delta_{1}, \ldots, \Delta_{q}$. We set $\Gamma_{p}=\bigcup_{i=0}^{p} \Gamma_{i}$ and, for each $\gamma \in \Gamma_{q}$, we denote by $\operatorname{rank}(\gamma)$ the unique p so that $\gamma \in \Delta_{p}$. Assume that to each $\gamma \in \Gamma_{q} \backslash \Gamma_{0}$ we have assigned a natural number in $\{1, \ldots, n\}$, called the age of γ and denoted by age (γ).

Assume moreover that we have defined extension functionals $\left(c_{\gamma}^{*}\right)_{\gamma \in \Delta_{p}}$ and extension operators $i_{p-1, p}: \ell_{\infty}\left(\Gamma_{p-1}\right) \rightarrow \ell_{\infty}\left(\Gamma_{p}\right)$ so that

$$
i_{p-1, p}(x)(\gamma)= \begin{cases}x(\gamma) & \text { if } \gamma \in \Gamma_{p-1} \tag{7}\\ c_{\gamma}^{*}(x) & \text { if } \gamma \in \Delta_{p}\end{cases}
$$

for $p=1, \ldots, q$. If $0 \leqslant p<s \leqslant q$, we define $i_{p, s}=i_{s-1, s} \circ \cdots \circ i_{p, p+1}$ and we also denote by $i_{p, p}$ the identity operator on $\ell_{\infty}\left(\Gamma_{p}\right)$.

We define Δ_{q+1} to be the set of all tuples of one of the two forms described below:

$$
\begin{equation*}
\left(q+1, n,\left(\varepsilon_{i}\right)_{i=1}^{k},\left(E_{i}\right)_{i=1}^{k},\left(\eta_{i}\right)_{i=1}^{k}\right) \tag{8a}
\end{equation*}
$$

where $n \leqslant\left(\# \Gamma_{q}\right)^{2}, 1 \leqslant k \leqslant n, \varepsilon_{i} \in\{-1,1\}$ for $i=1, \ldots, k,\left(E_{i}\right)_{i=1}^{k}$ is a sequence of successive intervals of $\{0, \ldots, q\}$ and $\eta_{i} \in \Gamma_{q}$ with $\operatorname{rank}\left(\eta_{i}\right) \in E_{i}$ for $i=1, \ldots, k$, or

$$
\begin{equation*}
\left(q+1, \xi, n,\left(\varepsilon_{i}\right)_{i=1}^{k},\left(E_{i}\right)_{i=1}^{k},\left(\eta_{i}\right)_{i=1}^{k}\right) \tag{8b}
\end{equation*}
$$

where $\xi \in \Gamma_{q-1} \backslash \Gamma_{0}$ with age $(\xi)<N,\left(\# \Gamma_{\operatorname{rank}(\xi)}\right)^{2} \leqslant n \leqslant\left(\# \Gamma_{q}\right)^{2}, 1 \leqslant k \leqslant n$, $\varepsilon_{i} \in\{-1,1\}$ for $i=1, \ldots, k,\left(E_{i}\right)_{i=1}^{k}$ is a sequence of successive intervals of $\{\operatorname{rank}(\xi)+1, \ldots, q\}$ and $\eta_{i} \in \Gamma_{q}$ with $\operatorname{rank}\left(\eta_{i}\right) \in E_{i}$ for $i=1, \ldots, k$.

To each $\gamma \in \Delta_{q+1}$, we assign an extension functional $c_{\gamma}^{*}: \ell_{\infty}\left(\Delta_{q}\right) \rightarrow \mathbb{R}$. If $0 \leqslant p \leqslant q$, we define the projection $P_{[0, p]}^{q} x=i_{p, q} \circ r_{p}(x)$ while if $0 \leqslant p \leqslant s \leqslant$ q, we define the projection $P_{(p, s]}^{q}=P_{[0, s]}^{q}-P_{[0, p]}^{q}$. If $\gamma \in \Delta_{q+1}$ is of the form $(8 a)$, we set age $(\gamma)=1$ and define the extension functional c_{γ}^{*} as follows:

$$
\begin{equation*}
c_{\gamma}^{*}=\frac{\theta}{N} \frac{1}{n} \sum_{i=1}^{k} \varepsilon_{i} e_{\eta_{i}}^{*} \circ P_{E_{i}}^{q} \tag{9a}
\end{equation*}
$$

