ON THE STRUCTURE OF SEPARABLE $\mathcal{L}_\infty\text{-}\mathsf{SPACES}$

SPIROS A. ARGYROS, IOANNIS GASPARIS AND PAVLOS MOTAKIS

Abstract. Based on a construction method introduced by Bourgain and Delbaen, we give a general definition of a Bourgain–Delbaen space and prove that every infinite-dimensional separable \mathcal{L}_{∞} -space is isomorphic to such a space. Furthermore, we provide an example of a \mathcal{L}_{∞} and asymptotic c_0 space not containing c_0 .

§1. Introduction. In the late 1960s Lindenstrauss and Pełczyński introduced the class of \mathcal{L}_{∞} -spaces, which naturally extends the class of \mathcal{L}_{∞} -spaces [11]. Whether such spaces always contain a copy of c_0 remained a long standing open problem, which was solved in the negative direction by Bourgain and Delbaen in [6]. In particular, they introduced a method for constructing \mathcal{L}_{∞} -spaces and any example constructed with its use has been customarily called a Bourgain–Delbaen space. This method proved to be very fruitful, as it has been used extensively to construct a wide variety of \mathcal{L}_{∞} -spaces, including the first example of a Banach space satisfying the "scalar plus compact" property [5], as well as to obtain other structural results in the geometry of Banach spaces [4, 7].

The main framework of the Bourgain–Delbaen method concerns the construction of an increasing sequence $(Y_n)_n$ of finite-dimensional subspaces of a $\ell_{\infty}(\Gamma)$ -space, with Γ countably infinite, each one uniformly isomorphic to some ℓ_{∞}^n . This is achieved by carefully defining a sequence of extension operators $(i_n)_n$, each one defined on $\ell_{\infty}(\Gamma_n)$ with Γ_n an appropriate finite subset of Γ , and taking Y_n to be the image of i_n . If the sequence $(i_n)_n$ satisfies a certain compatibility property, then the closure of the union of the Y_n , $n \in \mathbb{N}$, is a \mathcal{L}_{∞} -space whose properties depend on the definition of the aforementioned extension operators.

Based on this method, we give a broad definition of a Bourgain-Delbaen space. We include a brief study of the basic properties of such spaces and, using techniques rooted in the early theory of \mathcal{L}_{∞} -spaces (i.e. [9–14]), we prove that every separable infinite-dimensional \mathcal{L}_{∞} -space is isomorphic to such a space. We use this result to deduce that every separable infinite-dimensional \mathcal{L}_{∞} -space X has an infinite-dimensional \mathcal{L}_{∞} -subspace Z, so that the quotient X/Z is isomorphic to c_0 .

In the final section of this paper we provide an example of an asymptotic c_0 isomorphic ℓ_1 -predual (i.e. a space whose dual is isomorphic to ℓ_1) \mathfrak{X}_0 that does not contain c_0 . This result in particular yields that the proximity of a Banach space to c_0 in a local setting, in the sense of being \mathcal{L}_{∞} , as well as in an asymptotic

S. A. ARGYROS et al

setting, in the sense of being asymptotic c_0 , does not imply proximity to c_0 in an infinite-dimensional level. We think of this example as a step towards the solution of a problem in [8, Question IV.2], namely whether every isomorphic ℓ_1 -predual satisfying Pełczyński's property-(u) is isomorphic to c_0 . The question of the existence of an asymptotic $c_0 \mathcal{L}_{\infty}$ -space not containing c_0 was asked by B. Sari.

§2. Bourgain–Delbaen spaces. In the present section we give a general definition of the spaces that shall be called Bourgain–Delbaen spaces and prove some of their basic properties. It turns out that every infinite-dimensional separable \mathcal{L}_{∞} -space is isomorphic to a Bourgain–Delbaen space. We recall the definition of a \mathcal{L}_{∞} -space, which was introduced in [11, Definition 3.1].

Definition 2.1. A Banach space X is called a $\mathcal{L}_{\infty,C}$ -space, for some $C \ge 1$, if for every finite-dimensional subspace F of X there exists a finite-dimensional subspace G of X, containing F, which is C-isomorphic to ℓ_{∞}^n , where $n = \dim G$. A Banach space X will be called a \mathcal{L}_{∞} -space if it is a $\mathcal{L}_{\infty,C}$ -space for some $C \ge 1$.

Remark 2.2. If X is an infinite-dimensional separable Banach space, then it is well known, and not difficult to prove, that X is a \mathcal{L}_{∞} -space if and only if there exist a constant C and an increasing sequence $(Y_n)_n$ of finite-dimensional subspaces of X, whose union is dense in X, such that Y_n is C-isomorphic to $\ell_{\infty}^{k_n}$, where $k_n = \dim Y_n$, for all $n \in \mathbb{N}$.

2.1. *The definition of a Bourgain–Delbaen space*. We give a broad definition of what kind of spaces we will refer to as Bourgain–Delbaen spaces.

Definition 2.3. Let Γ_1 , Γ be non-empty sets with $\Gamma_1 \subset \Gamma$. A linear operator $i : \ell_{\infty}(\Gamma_1) \to \ell_{\infty}(\Gamma)$ will be called an extension operator if, for every $x \in \ell_{\infty}(\Gamma_1)$ and $\gamma \in \Gamma_1$, we have that $x(\gamma) = i(x)(\gamma)$.

Definition 2.4. Let $(\Gamma_q)_{q=0}^{\infty}$ be a strictly increasing sequence of non-empty sets and $\Gamma = \bigcup_q \Gamma_q$. A sequence of extension operators $(i_q)_{q=0}^{\infty}$, with $i_q : \ell_{\infty}(\Gamma_q) \to \ell_{\infty}(\Gamma)$ for all $q \in \mathbb{N} \cup \{0\}$, will be called compatible if, for every $p, q \in \mathbb{N} \cup \{0\}$ with p < q and $x \in \ell_{\infty}(\Gamma_p)$, the following holds:

$$i_p(x) = i_q(r_q(i_p(x))),$$

i.e. $i_p = i_q \circ r_q \circ i_p$, where $r_q : \ell_{\infty}(\Gamma) \to \ell_{\infty}(\Gamma_q)$ denotes the natural restriction operator.

Definition 2.5. Let $(\Gamma_q)_{q=0}^{\infty}$ be a strictly increasing sequence of non-empty finite sets, $\Gamma = \bigcup_q \Gamma_q$ and $(i_q)_{q=0}^{\infty}$, with $i_q : \ell_{\infty}(\Gamma_q) \to \ell_{\infty}(\Gamma)$ for all $q \in \mathbb{N} \cup \{0\}$, be a sequence of compatible extension operators such that $C = \sup_q ||i_q||$ is finite.

- (i) We define the sets $\Delta_0 = \Gamma_0$ and $\Delta_q = \Gamma_q \setminus \Gamma_{q-1}$ for $q \in \mathbb{N} \cup \{0\}$.
- (ii) For every $\gamma \in \Gamma$, we define d_{γ} , a vector in $\ell_{\infty}(\Gamma)$, as follows: if $\gamma \in \Delta_q$ for some $q \in \mathbb{N} \cup \{0\}$, then $d_{\gamma} = i_q(e_{\gamma})$.

The space $\mathfrak{X}_{(\Gamma_q, i_q)_q} = \overline{\langle \{d_{\gamma} : \gamma \in \Gamma\} \rangle}$, i.e. the closed subspace of $\ell_{\infty}(\Gamma)$ spanned by the vectors $(d_{\gamma})_{\gamma \in \Gamma}$, will be called a Bourgain–Delbaen space.

Remark 2.6. Since the operators $i_q : \ell_{\infty}(\Gamma_q) \to \ell_{\infty}(\Gamma)$ are extension operators, it easily follows that i_q is a *C*-isomorphism for all $q \in \mathbb{N} \cup \{0\}$, where $C = \sup_q ||i_q||$. In particular, the following hold:

- (i) if $Y_q = i_q [\ell_{\infty}(\Gamma_q)]$, then Y_q is *C*-isomorphic to $\ell_{\infty}(\Gamma_q)$; and
- (ii) the vectors $(d_{\gamma})_{\gamma \in \Delta_q}$ are *C*-equivalent to the unit vector basis of $\ell_{\infty}(\Delta_q)$ for all $q \in \mathbb{N} \cup \{0\}$.

Remark 2.7. The above Remark 2.6 and Proposition 2.12 from §2.2 provide an equivalent definition of a Bourgain–Delbaen space, namely the following.

