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0. Introduction

One of the most significant examples of Banach spaces is Tsirelson space (see [7,14]), presented in the
nineteen seventies. The main property of this space, is that it fails to contain a copy of ¢q or ¢,, answering
in the negative a problem posed by Banach. It is still an open problem whether there exist Tsirelson type
spaces in the non-separable setting. A version of this problem has recently been solved in the negative
direction in [10], namely it was shown that spaces spanned by an uncountable basic sequence such that
their norm satisfies an implicit formula, similar to the one of Tsirelson space (see [7]), always contain a copy
of ¢ or £,. To be more precise, if x is an uncountable ordinal number, B is a hereditary and compact family
of finite subsets of x, 0 < § < 1 is a real number, and | - |9, g is the unique norm defined on cgo(x) satistying
the following implicit formula
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lzllo,.8 = max{:c|ao, Sup{@ Z |Eix|gs: {Ei}d, is B—admissible}}

i=1

then the completion of (¢coo(k), | - |

¢,8) contains a copy of cg or £,.

As it seems not possible to have a non-separable space, that strongly resembles Tsirelson space, a natural
question is which properties of this space can be transferred to the non-separable setting. Besides being
reflexive, one of the main properties of Tsirelson space, is that it admits only ¢; as a spreading model,
i.e. every bounded sequence without a norm convergent subsequence has a subsequence that generates a
spreading model equivalent to the usual basis of #1. The main purpose of this paper is the construction of
a non-separable reflexive Banach space Xo»,, with the aforementioned property.

Theorem. There exists a reflevive Banach space Xox, generated by an unconditional basic sequence {eg}e ono,
admitting only {1 as a spreading model.

The construction of this space is based on the notion of a-large families, which is defined as follows. If A
is an infinite set, B is a hereditary and compact family of finite subsets of A and « is a countable ordinal
number, we say that B is a-large, if its restriction on every infinite subset of A, in a certain sense, contains
a copy of S, the Schreier family of order a. Equivalently, if its restriction on every infinite subset of A, has
Cantor—Bendixson index, greater than or equal to w® + 1. We prove the existence of such families on the
cardinal number 2%, by constructing for a < wy, G, an a-large, hereditary and compact family of finite
subsets of {0,1}". We believe that these families are of independent interest, as they retain some of the
most important properties of the families S,, a < wi. They are therefore a generalization of the Schreier
families, defined on the continuum and a study of them is included in the paper.

In the first section of the paper, we define the notion of a-large families of finite subsets of an infinite set
and a brief study of them is given.

The second section is devoted to the construction of the families {Gq }a<w, - Initially, using the Schreier
family S; and diagonalization, we recursively define some auxiliary families ¥,,, & < wy, which are subsets
of [{0,1}]=% x {0,1}. The construction method used, imposes strong Schreier like properties on the
families G, which are in fact the projection of ¢, on the component [{0,1}Y]<“. Next, properties of these
families, which are crucial for the proof of the main result are included, among others, the fact that for
a < wi, G, is an a-large, compact and hereditary family of finite subsets of {0, 1}I. Some additional results
concerning the similarity of the G, to the S,, a < w; are proven.

The third section is concentrated on the construction of the space Xqx,. The first step is the definition
of a sequence of spaces {(X,,| - |n)}n, each one based on the family G,. In particular, the norm of these
spaces is defined on cgp(2%°) in a similar manner as the norm of Schreier space is defined on cgo(N) (see
[12]) and they all have the unit vector basis {e¢}¢on, as an unconditional Schauder basis. For n € N, the
main two properties of the space X,, are the following. Firstly, every subsequence of the basis admits only
{1 as a spreading model and secondly the space X, is ¢y saturated. Next, using the spaces X,,, n € N and
Tsirelson space T', a norm is defined on cgo(2%°), in the following manner. For z € coo(2%°), set
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The completion of coo(2%°) with this norm is the desired space Xqx, , which has the unit vector basis {e¢}¢ oo
as an unconditional Schauder basis. The proof of the fact that this space admits only ¢; as a spreading
model, relies on the study of the behavior of the | - ||, norms on a normalized weakly null sequence {zy}
in Xy»,. Moreover, using the fact that the spaces X,, are ¢y saturated, we prove that every subspace of Xox,
contains a copy of a subspace of T', which yields that the space is reflexive.
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The fourth, and final, section concerns the construction, for a < wy, of reflexive spaces X3y, having an
unconditional Schauder basis with size 2%, admitting ¢ as a unique spreading model. The construction
method used is a variation of the one used for the space Xqx,.