If $\gamma \in \Delta_{q+1}$ is of the form (8b), we set age $(\gamma)=\operatorname{age}(\xi)+1$ and define the extension functional $c_{\gamma}^{*}: \ell_{\infty}\left(\Delta_{q}\right) \rightarrow \mathbb{R}$ as follows:

$$
\begin{equation*}
c_{\gamma}^{*}=e_{\xi}^{*}+\frac{\theta}{N} \frac{1}{n} \sum_{i=1}^{k} \varepsilon_{i} e_{\eta_{i}}^{*} \circ P_{E_{i}}^{q} \tag{9b}
\end{equation*}
$$

The inductive construction is complete. We set $\Gamma=\bigcup_{q=1}^{\infty} \Delta_{q}$ and, for each $q \in \mathbb{N} \cup\{0\}$, we define the extension operator $i_{q}: \ell_{\infty}\left(\Gamma_{q}\right) \rightarrow \ell_{\infty}(\Gamma)$ by the rule

$$
i_{q}(x)(\gamma)= \begin{cases}x(\gamma) & \text { if } \gamma \in \Gamma_{q} \\ i_{q, p}(x)(\gamma) & \text { if } \gamma \in \Delta_{p} \text { for some } p>q\end{cases}
$$

Standard arguments yield that $\left(i_{q}\right)_{q=0}^{\infty}$ is a compatible sequence of extension operators with $\sup _{q}\left\|i_{q}\right\| \leqslant N /(N-2 \theta)$. We denote by \mathfrak{X}_{0} the resulting Bourgain-Delbaen space $\mathfrak{X}_{\left(\Gamma_{q}, i_{q}\right)_{q}}$. We shall use the notation from $\S 2.1$.

Remark 5.1. By Remark 2.9, we obtain that for every interval E of the natural numbers, $\left\|P_{E}\right\| \leqslant 2 N /(N-2 \theta)$. It follows that for every $\gamma \in \Gamma$ and such E, $\left\|e_{\gamma}^{*} \circ P_{E}\right\| \leqslant 2 N /(N-2 \theta)$, in particular $\left\|d_{\gamma}^{*}\right\| \leqslant 2 N /(N-2 \theta)$.

Remark 5.2. We enumerate the set $\Gamma=\bigcup_{q=0}^{\infty} \Delta_{q}$ in such a manner that the sets Δ_{q} correspond to successive intervals of \mathbb{N}. If we denote this enumeration by $\Gamma=\left\{\gamma_{i}: \in \mathbb{N}\right\}$, according to Remark 2.10, $\left(d_{\gamma_{i}}\right)_{i}$ forms a Schauder basis for \mathfrak{X}_{0}. It is with respect to this basis that we show that the space \mathfrak{X}_{0} is asymptotic c_{0}. However, when we write P_{E} we shall mean the Bourgain-Delbaen projection onto E as defined in Remark 2.9.

Arguing as in [5, Proposition 4.5], each e_{γ}^{*} admits an analysis.
Proposition 5.3. Let $\gamma \in \Gamma$ with $\operatorname{rank}(\gamma)>0$. The functional e_{γ}^{*} admits a unique analysis of the following form:

$$
\begin{equation*}
e_{\gamma}^{*}=\sum_{r=1}^{a} d_{\xi_{r}}^{*}+\frac{\theta}{N} \sum_{r=1}^{a} \frac{1}{n_{r}} \sum_{i=1}^{k_{r}} \varepsilon_{r, i} e_{\eta_{r, i}}^{*} \circ P_{E_{r, i}} \tag{10}
\end{equation*}
$$

where $a=\operatorname{age}(\gamma) \leqslant N$, the ξ_{i} are in $\Gamma \backslash \Gamma_{0}$ with $\xi_{a}=\gamma$, the $E_{r, i}$ are intervals of $\mathbb{N} \cup\{0\}$ with $E_{1,1}<\cdots<E_{1, k_{1}}<\operatorname{rank}\left(\xi_{1}\right)<E_{2,1}<\cdots<E_{a, k_{a}}<\operatorname{rank}\left(\xi_{a}\right)$, the $\eta_{r, i}$ are in Γ with $\operatorname{rank}\left(\eta_{r, i}\right) \in E_{r, i}$, the $\varepsilon_{r, i}$ are in $\{-1,1\}, n_{r}>\left(\# \Gamma_{\operatorname{rank}\left(\xi_{r-1}\right)}\right)^{2}$ for $r=2, \ldots$, and $1 \leqslant k_{r} \leqslant n_{r}$ for $r=1, \ldots$.