Let $(\Gamma_q)_q$ be a strictly increasing sequence of finite non-empty sets and $(Y_q)_q$ be an increasing sequence of subspaces of $\ell_{\infty}(\Gamma)$, where $\Gamma = \bigcup_q \Gamma_q$. If there exists a constant C > 0 such that for every $q \in \mathbb{N}$, when restricted onto the subspace Y_q , the restriction operator $r_q : Y_q \to \ell_{\infty}(\Gamma_q)$ is an onto *C*-isomorphism, then the space $X = \overline{\bigcup_q Y_q}$ is a Bourgain–Delbaen space.

Indeed, it is straightforward to check that the maps $i_q : \ell_{\infty}(\Gamma_q) \to \ell_{\infty}(\Gamma)$ with $i_q = r_q^{-1} : \ell_{\infty}(\Gamma_q) \to Y_q \hookrightarrow \ell_{\infty}(\Gamma)$ are uniformly bounded compatible extension operators and $\mathfrak{X}_{(\Gamma_q,i_q)_q} = X$.

2.2. *Properties of a Bourgain–Delbaen space*. We present some basic properties of a Bourgain–Delbaen space, which can be deduced from Definition 2.5.

PROPOSITION 2.8. Let $\mathfrak{X}_{(\Gamma_q, i_q)_q}$ be a Bourgain–Delbaen space. For all $q \in \mathbb{N} \cup \{0\}$, we denote $M_q = \langle \{d_{\gamma} : \gamma \in \Delta_q\} \rangle$. Then $(M_q)_{q=0}^{\infty}$ forms a finitedimensional decomposition (FDD) for the space $\mathfrak{X}_{(\Gamma_q, i_q)_q}$. More precisely, for every $p, q \in \mathbb{N} \cup \{0\}$ with p < q and $x_{\ell} \in M_{\ell}$ for $\ell = 0, 1, \ldots, q$, the following holds:

$$\left\|\sum_{\ell=0}^{p} x_{\ell}\right\| \leqslant C \left\|\sum_{\ell=0}^{q} x_{\ell}\right\|,\tag{1}$$

where $C = \sup_{q} ||i_{q}||$.

Proof. Let $x_{\ell} = i_{\ell}(y_{\ell})$ for some $y_{\ell} \in \langle \{e_{\gamma} : \gamma \in \Delta_{\ell}\} \rangle$ for $\ell = 0, 1, ..., q$. Then, by the compatibility of the operators, we have that $x_{\ell} = i_p(r_p(i_{\ell}(y_{\ell})))$, i.e. $x_{\ell} = i_p \circ r_p(x_{\ell})$ for $\ell = 0, 1, ..., p$ and hence

$$\left\|\sum_{\ell=0}^{p} x_{\ell}\right\| = \left\|i_{p} \circ r_{p}\left(\sum_{\ell=0}^{p} x_{\ell}\right)\right\| \leqslant C \left\|r_{p}\left(\sum_{\ell=0}^{p} x_{\ell}\right)\right\|.$$
 (2)

On the other hand, once more by the extension property of the operators, we have that $r_p(x_\ell) = 0$ (which also yields that $i_p \circ r_p(x_\ell) = 0$) for $\ell = p + 1, ..., q$ and therefore we obtain

$$\left\|\sum_{\ell=0}^{q} x_{\ell}\right\| \ge \left\|r_p\left(\sum_{\ell=0}^{q} x_{\ell}\right)\right\| = \left\|r_p\left(\sum_{\ell=0}^{p} x_{\ell}\right)\right\|.$$
(3)

The desired inequality immediately follows from (2) and (3). \Box

Remark 2.9. By the proposition above, for every interval $E = \{p, ..., q\}$ of $\mathbb{N} \cup \{0\}$ we can define the projection $P_E : \mathfrak{X}_{(\Gamma_q, i_q)_q} \to M_p + \cdots + M_q$ associated to the FDD $(M_q)_q$ and the interval *E*. The above proof implies that

$$P_{[0,q]}x = i_q \circ r_q(x) \tag{4}$$

for all $q \in \mathbb{N} \cup \{0\}$ and $x \in \mathfrak{X}_{(\Gamma_q, i_q)_q}$ and hence also

$$P_{(p,q]}x = i_q \circ r_q(x) - i_p \circ r_p(x)$$
(5)

for all $p, q \in \mathbb{N} \cup \{0\}$ with p < q and $x \in \mathfrak{X}_{(\Gamma_q, i_q)_q}$. We shall call P_E the Bourgain–Delbaen projection onto E. Note that $||P_E|| \leq 2C$ for every interval E of $\mathbb{N} \cup \{0\}$.

Remark 2.10. Proposition 2.8 in conjunction with Remark 2.6(ii) yield that $((d_{\gamma})_{\gamma \in \Delta_q})_{q=0}^{\infty}$ is a Schauder basis of $\mathfrak{X}_{(\Gamma_q, i_q)_q}$. Although in some cases it is more convenient to use the FDD $(M_q)_q$, in §5 we shall indeed use this basis.

Remark 2.11. Let *x* be a finitely supported vector in $\mathfrak{X}_{(\Gamma_q, i_q)_q}$ with ran x = E. Using Remark 2.9, one can see that if $q = \max E$, there exists $y \in \ell_{\infty}(\Gamma_q)$ with supp $y \subset \bigcup_{p \in E} \Delta_p$ such that $x = i_q(y)$.

PROPOSITION 2.12. Every Bourgain–Delbaen space $\mathfrak{X}_{(\Gamma_q,i_q)_q}$ is a \mathcal{L}_{∞} -space. More precisely, if $Y_q = i_q[\ell_{\infty}(\Gamma_q)]$ for all $q \in \mathbb{N} \cup \{0\}$, then $(Y_q)_q$ is a strictly increasing sequence of subspaces of $\mathfrak{X}_{(\Gamma_q,i_q)_q}$, whose union is dense in the whole space and for every $q \in \mathbb{N} \cup \{0\}$ Y_q is C-isomorphic to $\ell_{\infty}(\Gamma_q)$, where $C = \sup_q \|i_q\|$.

Proof. By Remark 2.6(i), we have that Y_q is *C*-isomorphic to $\ell_{\infty}(\Gamma_q)$ for all $q \in \mathbb{N} \cup \{0\}$. It remains to show that the sequence $(Y_q)_q$ is strictly increasing and its union is dense in $\mathfrak{X}_{(\Gamma_q, i_q)_q}$. We will prove that $Y_q = M_0 + \cdots + M_q$, where $M_q = \langle \{d_{\gamma} : \gamma \in \Delta_q\} \rangle$ for all $q \in \mathbb{N} \cup \{0\}$. Note that, in conjunction with Proposition 2.8, the previous fact easily implies the desired result.

Note that for $p, q \in \mathbb{N} \cup \{0\}$ with $p \leq q$ and $x \in M_p$, there is a $y \in \langle \{e_{\gamma} : \gamma \in \Delta_p\}\rangle$ with $x = i_p(y)$. Using the compatibility of the extension operators, we obtain that $x = i_q(r_q(x)) \in i_q(\ell_{\infty}(\Gamma_q)) = Y_q$. We have hence concluded that $M_0 + \cdots + M_q \subset Y_q$. To conclude that the above inclusion cannot be proper, we will show that dim $(M_0 + \cdots + M_q) = \dim Y_q$. Note that since, by Proposition 2.8,

 $(M_q)_{q=0}^{\infty}$ is an FDD, we have that $\dim(M_0 + \dots + M_q) = \dim(M_0) + \dots + \dim(M_q)$. Moreover, Remark 2.6(ii) implies that $\dim(M_p) = \#\Delta_p$ for $p = 0, \dots, q$. The definition of the sets Δ_p yields that $\dim = (M_0 + \dots + M_q) = \#\Gamma_q$. Remark 2.6(i) implies that $\dim Y_q = \#\Gamma_q$ and therefore $\dim(M_0 + \dots + M_q) = \dim Y_q$.

2.3. The functionals $(e_{\gamma}^{*})_{\gamma \in \Gamma}$. Let $\mathfrak{X}_{(\Gamma_{q}, i_{q})_{q}}$ be a Bourgain–Delbaen space. For every $\gamma \in \Gamma$, we denote by $e_{\gamma}^{*} : \mathfrak{X}_{(\Gamma_{q}, i_{q})_{q}} \to \mathbb{R}$ the evaluation functional on the γ th coordinate, defined on $\ell_{\infty}(\Gamma)$ and then restricted to the subspace $\mathfrak{X}_{(\Gamma_{q}, i_{q})_{q}}$. Note that $||e_{\gamma}^{*}|| \leq 1$ for all $\gamma \in \Gamma$.