1. a-Large families

We introduce the notion of a-large families which concerns the complexity of a family B of finite subsets of
a given infinite set A. This notion extends the well known concept of large families and it is defined using the
transfinite hierarchy of the Schreier families {Sq }a<w, , first introduced in [1]. After providing the definition
of a-large families we also give a useful characterization linking this notion with the Cantor-Bendixson
index of a compact and hereditary family of finite subsets of a given infinite set.

Notation. Let A be a set, B be a family of subsets of A, B be a subset of A and & be a natural number. We
define

[B]* ={F c B: #F =k}
and
B!B={FeB: Fc B}

If F is a family of subsets of the natural numbers, L is an infinite subset of N and ¢ : N — L is the
uniquely defined order preserving bijection, we define

FIL] ={¢(F): FeF}.
Definition 1.1. Let A be an infinite set and B a family of finite subsets of A.

(i) We say that B is large, if for every k € N, and B infinite subset of A, we have that [B]* n B # @.
(ii) Given a countable ordinal number a, we say that B is a-large, if for every B infinite subset of A, there
exists a one to one map ¢ : N — B, such that ¢(F') € B, for every F € S,,.

Remark 1.2. Using Ramsey theorem and a simple diagonalization argument, it is easy to see that B is large,
if and only if it is 1-large.

The following lemma is an easy consequence of Theorem 1 from [8].

Lemma 1.3. Let F, G be hereditary and compact families of finite subsets of the natural numbers, such that
for every L infinite subset of the natural numbers, the Cantor—Bendizson index of F | L, is strictly smaller
than the Cantor—Bendizson index of G | L. Then for every M infinite subset of the natural numbers, there
exists L a further infinite subset of M, such that F | L< G | L.

Proposition 1.4. Let A be an infinite set, B be a hereditary and compact family of finite subsets of A and «
be a countable ordinal number. Then, the following assertions are equivalent:

(i) B is a-large.
(ii) For every B infinite subset of A, the Cantor-Bendizson index of B | B is greater than or equal to
w* + 1.
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Proof. Given that (i) holds, (ii) is an immediate consequence of the fact that the Cantor-Bendixson index
of 8, is equal to w® + 1 for every countable ordinal number « (see Proposition 4.10 from [1]).

For the converse, we may clearly assume that B is a hereditary and compact family of finite subsets of
the natural numbers. For a given countable ordinal «, if (ii) holds, we shall prove the following statement.

For every infinite subset of the natural numbers M, there exists L an infinite subset of M, such that
S.[L] € B.

The desired result evidently follows from the above. To prove this statement, we distinguish three cases.

Case 1: a = 1. Assume that for every infinite subset of the natural numbers M, the Cantor-Bendixson
index of B | M is infinite. This means that every such M contains as subsets elements of B, of
unbounded cardinality. Since B is hereditary, we conclude that it is large and therefore it also is
1-large.

Case 2: « is a limit ordinal number. Then there is {x} a strictly increasing sequence of ordinal numbers
with sup,, B = a, such that S, = |J, {F € Sg, : min F' > k}.

Using Lemma 1.3, choose L; D --- D Lj O -- - infinite subsets of M, such that Sg, | L, < B, for all k.
Choose L = {{; < --- < {j < ---} an infinite subsets of M, with ¢,, € Ly, for every m > k. It is not hard
to check that S, [L] < B.

Case 3: « is a successor ordinal number. If & = § + 1, then the following holds.