Remark 5.4. Note that if in (10) we set $f_{r}=\left(1 / n_{r}\right) \sum_{i=1}^{k_{r}} \varepsilon_{r, i} e_{\eta_{r, i}}^{*} \circ P_{E_{r, i}}$, then $\left(f_{r}\right)_{r=1}^{a}$ constitutes a very fast growing sequence of α-averages, in the sense of [3].

5.2. The main property of the space \mathfrak{X}_{0}.

LEMMA 5.5. Let $x_{1}<\cdots<x_{m}$ be blocks of $\left(d_{\gamma_{i}}\right)_{i}$ of norm at most one, $E_{1}<$ $\cdots<E_{k}$ be intervals of $\mathbb{N} \cup\{0\},\left(\eta_{i}\right)_{i=1}^{k}$ be a sequence in Γ with $\operatorname{rank}\left(\eta_{i}\right) \in E_{i}$, for $i=1, \ldots, k,\left(\varepsilon_{i}\right)_{i=1}^{k}$ be a sequence in $\{-1,1\}$ and let $n \geqslant \max \left\{m^{2}, k\right\}$. Then

$$
\begin{equation*}
\left|\left(\frac{1}{n} \sum_{i=1}^{k} \varepsilon_{i} e_{\eta_{i}}^{*} \circ P_{E_{i}}\right)\left(\sum_{j=1}^{m} x_{j}\right)\right| \leqslant \frac{4 N}{N-2 \theta} \tag{11}
\end{equation*}
$$

Proof. We shall consider the support and range of vectors with respect to the basis $\left(d_{\gamma_{i}}\right)_{i}$. Set $x_{i}^{*}=\varepsilon_{i} e_{\eta_{i}}^{*} \circ P_{E_{i}}$ for $i=1, \ldots, k$. Note that $\left(x_{i}^{*}\right)_{i=1}^{k}$ is a successive block sequence of $\left(d_{\gamma_{i}}^{*}\right)_{i}$ and, by Remark 5.1, $\left\|x_{i}^{*}\right\| \leqslant 2 N /(N-2 \theta)$ for $i=1, \ldots, k$. Let I_{1} be the set of those $i \leqslant k$ such that the support of x_{i}^{*} intersects the range of at least two of the x_{j}. Then $\# I_{1} \leqslant m$ and so $\left|\left((1 / n) \sum_{i \in I_{1}} x_{i}^{*}\right)\left(\sum_{j=1}^{m} x_{j}\right)\right| \leqslant(2 N /(N-2 \theta)) m^{2} / n \leqslant 2 N /(N-\theta)$. Let $I_{2}=$ $\left\{i \leqslant n: i \notin I_{1}\right\}$. It is clear that $\left|\left((1 / n) \sum_{i \in I_{2}} x_{i}^{*}\right)\left(\sum_{j=1}^{m} x_{j}\right)\right| \leqslant 2 N /(N-2 \theta)$ and the proof is complete.

Proposition 5.6. Set $K_{N, \theta}=\left(2 N^{3}+4 \theta N^{2}-4 \theta N\right) /\left(N^{2}-3 \theta N+2 \theta^{2}\right)$ and let $u_{1}<\cdots<u_{m}$ be blocks of $\left(d_{\gamma_{i}}\right)_{i}$ of norm at most equal to one so that if we consider the support of the vectors u_{i} with respect to the basis $\left(d_{\gamma_{i}}\right)_{i}$, then $m \leqslant \min \operatorname{supp} u_{1}$. Then $\left\|\sum_{i=1}^{m} u_{i}\right\| \leqslant K_{N, \theta}$.