PROPOSITION 2.13. Let $\mathfrak{X}_{(\Gamma_q,i_q)_q}$ be a Bourgain–Delbaen space. Then $(e_{\gamma}^*)_{\gamma \in \Gamma}$ is *C*-equivalent to the unit vector basis of $\ell_1(\Gamma)$, where $C = \sup_q ||i_q||$.

Proof. Let *A* be a non-empty finite subset of Γ and $(\lambda_{\gamma})_{\gamma \in A}$ be scalars. Choose $q \in \mathbb{N} \cup \{0\}$ such that $A \subset \Gamma_q$ and take the normalized vector $y = \sum_{\gamma \in A} \operatorname{sgn} \lambda_{\gamma} e_{\gamma}$ in $\ell_{\infty}(\Gamma_q)$. Note that $||i_q(y)|| \leq C$. Since i_q is an extension operator and $A \subset \Gamma_q$, we obtain the following estimate:

$$C\sum_{\gamma \in A} |\lambda_{\gamma}| \ge C \left\| \sum_{\gamma \in A} \lambda_{\gamma} e_{\gamma}^{*} \right\| \ge \sum_{\gamma \in A} \lambda_{\gamma} e_{\gamma}^{*}(i_{q}(y)) = \sum_{\gamma \in A} \lambda_{\gamma} i_{q}(y)(\gamma)$$
$$= \sum_{\gamma \in A} \lambda_{\gamma} y(\gamma) = \sum_{\gamma \in A} \lambda_{\gamma} \operatorname{sgn} \lambda_{\gamma} = \sum_{\gamma \in A} |\lambda_{\gamma}|,$$

i.e. $C^{-1} \sum |\lambda_{\gamma}| \leq \|\sum \lambda_{\gamma} e_{\gamma}^*\| \leq \sum |\lambda_{\gamma}|$, which is the desired result.

Definition 2.14. Let $\mathfrak{X}_{(\Gamma_q,i_q)_q}$ be a Bourgain–Delbaen space. For every $\gamma \in \Gamma$, we define two bounded linear functionals $c_{\gamma}^*, d_{\gamma}^* : \mathfrak{X}_{(\Gamma_q,i_q)_q} \to \mathbb{R}$ as follows:

- (i) if $\gamma \in \Delta_0$, then $c_{\gamma}^* = 0$ and otherwise if $\gamma \in \Delta_{q+1}$ for some $q \in \mathbb{N} \cup \{0\}$, then $c_{\gamma}^* = e_{\gamma}^* \circ i_q \circ r_q$; and
- (ii) $d_{\gamma}^* = e_{\gamma}^* c_{\gamma}^*$ for all $\gamma \in \Gamma$.

Remark 2.15. By Remark 2.9, we obtain that if $q \in \mathbb{N} \cup \{0\}$ and $\gamma \in \Delta_{q+1}$, then $c_{\gamma}^* = e_{\gamma}^* \circ P_{[0,q]}$ and hence $d_{\gamma}^* = e_{\gamma}^* \circ P_{(q,\infty)}$. Also, using the extension property of the operators i_q , it easily follows from Remark 2.9 that for $p \in \mathbb{N} \cup \{0\}$ and $\gamma \in \Gamma_p$ we have that $e_{\gamma}^* = e_{\gamma}^* \circ P_{[0,p]}$, which also implies that if $\gamma \in \Delta_p$, then $d_{\gamma}^* = e_{\gamma}^* \circ P_{\{p\}}$. Moreover, for $\gamma \in \Delta_0$, $d_{\gamma}^* = e_{\gamma}^*$.

LEMMA 2.16. Let $\mathfrak{X}_{(\Gamma_q, i_q)_q}$ be a Bourgain–Delbaen space. For all $q \in \mathbb{N} \cup \{0\}$ and $\gamma_0 \in \Delta_{q+1}$, the functional $c_{\gamma_0}^*$ is in the linear span of $\{e_{\gamma}^* : \gamma \in \Gamma_q\}$.

Proof. It suffices to show that $\bigcap_{\gamma \in \Gamma_q} \ker e_{\gamma}^* \subset \ker c_{\gamma_0}^*$ and to that end let $x \in \mathfrak{X}_{(\Gamma_q, i_q)_q}$ with $e_{\gamma}^*(x) = 0$ for all $\gamma \in \Gamma_q$. Recall that x is also a vector in $\ell_{\infty}(\Gamma)$ and in particular we have that $x(\gamma) = e_{\gamma}^*(x) = 0$ for all $\gamma \in \Gamma_q$ and hence $r_q(x) = 0$. By the definition of $c_{\gamma_0}^*$, it easily follows that $c_{\gamma_0}^*(x) = 0$.

PROPOSITION 2.17. Let $\mathfrak{X}_{(\Gamma_q,i_q)_q}$ be a Bourgain–Delbaen space. The following hold.

- (i) The functionals $(d_{\gamma}^*)_{\gamma \in \Gamma}$ are biorthogonal to the vectors $(d_{\gamma})_{\gamma \in \Gamma}$.
- (ii) For all $q \in \mathbb{N} \cup \{0\}$, we have that $\langle \{d_{\gamma}^* : \gamma \in \Gamma_q\} \rangle = \langle \{e_{\gamma}^* : \gamma \in \Gamma_q\} \rangle$. In particular, the closed linear span of the functionals $(d_{\gamma}^*)_{\gamma \in \Gamma}$ is *C*-isomorphic to ℓ_1 , where $C = \sup_q ||i_q||$.
- (iii) If moreover the FDD $(M_q)_q$ is shrinking, then the closed linear span of the functionals $(d^*_{\gamma})_{\gamma \in \Gamma}$ is $\mathfrak{X}^*_{(\Gamma_q, i_q)_q}$. In particular, $\mathfrak{X}^*_{(\Gamma_q, i_q)_q}$ is C-isomorphic to ℓ_1 .

Proof. The first statement easily follows from Remark 2.15, in particular the fact that for $q \in \mathbb{N} \cup \{0\}$ and $\gamma \in \Delta_q$, we have that $d_{\gamma}^* = e_{\gamma}^* \circ P_{\{q\}}$.

For the proof of (ii), observe that by Lemma 2.16 and $d_{\gamma}^* = e_{\gamma}^* - c_{\gamma}^*$, we have that $\langle \{d_{\gamma}^* : \gamma \in \Gamma_q\} \rangle \subset \langle \{e_{\gamma}^* : \gamma \in \Gamma_q\} \rangle$. Moreover, (i) implies that dim $\langle \{d_{\gamma}^* : \gamma \in \Gamma_q\} \rangle = \#\Gamma_q$ and hence the inclusion cannot be proper. The last part of statement (ii) follows from Proposition 2.13.

To prove the last statement, note that if $(M_q)_q$ is shrinking, then so is the basis $((d_{\gamma})_{\gamma \in \Delta_q})_{q=0}^{\infty}$. From (ii) the desired result follows.

§3. Separable \mathcal{L}_{∞} -spaces are Bourgain–Delbaen spaces. We combine some simple remarks concerning Bourgain–Delbaen spaces with results from [9], [10] and [14] to prove that whenever X is an infinite-dimensional separable \mathcal{L}_{∞} -space, then X is isomorphic to a Bourgain–Delbaen space.

LEMMA 3.1. Let $(\mu_i)_i$ be a bounded sequence in $\mathcal{M}[0, 1]$. Then there exists a sequence $(t_i)_i$ of elements of [0, 1] such that if $v_i = \mu_i + \delta_{t_i}$ for all $i \in \mathbb{N}$, then the following hold:

- (i) the sequence $(v_i)_i$ is equivalent to the unit vector basis of $\ell_1(\mathbb{N})$; and
- (ii) the space $Y = [(v_i)_i]$ is complemented in $\mathcal{M}[0, 1]$.

Proof. Find a sequence $(t_i)_i$ of elements of [0, 1] so that $\mu_j(\{t_i\}) = 0$ for all $i, j \in \mathbb{N}$. Setting $v_i = \mu_i + \delta_{t_i}$, it can be shown that $(v_i)_i$ is equivalent to the basis of ℓ_1 and that the map $S\mu = \sum_{i=1}^{\infty} \mu(\{t_i\})v_i$ is a bounded projection onto the space $[(v_i)_i]$.