For every M infinite subset of the naturals and n € N, there exists L a further infinite subset of M, such
that (Sg = Ay) | L < B, where

Sgx Ay = {UF’ F; e S, i—l,...,n}.
i=1

The above statement follows form Lemma 1.3 and the fact that the Cantor-Bendixson index of Sg = A,
is equal to wPn + 1 < w®.

Therefore, given M an infinite subset of the natural numbers, we may choose L; © --- © L,, O ... infinite
subsets of M such that (Sg* Ay,) | L, < B.

Choose L = {{1 < --- < {,, < ---} an infinite subsets of M, with ¢,, € L,, for every m > n. Once more,
it is not hard to check that Sy[L] < B. [

2. A transfinite sequence of compact and hereditary families of finite subsets of {0, 1}

In this section we define a transfinite sequence G,, a < w; of compact and hereditary families of finite
subsets of {0,1}" with each G, being a-large for a < w;. We shall first recursively define an auxiliary
transfinite sequence {4, }o<., of subsets of [{0, 1}]< x {0, 1}, which will then be used to define the G,
for @ < wy. We then prove the main properties of these families and we conclude this section by showing
the G, have some similar properties to the Schreier families S,,.

Notation. For o = {0 (i)}%2; and 7 = {7(i)}{°; in {0,1}", we define o A 7 and |0 A 7] as follows:
(i) onT=0cand |o AT| =00, if 0 =7.

(ii) cnT=@ and |o A 7| =0, if o(1) # 7(1).
(iii) o AT ={0(i)}_, and |c A 7| = ¢, if 0 # T,0(1) = 7(1) and £ = min{i e N: o(i + 1) # 7(i + 1)}.
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For s = {s(i)}}_, and ¢ = {t(i)}{_, finite sequences of 0’s and 1’s, we say that s is an initial segment of ¢
and write s C ¢, if k < £ and s(i) = ¢(¢) for i = 1,..., k. We say that s is a proper initial segment of ¢ and
write s = t, if s =t and s # t.

Definition 2.1. We define 4 to be all pairs (F, o), where F = {r;}¢_; € [{0,1}"]<*, d € N and o € {0, 1}",
such that the following are satisfied:

(i) o #7 fori=1,...,d.
(iil) oA #andifd>1,thenoc AT ZoATRE -+ &0 A Tq.
(iii) d < |o A 7).

Define min(F, o) = |0 A 71| and max(F, o) = |o A 74l-

Assume that « is a countable ordinal number, ¢3 have been defined for 8 < a and that for (F,o) € 93,
min(F, ) and max(F, o) have also been defined.

Definition 2.2. Let 8 < a, (Fj,0;)%_;, d € N be a finite sequence of elements of 45 and o € {0, 1}".
We say that (Fj,0;)% , is a skipped branching of o in 93, if the following are satisfied:

(i) The F;,i=1,...,d are pairwise disjoint.
(ii) o # o; forz—l ,d.
(111)0/\017é®and1fd>1 theno Aot ZoAcsE - &0 A0y
(iv) |o A oy < min(F;,0;) fori=1,...,d.
(v) d <o Aoyl
Definition 2.3. Let 3 < o, o0 € {0, 1} and (F},0)%_;, d € N be a finite sequence of elements of ¥3.

We say that (F;, o), is an attached branching of o in 95 if the following are satisfied:

(i) The F;,i =1,...,d are pairwise disjoint.
(i) If d > 1, then max(F}, o) < min(Fiq,0), fori=1,...,d —1.
(iii) d < min(Fy,0).

We are now ready to define ¥,,, distinguishing two cases.

Definition 2.4. If « is a successor ordinal number with a = 8 + 1, we define ¢, to be all pairs (F, o), where
F e [{0,1}N]<¢ and o € {0,1}", such that one of the following is satisfied:

() (F,0) e .
(ii) There is (F},0;); a skipped branching of ¢ in ¥ such that F = UZ 1 Fi.
In this case we say that (F, o) is skipped. Moreover set min(F, o) = |0 A 01| and max(F,0) = |o A o4l.
(iii) There is (F;, )%, an attached branching of o in ¥ such that F' = Ule F;.
In this case we say that (F,o) is attached. Moreover set min(F,c) = min(Fy, o) and max(F,o) =
IYI\Eﬁ((Fd, U).