Proof. Set $u=\sum_{i=1}^{m} u_{i}$. We use induction on $\operatorname{rank}(\gamma)$ to show that for every $\gamma \in \Gamma$ and every interval E of $\mathbb{N},\left|e_{\gamma}^{*} \circ P_{E}(u)\right| \leqslant K_{N, \theta}$. This assertion is easy when $\operatorname{rank}(\gamma)=0$. Assume that $q \in \mathbb{N} \cup\{0\}$ is such that the assertion holds for every $\gamma \in \Gamma_{q}$ and E interval of \mathbb{N} and let $\gamma \in \Gamma_{q+1} \backslash \Gamma_{q}$ and E be an interval of \mathbb{N}. Applying Proposition 5.3, write

$$
e_{\gamma}^{*}=\sum_{r=1}^{a} d_{\xi_{r}}^{*}+\frac{\theta}{N} \sum_{r=1}^{a} \frac{1}{n_{r}} \sum_{i=1}^{k_{r}} \varepsilon_{r, i} e_{\eta_{r, i}}^{*} \circ P_{E_{r, i}}
$$

so that the conclusion of that proposition is satisfied. For $r=1, \ldots, a$, define $y_{r}^{*}=\left(1 / n_{r}\right) \sum_{i=1}^{k_{r}} \varepsilon_{r, i} e_{\eta_{r, i}}^{*} \circ P_{E_{r, i} \cap E}$ and $G=\left\{r: \operatorname{rank}\left(\xi_{r}\right) \in E\right\}$. Observe that $e_{\gamma}^{*} \circ P_{E}=\sum_{r \in G} d_{\xi_{r}}^{*}+(\theta / N) \sum_{r=1}^{a} y_{r}^{*}$.

If $\xi_{r}=\gamma_{i}$, note that $i_{1}<\cdots<i_{a}$. Considering the support of u with respect to the basis $\left(d_{\gamma_{i}}\right)_{i}$, set $r_{0}=\min \left\{r: i_{r} \geqslant \min \operatorname{supp} u\right\}$. The inductive assumption yields that $\left|y_{r_{0}}^{*}(u)\right| \leqslant K_{N, \theta}$, while the growth condition on the n_{r} implies that $n_{r}>m^{2}$ for $r>r_{0}$. Lemma 5.5 yields

$$
\begin{equation*}
\frac{\theta}{N} \sum_{r=1}^{a}\left|y_{r}^{*}(u)\right| \leqslant \frac{\theta}{N}\left(K_{N, \theta}+(N-1) \frac{4 N}{N-2 \theta}\right) \tag{12}
\end{equation*}
$$

while Remark 5.1 implies that

$$
\begin{equation*}
\sum_{r \in G}\left|d_{\xi_{r}}^{*}(u)\right| \leqslant N \frac{2 N}{N-2 \theta} \tag{13}
\end{equation*}
$$

Some calculations combining (12) and (13) yield the desired result.

Proposition 5.7. The space \mathfrak{X}_{0} is a \mathcal{L}_{∞}-space with a Schauder basis $\left(d_{\gamma_{i}}\right)_{i}$ satisfying the following properties.
(i) The basis $\left(d_{\gamma_{i}}\right)_{i}$ is shrinking, in particular \mathfrak{X}_{0}^{*} is isomorphic to ℓ_{1}.
(ii) The space \mathfrak{X}_{0} is asymptotic c_{0} with respect to the basis $\left(d_{\gamma_{i}}\right)_{i}$.
(iii) The space \mathfrak{X}_{0} does not contain an isomorphic copy of c_{0}.

Proof. The fact that \mathfrak{X}_{0} is asymptotic c_{0} with respect to $\left(d_{\gamma_{i}}\right)_{i}$ follows directly from Proposition 5.6. We obtain in particular that $\left(d_{\gamma_{i}}\right)_{i}$ is shrinking and hence, by Proposition 2.17, the dual of \mathfrak{X}_{0} is isomorphic to ℓ_{1}. To show that \mathfrak{X}_{0} does not contain an isomorphic copy of c_{0}, let us consider the FDD $\left(M_{q}\right)_{q=0}^{\infty}$ as it was defined in Proposition 2.8. Let $\left(x_{k}\right)_{k}$ be a sequence of skipped block vectors, with respect to the $\operatorname{FDD}\left(M_{q}\right)_{q=0}^{\infty}$, all of which have norm at least equal to one. Then, for every $\varepsilon>0$, there exist a finite subset I_{1} of \mathbb{N} and $\gamma \in \Gamma$ so that $e_{\gamma}^{*}\left(\sum_{k \in I_{1}} x_{k}\right) \geqslant \theta-\varepsilon$. It follows from this that for all $n \in \mathbb{N}$, we can find a $\gamma \in \Gamma$ and find a finite subset J of \mathbb{N} so that $e_{\gamma}^{*}\left(\sum_{i \in J} x_{k}\right) \geqslant(\theta-\varepsilon)^{n}$. Therefore, c_{0} is indeed not isomorphic to a subspace of \mathfrak{X}_{0}.