LEMMA 3.2. Let X be an infinite-dimensional and separable \mathcal{L}_{∞} -space. Then there exists a sequence $(x_i^*)_i$ in X^{*} satisfying the following:

- (i) the sequence $(x_i^*)_i$ is equivalent to the unit vector basis of $\ell_1(\mathbb{N})$;
- (ii) there exists a constant $\theta > 0$ such that $\theta ||x|| \leq \sup_i |x_i^*(x)|$ for all $x \in X$; and
- (iii) the space $Y = [(x_i^*)_i]$ is complemented in X^* .

Proof. As is shown in [14], the dual of X is isomorphic either to $\ell_1(\mathbb{N})$ or to $\mathcal{M}[0, 1]$ (see also [10]). In the first case, just choose a Schauder basis $(x_i^*)_i$ of X^* which is equivalent to the unit vector basis of $\ell_1(\mathbb{N})$.

In the second case, let $T : X^* \to \mathcal{M}[0, 1]$ be an onto isomorphism and choose a normalized sequence $(z_i^*)_i$ in X^* such that $||x|| = \sup_i |z_i^*(x)|$ for all $x \in X$. Fix $C > ||T^{-1}||$ and apply Lemma 3.1 to the sequence $(\mu_i)_i$ with $\mu_i = CTz_i^*$ for all $i \in \mathbb{N}$ to find a sequence $(t_i)_i$ in [0, 1] such that if $v_i = \mu_i + \delta_{t_i}$ for all $i \in \mathbb{N}$, then $(v_i)_i$ satisfies the conclusion of that lemma. Setting $x_i^* = T^{-1}v_i$ for all $i \in \mathbb{N}$, it is not hard to check that, for $\theta = C - ||T^{-1}||$, the sequence $(x_i^*)_i$ is the desired one.

LEMMA 3.3. Let X be a $\mathcal{L}_{\infty,\lambda}$ -space, Y be a subspace of X* and assume that there exists a constant $\theta > 0$ so that for all $x \in X$, $\theta ||x|| \leq \sup\{|y^*(x)| : y^* \in B_{Y^*}\}$. Then for every finite-dimensional subspace F of X and every $\varepsilon > 0$ there exists a finite-rank operator $T : X \to X$ satisfying the following:

- (i) $||Tx x|| \leq \varepsilon ||x||$ for all $x \in F$;
- (ii) $||T|| \leq \lambda/\theta$;
- (iii) $T^*[X^*] \subset Y$.

In particular, if X is separable, then there exists a sequence of finite-rank operators $T_n : X \to X$ with $T_n x \to x$ for all $x \in X$ and $T_n^*[X^*] \subset Y$ for all $n \in \mathbb{N}$.

Proof. Let *F* be a finite-dimensional subspace of *X* and $\varepsilon > 0$. By passing to a larger subspace, we may assume that $F = \langle \{y_i : i = 1, ..., n\} \rangle$, where the map $A : \ell_{\infty}^n \to F$ with $Ae_i = y_i$ is invertible with $||A|| ||A^{-1}|| \leq \lambda$. By the Hahn–Banach theorem, there is a sequence $(y_i^*)_{i=1}^n$ in *X**, biorthogonal to $(y_i)_{i=1}^n$, such that $||y_i^*|| \leq ||A^{-1}||$ for i = 1, ..., n. A separation theorem yields that $B_{X^*} \subset \theta^{-1} \overline{B_Y}^{w^*}$ and hence we may choose $\tilde{y}_i^* \in (\theta^{-1} ||A^{-1}||)B_Y$ such that $||(\tilde{y}_i^* - y_i^*)|_F || < \varepsilon/||A||$ for i = 1, ..., n. Define $T : X \to X$ with $Tx = \sum_{i=1}^n \tilde{y}_i^*(x)y_i$. Some standard calculations yield that *T* is the desired operator.

The following terminology is from [9]. If E_1 , E_2 are subspaces of a Banach space X and $\varepsilon > 0$, we say that E_2 is ε -close to E_1 if there is an invertible operator T from E_1 onto E_2 with $||Tx - x|| \le \varepsilon ||x||$ for all $x \in E_1$. Note that if E_2 is ε -close to E_1 , then E_1 is $\varepsilon/(1 - \varepsilon)$ -close to E_2 .

LEMMA 3.4. Let X be a Banach space and $(x_i^*)_{i=1}^{\infty}$ be a sequence in X^* which is equivalent to the unit vector basis of $\ell_1(\mathbb{N})$. Assume moreover that there exists a sequence of bounded finite-rank projections $(Q_n)_n$ satisfying the following.

- (i) $Q_n : X \to X, Q_n[X] \subset Q_{n+1}[X]$ for all $n \in \mathbb{N}$ and $Q_n x \to x$ for all $x \in X$.
- (ii) There are a strictly increasing sequence of natural numbers $(k_n)_n$ and $0 < \varepsilon < 1$ with $\varepsilon/(1-\varepsilon) < (\sup_n ||Q_n||)^{-1}$ such that $Q_n^*[X^*]$ is ε -close to the space $\langle \{x_i^* : i = 1, ..., k_n\} \rangle$ for all $n \in \mathbb{N}$.

Then X is isomorphic to a Bourgain–Delbaen space.

Proof. Note that (i) implies that $\bigcup_n Q_n[X]$ is dense in *X*. Define a linear operator $U : X \to \ell_{\infty}(\mathbb{N})$ with $Ux = (x_i^*(x))_i$ for all $x \in X$; evidently *U* is bounded. Set $\Gamma_n = \{1, \ldots, k_n\}$ for all $n \in \mathbb{N}$ and $Y_n = UQ_n[X]$. We shall prove that *U* is an isomorphic embedding and that the restriction operators onto the first k_n coordinates $r_{k_n} : Y_n \to \ell_{\infty}(\{1, \ldots, k_n\})$ are onto *C*-isomorphisms for all $n \in \mathbb{N}$ for a uniform constant *C*. Given the aforementioned facts and Remark 2.7, the desired result follows easily.

Since $\bigcup_n Q_n[X]$ is dense in X, to show that U is an isomorphic embedding, it is enough to find a uniform constant c > 0 such that $||Ux|| \ge c||x||$ for every $x \in Q_n[X]$ and for every $n \in \mathbb{N}$. To this end, let $S : [(x_i^*)_i] \to \ell_1(\mathbb{N})$ be the onto isomorphism with $Sx_i^* = e_i$ for all $i \in \mathbb{N}$. Let $n \in \mathbb{N}$ and $x \in Q_n[X]$. The Hahn– Banach theorem and the fact that $\langle \{x_i^* : i = 1, ..., k_n\} \rangle$ is $\varepsilon/(1 - \varepsilon)$ -close to $Q_n^*[X^*]$, in conjunction with some tedious computations, yield that there exists an $i_0 \in \{1, ..., k_n\}$ such that

$$|x_{i_0}^*(x)| \ge (1-\varepsilon) \frac{1 - (\varepsilon/(1-\varepsilon)) \|Q_n\|}{\|S\| \|Q_n\|} \|x\|.$$
(6)

Setting $c = (1 - \varepsilon)(1 - (\varepsilon/(1 - \varepsilon)) \sup_k ||Q_k||)/(||S|| \sup_k ||Q_k||)$, we conclude that $||Ux|| \ge c ||x||$.

It remains to show that there a exists a constant C > 0 such that $r_{k_n} : Y_n \to \ell_{\infty}(\{1, \ldots, k_n\})$ is an onto *C*-isomorphism for every $n \in \mathbb{N}$. Let $n \in \mathbb{N}$ and $z \in Y_n$. Set $x = U^{-1}z \in Q_n[X]$. Then, by (6), there is an $i_0 \in \{1, \ldots, k_n\}$ such that

$$||z|| \ge ||r_{k_n}(z)|| \ge |x_{i_0}^*(x)| \ge c ||x|| \ge \frac{c}{||U||} ||z||.$$

Setting C = ||U||/c, we conclude that $r_{k_n}|_{Y_n}$ is a *C*-isomorphic embedding. Finally, observe that dim $Y_n = \dim Q_n[X] = \dim Q_n^*[X^*] = k_n$ and hence $r_{k_n}|_{Y_n}$ is also onto.

The following lemma and its proof can be found in [9, Lemma 4.3].

LEMMA 3.5. Let X be a separable Banach space and Y be a separable subspace of X^* . Assume moreover that $(P_n)_n$, $(T_n)_n$ are bounded finite-rank operators satisfying the following conditions.