If v is a limit ordinal number, fix {3, },, a strictly increasing sequence of ordinal numbers with sup,, 8, = «
We define

e}
U {(F,0) €93, : r;l\iﬁ(RU)Zn}.

n=1
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Remark 2.5. If « is a limit ordinal number, the sequence {3, }, may be chosen in such a manner that the
following are satisfied:

o0
Yo = U{(F,U) €Y, : I;l\i-I/l(F7g) > n}

n=1

and
0]
Sa = U{F685n : min F' > n}.
n=1

From now on, we shall assume that this is the case.

Remark 2.6. Translating Definitions 2.1, 2.2, 2.3 and 2.4 one obtains the following:

(i) If (F,0) € %, then #F < min(F, o).
(ii) If (F,0) € 9541 and (F;,04)%, is a skipped branching of o in ¥ such that F = Ule F;, then we have
that d < min(F, o).
(iii) If (F,0) € 95,1 and (F;,0)%_; is an attached branching of o in ¥ such that F = U?=1 F;, then we
have that d < min(F, o).

We now proceed to prove some key properties of the families ¥,,.

Lemma 2.7. Let o, o/, 7 € {0,1}Y, not all equal. The following are equivalent:

(i) onTzo Ao
(ii) oAnT=0"AT.

Proof. Assume that (i) holds. We have that 7(j) = o(j) = o'(j), for j = 1,...,|0 A 7|. Whereas, for
j = |lo A 7|+ 1, we have that 7(j) # o(j) = o’
oAT=0 AT.

(7). Therefore, |0’ A 7| = |o A 7|, which means that

The inverse is proved similarly. []

Lemma 2.8. Let v be a countable ordinal number and (F,0) € 9,. Then there exist T,,, Tar in F such that
the following are satisfied:

(i) min(F,0) = |0 A 7| and max(F, o) = |o A 7).
(ii) For 7 € F we have that c AT, EC ATE 0 A Tog-

Moreover, if a is a successor ordinal number with o = B + 1 the following hold:

iti) If (F,0) is skipped and (Fy,0;)%, is a skipped branching of o in 95 such that F = t F;, then for
=1 B i=1
i=1,...,d and T € F;, we have that c A 0; =0 A T.
iv) If (F,o) is attached and (Fy, o), is an attached branching of o in 95 such that F = LL F;, then
i=1 B i=1
forl<i<j<dandm e€F;, meF;, wehave that o A T & 0 A To.

Proof. We prove this lemma by transfinite induction. For a = 1 the desired result follows immediately from
the definition of ¢4;. Assume now that « is a countable ordinal number and that the statement holds for
every (F,o) € 93, for every f < a. If o is a limit ordinal number, then the result follows trivially from the
inductive assumption and the definition of ¥,,. Assume therefore that « = § + 1 and let (F,0) € ¥,,.



S.A. Argyros, P. Motakis / Topology and its Applications 172 (2014) 47-67 53

We treat first the case when (F, o) is skipped. Let (Fj;,0;)%_, be a skipped branching of o in %3, such
that F = J_, F.

We first prove part (iii), i.e. for 7 € F;, we have that c A0, =0 AT, i=1,...,d.

By the inductive assumption, there exists 7!, € F; such that H/—l\lIll(Fz, 0;) = o1 A 7| and for every T € F;
we have that o; A 78, E 0y A T.

Since, by definition, |0 A 0;| < min(F;, o) = |03 A i | < |oi A 7], it follows that o A 0; = 05 A 7 and by
Lemma 2.70c Ao; =0 AT.

Choosing any 7., € Fy and 7 € Fy, it is easy to see that (i) and (ii) are satisfied.