Remark 5.8. In [1], Alspach proved that the \mathcal{L}_{∞}-space with separable dual defined in [6] has Szlenk index ω. We note that the space \mathfrak{X}_{0} has Szlenk index ω as well. Indeed, if this were not the case, then, by [2, Theorem 1], we would conclude that \mathfrak{X}_{0} has a quotient isomorphic to $C\left(\omega^{\omega}\right)$, which would imply that \mathfrak{X}_{0} admits an ℓ_{1} spreading model.

Remark 5.9. Every skipped block sequence, with respect to the FDD $\left(M_{q}\right)_{q=1}^{\infty}$, is boundedly complete and hence the space \mathfrak{X}_{0} is reflexively saturated and also every block sequence in \mathfrak{X}_{0} contains a further block sequence which is unconditional. We also note that a similar method can be used to construct a reflexive asymptotic c_{0} space with an unconditional basis. This space is related to Tsirelson's original Banach space [15].

Acknowledgement. The authors would like to acknowledge the support of program API Σ TEIA-1082.

References

1. D. E. Alspach, The dual of the Bourgain-Delbaen space. Israel J. Math. 117 (2000), 239-259.
2. D. E. Alspach and Y. Benyamini, $C(K)$ quotients of separable \mathcal{L}_{∞} spaces. Israel J. Math. 32 (1979), 145-160.
3. S. A. Argyros, K. Beanland and P. Motakis, The strictly singular operators in Tsirelson like reflexive spaces. Illinois J. Math. 57(4) (2013), 1173-1217.
4. S. Argryros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht and D. Z. Zisimopoulou, Embedding Banach spaces into spaces with very few operators. J. Funct. Anal. 262(3) (2012), 825-849.
5. S. A. Argyros and R. G. Haydon, A hereditarily indecomposable \mathcal{L}_{∞}-space that solves the scalar-plus-compact problem. Acta Math. 206 (2011), 1-54.
6. J. Bourgain and F. Delbaen, A class of special \mathcal{L}_{∞} spaces. Acta Math. 145 (1980), 155-176.
7. D. Freeman, E. Odell and Th. Schlumprecht, The universality of ℓ_{1} as a dual space. Math. Ann. 351(1) (2011), 149-186.
8. G. Godefroy and D. Li, Some natural families of M-ideals. Math. Scand. 66 (1990), 249-263.
9. W. B. Johnson, H. P. Rosenthal and M. Zippin, On bases, finite dimensional decompositions and weaker structures in Banach spaces. Israel J. Math. 9 (1971), 488-506.
10. D. Lewis and C. Stegall, Banach spaces whose duals are isomorphic to $\ell_{1}(\Gamma)$. J. Funct. Anal. 12 (1973), 177-187.
11. J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in \mathcal{L}_{p}-spaces and their applications. Studia Math. 29 (1968), 275-326.
12. J. Lindenstrauss and H. P. Rosenthal, The \mathcal{L}_{p} spaces. Israel J. Math. 7 (1969), 325-349.
13. A. Pełczynśki, On Banach spaces containing $L_{1}(\mu)$. Studia Math. 30 (1968), 231-246.
14. C. Stegall, Banach spaces whose duals contain $\ell_{1}(\Gamma)$ with applications to the study of dual $L_{1}(\mu)$ spaces. Trans. Amer. Math. Soc. 176 (1973), 463-477.
15. B. S. Tsirelson, Not every Banach space contains ℓ_{p} or c_{0}. Funct. Anal. Appl. 8 (1974), 138-141.

Spiros A. Argyros,
National Technical University of Athens,
Faculty of Applied Sciences,
Department of Mathematics,
Zografou Campus,
157 80, Athens,
Greece
E-mail: sargyros@math.ntua.gr

Ioannis Gasparis,
National Technical University of Athens,
Faculty of Applied Sciences,
Department of Mathematics,
Zografou Campus,
157 80, Athens,
Greece
E-mail: ioagaspa@math.ntua.gr

Pavlos Motakis,
Department of Mathematics,
Texas A\&M University,
College Station,
TX 77843-3368,
U.S.A.

E-mail: pavlos@math.tamu.edu