- (a) $P_n: X \to X, P_n^*[X^*] \subset Y \text{ and } T_n: X^* \to Y \text{ for all } n \in \mathbb{N}.$
- (b) $P_n x \to x \text{ for all } x \in X, T_n y \to y \text{ for all } y \in Y \text{ and } \sup_n ||T_n|| < \infty.$
- (c) The operators $(T_n)_n$ are projections.

If E, F are finite-dimensional subspaces of X, Y respectively and $0 < \varepsilon < 1$, then there exists a projection $Q : X \to X$ with finite-dimensional range such that:

- (i) Qe = e for all $e \in E$;
- (ii) $Q^*f = f$ for all $f \in F$;
- (iii) $Q^*[X^*] \subset Y;$
- (iv) $||Q|| \leq 2c + 2K + 4cK$, where $c = \sup_n ||P_n||$ and $K = \sup_n ||T_n||$;
- (v) $Q^*[X^*]$ is ε -close to $T_n[X^*]$ for some integer n.

THEOREM 3.6. Every separable infinite-dimensional \mathcal{L}_{∞} -space is isomorphic to a Bourgain–Delbaen space.

Proof. Let *X* be a separable infinite-dimensional \mathcal{L}_{∞} -space. By Lemma 3.2, there exist a sequence $(x_i^*)_i$ in X^* which is equivalent to the unit vector basis of $\ell_1(\mathbb{N})$, a constant $\theta > 0$ such that $\theta ||x|| \leq \sup_i |x_i^*(x)|$ for all $x \in X$ and a bounded linear projection $P : X^* \to Y = [(x_i^*)_i]$. For $n \in \mathbb{N}$, define $T_n : X^* \to Y$ with $T_n = S_n \circ P$, where $S_n : Y \to Y$ denotes the basis projection of $(x_i^*)_i$ onto the first *n* coordinates. Also apply Lemma 3.3 to find a sequence of finite-rank operators $P_n : X \to X$ such that $P_n x \to x$ for all $x \in X$ and $P_n^*[X^*] \subset Y$ for all $n \in \mathbb{N}$. Assumptions (a), (b) and (c) of Lemma 3.5 are evidently satisfied.

Choose $\varepsilon > 0$ with $\varepsilon/(1-\varepsilon) < 1/(2c+2K+4cK)$, where $c = \sup_n ||P_n||$ and $K = \sup_n ||T_n||$. Recursively, setting $E_n = P_n[X] + Q_{n-1}[X]$, where Q_0 is the zero operator on X, and $F_n = \{0\}$, using Lemma 3.5, choose $(Q_n)_n$, a sequence of bounded linear projections on X, such that $P_n[X] \subset Q_n[X] \subset Q_{n+1}[X]$, $||Q_n|| \le 2c+2K+4cK$ for all $n \in \mathbb{N}$ and there exist natural numbers $(k_n)_n$ such that $Q_n^*[X^*]$ is ε -close to $T_{k_n}[X^*] = \langle \{x_i^* : i = 1, \dots, k_n\} \rangle$ for all $n \in \mathbb{N}$. Note that dim $Q_n[X] \to \infty$ and hence, by passing to a subsequence, we may assume that $(k_n)_n$ is strictly increasing. We conclude that the sequences $(x_i^*)_{i=1}^{\infty}$ and $(Q_n)_n$ witness the fact that the space X satisfies the assumptions of Lemma 3.4 and therefore it is isomorphic to a Bourgain–Delbaen space.

§4. Separable infinite-dimensional \mathcal{L}_{∞} -spaces contain \mathcal{L}_{∞} -subspaces of infinite co-dimension. Using the main result of §3, we prove that every infinite-dimensional \mathcal{L}_{∞} -space X contains an infinite-dimensional \mathcal{L}_{∞} -subspace Z, so that the quotient X/Z is isomorphic to c_0 .

LEMMA 4.1. Let $\mathfrak{X}_{(\Gamma_q,i_q)_q}$ be a Bourgain–Delbaen space and assume that there exists a decreasing sequence of positive real numbers $(\varepsilon_q)_{q=1}^{\infty}$, with $2C^2 \sum_q \varepsilon_q < 1$, where $C = \sup_q ||i_q||$, so that for every $q \in \mathbb{N}$ there exist $\gamma_1^q, \gamma_2^q \in \Delta_q$ with $\gamma_1^q \neq \gamma_2^q$ satisfying $||e_{\gamma_1^q}^* \circ i_p \circ r_p - e_{\gamma_2^q}^* \circ i_p \circ r_p|| < \varepsilon_q$ for $p = 0, 1, \ldots, q - 1$. Then $\mathfrak{X}_{(\Gamma_q,i_q)_q}$ contains an infinite-dimensional \mathcal{L}_{∞} subspace Z.

Proof. Define $R_q = \{\gamma_1^q, \gamma_2^q\}$, $S_q = \bigcup_{p=1}^q R_p$ for $q \in \mathbb{N}$ and $S = \bigcup_{q=1}^\infty S_q$. Define $N_0 = M_0 = \langle \{d_\gamma : \gamma \in \Delta_0\} \rangle$ and

$$N_q = \langle \{d_\gamma : \gamma \in \Delta_q \setminus R_q\} \cup \{d_{\gamma_1^q} + d_{\gamma_2^q}\} \rangle$$

for $q \in \mathbb{N}$. Note that N_q is a subspace of M_q of co-dimension one for every $q \in \mathbb{N}$. Define

$$Z_q = \langle \{d_{\gamma} : \gamma \in \Gamma_q \setminus S_q\} \cup \{d_{\gamma_1^p} + d_{\gamma_2^p} : p = 1, \dots, q\} \rangle$$

for all $q \in \mathbb{N}$. Observe that $Z_q = N_0 + \cdots + N_q$ for all $q \in \mathbb{N}$ and that $(Z_q)_q$ is an increasing sequence of finite-dimensional spaces whose union is dense in the space

$$Z = \overline{\langle \{d_{\gamma} : \gamma \in \Gamma \setminus S\} \cup \{d_{\gamma_1^q} + d_{\gamma_2^q} : q \in \mathbb{N}\} \rangle}.$$

We shall prove that Z is the desired subspace. To begin, Z is clearly infinite dimensional. More precisely, the spaces $(N_q)_q$ form an FDD for the space Z with a projection constant C.

To conclude that Z is indeed a \mathcal{L}_{∞} -space, it suffices to show that for each $q \in \mathbb{N}$ the space Z_q is $((1 + \varepsilon)/(1 - \varepsilon))C$ -isomorphic to $\ell_{\infty}^{n_q}$, where $\varepsilon = 2C^2 \sum_{q=1}^{\infty} \varepsilon_q$ and $n_q = \dim Z_q = \#\Gamma_q - q$. For $q \in \mathbb{N}$, we define a subspace of $\ell_{\infty}(\Gamma_q)$ as follows:

$$W_q = \langle \{e_{\gamma} : \gamma \in \Gamma_q \setminus S_q\} \cup \{e_{\gamma_1^p} + e_{\gamma_2^p} : p = 1, \dots, q\} \rangle.$$

Also define $\widetilde{W}_q = i_q[W_q]$. Observe that W_q is isometric to $\ell_{\infty}^{n_q}$ and, therefore, by Remark 2.6, \widetilde{W}_q is *C*-isomorphic to $\ell_{\infty}^{n_q}$. Hence, if we find a linear map T_q : $Z_q \to \widetilde{W}_q$ with $||T_q x - x|| \leq \varepsilon ||x||$ for all $x \in Z_q$, the proof will be complete.

Let us fix $q \in \mathbb{N}$ and observe that if $x \in N_p$, for some $0 \leq p \leq q$, then $x = i_p(y)$, where $y \in \langle \{e_{\gamma} : \gamma \in \Delta_q \setminus S_q\} \cup \{e_{\gamma_1^q} + e_{\gamma_2^q}\} \rangle$. For $p = 0, \ldots, q$, we define $T_{q,p} : N_p \to W_q$ as follows:

$$T_{q,p}(x)(\gamma) = \begin{cases} y(\gamma) & \text{if rank}(\gamma) \leq p, \\ i_p(y)(\gamma) & \text{if rank}(\gamma) > p \text{ and } \gamma \notin S_q, \\ i_p(y)(\gamma_1^s) & \text{if rank}(\gamma) > p \text{ and } \gamma = \gamma_1^s \text{ for some } s \in (p,q], \\ i_p(y)(\gamma_1^s) & \text{if rank}(\gamma) > p \text{ and } \gamma = \gamma_2^s \text{ for some } s \in (p,q]. \end{cases}$$

Observe that the map is linear and well defined. Also observe that if $x(\gamma) \neq T_{q,p}(x)(\gamma)$, for some $\gamma \in \Gamma_q$, then necessarily there is an $s \in (p,q]$ so that $\gamma = \gamma_2^s$ and $T_{q,p}(x)(\gamma) = i_p(y)(\gamma_1^s) = e_{\gamma_1^s}^* \circ i_p \circ r_p(x)$. Hence, for such a $\gamma \in \Gamma_q$,

$$|x(\gamma) - T_{q,p}(x)(\gamma)| = |e_{\gamma_2^s}^* \circ i_p \circ r_p(x) - e_{\gamma_1^s}^* \circ i_p \circ r_p(x)| < \varepsilon_s ||x|| \le \varepsilon_{p+1} ||x||.$$

We conclude that $||r_q(x) - T_{q,p}(x)|| \leq \varepsilon_{p+1} ||x||$ (actually observe that if p = q, then $r_q(x) = T_{q,q}(x)$) and hence if we define $\widetilde{T}_{q,p} : N_p \to \widetilde{W}_q$ with $\widetilde{T}_{q,p} = i_q \circ T_{q,p}$, then

$$\|x - T_{q,p}(x)\| \leq C\varepsilon_{p+1}\|x\|$$

for all $x \in N_p$ and p = 0, ..., q. As we previously mentioned, $(N_p)_p$ is an FDD for Z with a projection constant C, so we may consider the associated projections $Q_{\{p\}}: Z \to N_p$ for all p. Define $T_q: Z_q \to \widetilde{W}_q$ with $T_q = \sum_{p=0}^q \widetilde{T}_{q,p} \circ Q_{\{p\}}$. Some simple calculations using $||Q_{\{p\}}|| \leq 2C$ for all p yield that T_q is the desired operator.

We recall that it is known that separable \mathcal{L}_{∞} -spaces have c_0 as a quotient [2, 13].

LEMMA 4.2. Let $\mathfrak{X}_{(\Gamma_q, i_q)_q}$ be a Bourgain–Delbaen space satisfying the assumptions of Lemma 4.1. If Z is the subspace constructed in that lemma, then the quotient $\mathfrak{X}_{(\Gamma_q, i_q)_q}/Z$ is isomorphic to $c_0(\mathbb{N})$.

Proof. Following the notation of the proof of Lemma 4.1, let Z be the constructed subspace and let also W be the closed linear span of the vectors $d_{\gamma_1^q} - d_{\gamma_2^q}, q \in \mathbb{N}$. Let $Q : \mathfrak{X}_{(\Gamma_q,i_q)_q} \to \mathfrak{X}_{(\Gamma_q,i_q)_q}/Z$ denote the corresponding quotient map and for $q \in \mathbb{N}$ define $y_q = Q(d_{\gamma_1^q} - d_{\gamma_2^q})$. It is not very difficult to prove that $(y_q)_q$ is a Schauder basis of $\mathfrak{X}_{(\Gamma_q,i_q)_q}/Z$ with projection constant $C = \sup_q ||i_q||$. Let $w_q^* = 1/2(d_{\gamma_1^q}^* - d_{\gamma_2^q}^*)$ for all $q \in \mathbb{N}$ and $(y_q^*)_q \subset (\mathfrak{X}_{(\Gamma_q,i_q)_q}/Z)^*$ be the biorthogonal sequence of $(y_q)_q$. It follows that the sequences $(w_q^*)_q$ and $(y_q^*)_q$ are naturally isometrically equivalent and that $||w_q^* - 2(e_{\gamma_1^q}^* - e_{\gamma_2^q}^*)|| \leq 2\varepsilon_q$ for all q. Proposition 2.13 yields that $(y_q^*)_q$ is equivalent to the unit vector basis of ℓ_1 , which indeed implies that $(y_q)_q$ is equivalent to the unit vector basis of $c_0(\mathbb{N})$.

PROPOSITION 4.3. Every separable infinite-dimensional \mathcal{L}_{∞} -space X contains an infinite-dimensional \mathcal{L}_{∞} -subspace Z, so that the quotient X/Z is isomorphic to $c_0(\mathbb{N})$. In other words, every separable infinite-dimensional \mathcal{L}_{∞} -space X is the twisted sum of a \mathcal{L}_{∞} -space Z and $c_0(\mathbb{N})$.

Proof. By virtue of Theorem 3.6, we may assume that X is a Bourgain– Delbaen space $\mathfrak{X}_{(\Gamma_q,i_q)_q}$. We start by observing that for every strictly increasing sequence $(q_s)_{s=0}^{\infty}$ of $\mathbb{N} \cup \{0\}$, the Bourgain–Delbaen spaces $\mathfrak{X}_{(\Gamma_q,i_q)_q}$ and $\mathfrak{X}_{(\Gamma_{q_s},i_{q_s})_s}$ are actually equal. This follows from Proposition 2.12, in particular the fact that $\bigcup_q Y_q$ is dense in $\mathfrak{X}_{(\Gamma_q,i_q)_q}$. It is therefore sufficient to find an appropriate increasing sequence $(q_s)_{s=0}^{\infty}$ so that the space $\mathfrak{X}_{(\Gamma_{q_s},i_{q_s})_s}$ satisfies the assumptions of Lemma 4.1 (and hence also those of Lemma 4.2).

Fix a decreasing sequence of positive real numbers $(\varepsilon_q)_{q=1}^{\infty}$, with $\sum_q \varepsilon_q < 1/(2C^2)$, where $C = \sup_q ||i_q||$. A compactness argument yields that for every $\varepsilon > 0$ and $q \in \mathbb{N} \cup \{0\}$, there exist non-equal $\gamma_1, \gamma_2 \in \Gamma \setminus \Gamma_q$ so that $||e_{\gamma_1}^* \circ i_p \circ r_p - e_{\gamma_2}^* \circ i_p \circ r_p|| < \varepsilon$ for $p = 0, \ldots, q$. Set $q_0 = 0$ and, using the above, recursively choose a strictly increasing sequence $(q_s)_{s=0}^{\infty}$ so that for every $s \in \mathbb{N}$ there are distinct $\gamma_1^s, \gamma_2^s \in \Gamma_{q_s} \setminus \Gamma_{q_{s-1}}$ with $||e_{\gamma_s}^* \circ i_{q_t} \circ r_{q_t} - e_{\gamma_s}^* \circ i_{q_t} \circ r_{q_t}|| \le \varepsilon_s$ for $t = 0, \ldots, s - 1$.

§5. A \mathcal{L}_{∞} and asymptotic c_0 space not containing c_0 . We employ the Bourgain–Delbaen method to define an isomorphic ℓ_1 -predual \mathfrak{X}_0 , which is asymptotic c_0 and does not contain a copy of c_0 . We follow notation similar to that used in [6] and [5].

5.1. Definition of the space \mathfrak{X}_0 . We fix a natural number $N \ge 3$ and a constant $1 < \theta < N/2$. Define $\Delta_0 = \{0\}$ and assume that we have defined the sets Δ_0 , $\Delta_1, \ldots, \Delta_q$. We set $\Gamma_p = \bigcup_{i=0}^p \Gamma_i$ and, for each $\gamma \in \Gamma_q$, we denote by rank (γ) the unique *p* so that $\gamma \in \Delta_p$. Assume that to each $\gamma \in \Gamma_q \setminus \Gamma_0$ we have assigned a natural number in $\{1, \ldots, n\}$, called the age of γ and denoted by $age(\gamma)$.

Assume moreover that we have defined extension functionals $(c_{\gamma}^*)_{\gamma \in \Delta_p}$ and extension operators $i_{p-1,p} : \ell_{\infty}(\Gamma_{p-1}) \to \ell_{\infty}(\Gamma_p)$ so that

S. A. ARGYROS et al

$$i_{p-1,p}(x)(\gamma) = \begin{cases} x(\gamma) & \text{if } \gamma \in \Gamma_{p-1}, \\ c_{\gamma}^*(x) & \text{if } \gamma \in \Delta_p \end{cases}$$
(7)

for p = 1, ..., q. If $0 \le p < s \le q$, we define $i_{p,s} = i_{s-1,s} \circ \cdots \circ i_{p,p+1}$ and we also denote by $i_{p,p}$ the identity operator on $\ell_{\infty}(\Gamma_p)$.

We define Δ_{q+1} to be the set of all tuples of one of the two forms described below:

$$(q+1, n, (\varepsilon_i)_{i=1}^k, (E_i)_{i=1}^k, (\eta_i)_{i=1}^k),$$
(8a)

where $n \leq (\#\Gamma_q)^2$, $1 \leq k \leq n$, $\varepsilon_i \in \{-1, 1\}$ for i = 1, ..., k, $(E_i)_{i=1}^k$ is a sequence of successive intervals of $\{0, ..., q\}$ and $\eta_i \in \Gamma_q$ with rank $(\eta_i) \in E_i$ for i = 1, ..., k, or

$$(q+1,\xi,n,(\varepsilon_i)_{i=1}^k,(E_i)_{i=1}^k,(\eta_i)_{i=1}^k),$$
(8b)

where $\xi \in \Gamma_{q-1} \setminus \Gamma_0$ with $\operatorname{age}(\xi) < N$, $(\#\Gamma_{\operatorname{rank}(\xi)})^2 \leq n \leq (\#\Gamma_q)^2$, $1 \leq k \leq n$, $\varepsilon_i \in \{-1, 1\}$ for $i = 1, \ldots, k$, $(E_i)_{i=1}^k$ is a sequence of successive intervals of $\{\operatorname{rank}(\xi) + 1, \ldots, q\}$ and $\eta_i \in \Gamma_q$ with $\operatorname{rank}(\eta_i) \in E_i$ for $i = 1, \ldots, k$.

To each $\gamma \in \Delta_{q+1}$, we assign an extension functional $c_{\gamma}^* : \ell_{\infty}(\Delta_q) \to \mathbb{R}$. If $0 \leq p \leq q$, we define the projection $P_{[0,p]}^q x = i_{p,q} \circ r_p(x)$ while if $0 \leq p \leq s \leq q$, we define the projection $P_{(p,s]}^q = P_{[0,s]}^q - P_{[0,p]}^q$. If $\gamma \in \Delta_{q+1}$ is of the form (8*a*), we set $age(\gamma) = 1$ and define the extension functional c_{γ}^* as follows:

$$c_{\gamma}^{*} = \frac{\theta}{N} \frac{1}{n} \sum_{i=1}^{k} \varepsilon_{i} e_{\eta_{i}}^{*} \circ P_{E_{i}}^{q}.$$
(9a)

If $\gamma \in \Delta_{q+1}$ is of the form (8*b*), we set $age(\gamma) = age(\xi) + 1$ and define the extension functional $c_{\gamma}^* : \ell_{\infty}(\Delta_q) \to \mathbb{R}$ as follows:

$$c_{\gamma}^{*} = e_{\xi}^{*} + \frac{\theta}{N} \frac{1}{n} \sum_{i=1}^{k} \varepsilon_{i} e_{\eta_{i}}^{*} \circ P_{E_{i}}^{q}.$$

$$(9b)$$

The inductive construction is complete. We set $\Gamma = \bigcup_{q=1}^{\infty} \Delta_q$ and, for each $q \in \mathbb{N} \cup \{0\}$, we define the extension operator $i_q : \ell_{\infty}(\Gamma_q) \to \ell_{\infty}(\Gamma)$ by the rule

$$i_q(x)(\gamma) = \begin{cases} x(\gamma) & \text{if } \gamma \in \Gamma_q, \\ i_{q,p}(x)(\gamma) & \text{if } \gamma \in \Delta_p \text{ for some } p > q. \end{cases}$$

Standard arguments yield that $(i_q)_{q=0}^{\infty}$ is a compatible sequence of extension operators with $\sup_q ||i_q|| \leq N/(N-2\theta)$. We denote by \mathfrak{X}_0 the resulting Bourgain–Delbaen space $\mathfrak{X}_{(\Gamma_q,i_q)_q}$. We shall use the notation from §2.1.

Remark 5.1. By Remark 2.9, we obtain that for every interval *E* of the natural numbers, $||P_E|| \leq 2N/(N - 2\theta)$. It follows that for every $\gamma \in \Gamma$ and such *E*, $||e_{\gamma}^* \circ P_E|| \leq 2N/(N - 2\theta)$, in particular $||d_{\gamma}^*|| \leq 2N/(N - 2\theta)$.

696

Remark 5.2. We enumerate the set $\Gamma = \bigcup_{q=0}^{\infty} \Delta_q$ in such a manner that the sets Δ_q correspond to successive intervals of \mathbb{N} . If we denote this enumeration by $\Gamma = \{\gamma_i :\in \mathbb{N}\}$, according to Remark 2.10, $(d_{\gamma_i})_i$ forms a Schauder basis for \mathfrak{X}_0 . It is with respect to this basis that we show that the space \mathfrak{X}_0 is asymptotic c_0 . However, when we write P_E we shall mean the Bourgain–Delbaen projection onto *E* as defined in Remark 2.9.

Arguing as in [5, Proposition 4.5], each e_{ν}^* admits an analysis.

PROPOSITION 5.3. Let $\gamma \in \Gamma$ with rank $(\gamma) > 0$. The functional e_{γ}^* admits a unique analysis of the following form:

$$e_{\gamma}^{*} = \sum_{r=1}^{a} d_{\xi_{r}}^{*} + \frac{\theta}{N} \sum_{r=1}^{a} \frac{1}{n_{r}} \sum_{i=1}^{k_{r}} \varepsilon_{r,i} e_{\eta_{r,i}}^{*} \circ P_{E_{r,i}}, \qquad (10)$$

where $a = age(\gamma) \leq N$, the ξ_i are in $\Gamma \setminus \Gamma_0$ with $\xi_a = \gamma$, the $E_{r,i}$ are intervals of $\mathbb{N} \cup \{0\}$ with $E_{1,1} < \cdots < E_{1,k_1} < rank(\xi_1) < E_{2,1} < \cdots < E_{a,k_a} < rank(\xi_a)$, the $\eta_{r,i}$ are in Γ with $rank(\eta_{r,i}) \in E_{r,i}$, the $\varepsilon_{r,i}$ are in $\{-1, 1\}$, $n_r > (\#\Gamma_{rank}(\xi_{r-1}))^2$ for $r = 2, \ldots, a$ and $1 \leq k_r \leq n_r$ for $r = 1, \ldots a$.

Remark 5.4. Note that if in (10) we set $f_r = (1/n_r) \sum_{i=1}^{k_r} \varepsilon_{r,i} e^*_{\eta_{r,i}} \circ P_{E_{r,i}}$, then $(f_r)^a_{r=1}$ constitutes a very fast growing sequence of α -averages, in the sense of [3].

5.2. The main property of the space \mathfrak{X}_0 .

LEMMA 5.5. Let $x_1 < \cdots < x_m$ be blocks of $(d_{\gamma_i})_i$ of norm at most one, $E_1 < \cdots < E_k$ be intervals of $\mathbb{N} \cup \{0\}, (\eta_i)_{i=1}^k$ be a sequence in Γ with rank $(\eta_i) \in E_i$, for $i = 1, \ldots, k$, $(\varepsilon_i)_{i=1}^k$ be a sequence in $\{-1, 1\}$ and let $n \ge \max\{m^2, k\}$. Then

$$\left| \left(\frac{1}{n} \sum_{i=1}^{k} \varepsilon_{i} e_{\eta_{i}}^{*} \circ P_{E_{i}} \right) \left(\sum_{j=1}^{m} x_{j} \right) \right| \leq \frac{4N}{N - 2\theta}.$$
 (11)

Proof. We shall consider the support and range of vectors with respect to the basis $(d_{\gamma_i})_i$. Set $x_i^* = \varepsilon_i e_{\eta_i}^* \circ P_{E_i}$ for i = 1, ..., k. Note that $(x_i^*)_{i=1}^k$ is a successive block sequence of $(d_{\gamma_i}^*)_i$ and, by Remark 5.1, $||x_i^*|| \leq 2N/(N-2\theta)$ for i = 1, ..., k. Let I_1 be the set of those $i \leq k$ such that the support of x_i^* intersects the range of at least two of the x_j . Then $\#I_1 \leq m$ and so $|((1/n) \sum_{i \in I_1} x_i^*)(\sum_{j=1}^m x_j)| \leq (2N/(N-2\theta))m^2/n \leq 2N/(N-\theta)$. Let $I_2 = \{i \leq n : i \notin I_1\}$. It is clear that $|((1/n) \sum_{i \in I_2} x_i^*)(\sum_{j=1}^m x_j)| \leq 2N/(N-2\theta)$ and the proof is complete.

PROPOSITION 5.6. Set $K_{N,\theta} = (2N^3 + 4\theta N^2 - 4\theta N)/(N^2 - 3\theta N + 2\theta^2)$ and let $u_1 < \cdots < u_m$ be blocks of $(d_{\gamma_i})_i$ of norm at most equal to one so that if we consider the support of the vectors u_i with respect to the basis $(d_{\gamma_i})_i$, then $m \leq \min \operatorname{supp} u_1$. Then $\|\sum_{i=1}^m u_i\| \leq K_{N,\theta}$. *Proof.* Set $u = \sum_{i=1}^{m} u_i$. We use induction on rank(γ) to show that for every $\gamma \in \Gamma$ and every interval E of \mathbb{N} , $|e_{\gamma}^* \circ P_E(u)| \leq K_{N,\theta}$. This assertion is easy when rank(γ) = 0. Assume that $q \in \mathbb{N} \cup \{0\}$ is such that the assertion holds for every $\gamma \in \Gamma_q$ and E interval of \mathbb{N} and let $\gamma \in \Gamma_{q+1} \setminus \Gamma_q$ and E be an interval of \mathbb{N} . Applying Proposition 5.3, write

$$e_{\gamma}^{*} = \sum_{r=1}^{a} d_{\xi_{r}}^{*} + \frac{\theta}{N} \sum_{r=1}^{a} \frac{1}{n_{r}} \sum_{i=1}^{k_{r}} \varepsilon_{r,i} e_{\eta_{r,i}}^{*} \circ P_{E_{r,i}},$$

so that the conclusion of that proposition is satisfied. For r = 1, ..., a, define $y_r^* = (1/n_r) \sum_{i=1}^{k_r} \varepsilon_{r,i} e_{\eta_{r,i}}^* \circ P_{E_{r,i}\cap E}$ and $G = \{r : \operatorname{rank}(\xi_r) \in E\}$. Observe that $e_{\gamma}^* \circ P_E = \sum_{r \in G} d_{\xi_r}^* + (\theta/N) \sum_{r=1}^a y_r^*$.

If $\xi_r = \gamma_{i_r}$, note that $i_1 < \cdots < i_a$. Considering the support of u with respect to the basis $(d_{\gamma_i})_i$, set $r_0 = \min\{r : i_r \ge \min \text{supp } u\}$. The inductive assumption yields that $|y_{r_0}^*(u)| \le K_{N,\theta}$, while the growth condition on the n_r implies that $n_r > m^2$ for $r > r_0$. Lemma 5.5 yields

$$\frac{\theta}{N}\sum_{r=1}^{a}|y_{r}^{*}(u)| \leq \frac{\theta}{N}\left(K_{N,\theta}+(N-1)\frac{4N}{N-2\theta}\right),$$
(12)

while Remark 5.1 implies that

$$\sum_{r \in G} |d_{\xi_r}^*(u)| \leqslant N \frac{2N}{N - 2\theta}.$$
(13)

Some calculations combining (12) and (13) yield the desired result.

PROPOSITION 5.7. The space \mathfrak{X}_0 is a \mathcal{L}_∞ -space with a Schauder basis $(d_{\gamma_i})_i$ satisfying the following properties.

- (i) The basis $(d_{\gamma_i})_i$ is shrinking, in particular \mathfrak{X}_0^* is isomorphic to ℓ_1 .
- (ii) The space \mathfrak{X}_0 is asymptotic c_0 with respect to the basis $(d_{\gamma_i})_i$.
- (iii) The space \mathfrak{X}_0 does not contain an isomorphic copy of c_0 .

Proof. The fact that \mathfrak{X}_0 is asymptotic c_0 with respect to $(d_{\gamma_i})_i$ follows directly from Proposition 5.6. We obtain in particular that $(d_{\gamma_i})_i$ is shrinking and hence, by Proposition 2.17, the dual of \mathfrak{X}_0 is isomorphic to ℓ_1 . To show that \mathfrak{X}_0 does not contain an isomorphic copy of c_0 , let us consider the FDD $(M_q)_{q=0}^{\infty}$ as it was defined in Proposition 2.8. Let $(x_k)_k$ be a sequence of skipped block vectors, with respect to the FDD $(M_q)_{q=0}^{\infty}$, all of which have norm at least equal to one. Then, for every $\varepsilon > 0$, there exist a finite subset I_1 of \mathbb{N} and $\gamma \in \Gamma$ so that $e_{\gamma}^*(\sum_{k \in I_1} x_k) \ge \theta - \varepsilon$. It follows from this that for all $n \in \mathbb{N}$, we can find a $\gamma \in \Gamma$ and find a finite subset J of \mathbb{N} so that $e_{\gamma}^*(\sum_{i \in J} x_k) \ge (\theta - \varepsilon)^n$. Therefore, c_0 is indeed not isomorphic to a subspace of \mathfrak{X}_0 . *Remark* 5.8. In [1], Alspach proved that the \mathcal{L}_{∞} -space with separable dual defined in [6] has Szlenk index ω . We note that the space \mathfrak{X}_0 has Szlenk index ω as well. Indeed, if this were not the case, then, by [2, Theorem 1], we would conclude that \mathfrak{X}_0 has a quotient isomorphic to $C(\omega^{\omega})$, which would imply that \mathfrak{X}_0 admits an ℓ_1 spreading model.

Remark 5.9. Every skipped block sequence, with respect to the FDD $(M_q)_{q=1}^{\infty}$, is boundedly complete and hence the space \mathfrak{X}_0 is reflexively saturated and also every block sequence in \mathfrak{X}_0 contains a further block sequence which is unconditional. We also note that a similar method can be used to construct a reflexive asymptotic c_0 space with an unconditional basis. This space is related to Tsirelson's original Banach space [15].

Acknowledgement. The authors would like to acknowledge the support of program APISTEIA-1082.

References

- 1. D. E. Alspach, The dual of the Bourgain–Delbaen space. Israel J. Math. 117 (2000), 239–259.
- **2.** D. E. Alspach and Y. Benyamini, C(K) quotients of separable \mathcal{L}_{∞} spaces. *Israel J. Math.* **32** (1979), 145–160.
- S. A. Argyros, K. Beanland and P. Motakis, The strictly singular operators in Tsirelson like reflexive spaces. *Illinois J. Math.* 57(4) (2013), 1173–1217.
- S. Argryros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht and D. Z. Zisimopoulou, Embedding Banach spaces into spaces with very few operators. *J. Funct. Anal.* 262(3) (2012), 825–849.
- S. A. Argyros and R. G. Haydon, A hereditarily indecomposable L_∞-space that solves the scalarplus-compact problem. Acta Math. 206 (2011), 1–54.
- 6. J. Bourgain and F. Delbaen, A class of special \mathcal{L}_{∞} spaces. Acta Math. 145 (1980), 155–176.
- 7. D. Freeman, E. Odell and Th. Schlumprecht, The universality of ℓ_1 as a dual space. *Math. Ann.* **351**(1) (2011), 149–186.
- 8. G. Godefroy and D. Li, Some natural families of *M*-ideals. *Math. Scand.* 66 (1990), 249–263.
- W. B. Johnson, H. P. Rosenthal and M. Zippin, On bases, finite dimensional decompositions and weaker structures in Banach spaces. *Israel J. Math.* 9 (1971), 488–506.
- 10. D. Lewis and C. Stegall, Banach spaces whose duals are isomorphic to $\ell_1(\Gamma)$. J. Funct. Anal. 12 (1973), 177–187.
- J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in L_p-spaces and their applications. Studia Math. 29 (1968), 275–326.
- 12. J. Lindenstrauss and H. P. Rosenthal, The \mathcal{L}_p spaces. Israel J. Math. 7 (1969), 325–349.
- 13. A. Pełczynski, On Banach spaces containing $L_1(\mu)$. Studia Math. 30 (1968), 231–246.
- 14. C. Stegall, Banach spaces whose duals contain $\ell_1(\Gamma)$ with applications to the study of dual $L_1(\mu)$ spaces. *Trans. Amer. Math. Soc.* **176** (1973), 463–477.
- **15.** B. S. Tsirelson, Not every Banach space contains ℓ_p or c_0 . Funct. Anal. Appl. 8 (1974), 138–141.

Spiros A. Argyros, National Technical University of Athens, Faculty of Applied Sciences, Department of Mathematics, Zografou Campus, 157 80, Athens, Greece E-mail: sargyros@math.ntua.gr Ioannis Gasparis, National Technical University of Athens, Faculty of Applied Sciences, Department of Mathematics, Zografou Campus, 157 80, Athens, Greece E-mail: ioagaspa@math.ntua.gr Pavlos Motakis, Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, U.S.A. E-mail: pavlos@math.tamu.edu

700