Assume now that (F,o) is attached. Let (Fj, o)’ be an attached branching of ¢ in ¥, such that
= U?:lFi' ey

By the inductive assumption, there exist 7, 7i, € F; such that min(F;,0) = |o A 7|, max(F;,0) =
lo A 7%, and for every 7 € F; we have that 0 A T2, S0 ATE 0 A TY,.

We will show that for 1 < i < j < d, we have that o A 7i; &= 0 A 7J,. This proves both (iv) and that
, Ta = T4, have the desired properties.

Tm = T3,

However, this follows immediately from the fact that |o A 7i,| = max(Fi, o) < min(Fj,0) = |0 A7}|. O
The following result is an immediate consequence of Lemma 2.8.

Corollary 2.9. Let a be a countable ordinal number and (F,o0) € 9,. Then the following hold:
(i) min(F,o) = min{lo A 7| : 7 € F}.
(ii) max(F,o) = max{|lo A 7| : 7€ F}.

Corollary 2.10. Let o be a countable ordinal number and (F, o) € 4, such that #F = 2. Then
r/n\iﬁ(F, o) < min{|71 A To|: 11,70 € F with 1 # TQ}.

Proof. Let 71 # 75 be in F. By Lemma 2.8, there exists 7, € F, such that min(F,o) = |0 A 7| and
OATm ZoAT aswellas o AT, E 0 A To. It follows that o A 7,,, = 71 A T2. We conclude that Ifn\l_I/l(F, o) <

|7'1/\T2‘. I:‘

Lemma 2.11. Let « be a countable ordinal number and (F,0) € 9, such that #F > 2. Then there exists
o’ € {0,1}N, such that (F,0') € 9, and

rfn\iﬁ(F, 0’) = min{|71 ATo| 71,72 € F with 1 # 72}.

Proof. We prove this lemma by transfinite induction on .. Assume that « = 1, (F,0) € ¢, such that #F > 2
and F = {7;}%_,, d > 2 such that the assumptions of Definition 2.1 are satisfied. Then 0 A 71 & 0 A 9 and by
Lemma 2.7 we have that o A 7y = 71 A 75. We conclude that min(F, o) = |o A 71| = |11 A 75]. Corollary 2.10
yields that min(F, o) = min{|my A 72| : 71,72 € F with 71 # 72} and hence, the desired ¢’ is o itself.

Assume now that « is a countable ordinal number and that the conclusion holds for every 8 < a.

If @ is a limit ordinal number, choose {5,}, a strictly increasing sequence of ordinal numbers with
sup,, Bn = «, such that the assumptions of Definition 2.4 are satisfied. Let (F, o) € ¥4, with #F > 2. Then
there is n € N such that (F,0) € 93, and min(F, o) = n. Corollary 2.10 yields the following;

min{|7’1/\7'2| 171,79 € F with 7y 757'2}211. (1)

By the inductive assumption, there exists o’ € {0,1}N with (F,¢’) € 45, and min(F,0’) = min{|r; A 7o| :
71,7 € F with 71 # 72}. By (1) we have that min(F,o’) € %,.
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Assume now that « is a successor ordinal number with o = 8 + 1 and let (F,0) € 4, with #F > 2. If
(F,0) € 93, then the inductive assumption yields the desired result. If this is not the case, then (F, o) is
either skipped, or attached. If it is attached, then there is (F}, Ui)le an attached branching of o, such that
F= U?Zl F;. If d = 1, then (F,01) € 95 and by the inductive assumption we are done. Otherwise, choose
71 € F1, 79 € Fy. Lemma 2.8(iii) yields that 0 A 71 = 0 A 01 & 0 A 02 = 0 A T2 and by Lemma 2.7 we have
that 0 A 71 = 71 A 7. We conclude that min(F,o) = |0 A 01| = |0 A 71| = |71 A 72| and therefore, applying
Corollary 2.10 we have that o is the desired o’.

If on the other hand (F, o) is attached, using similar reasoning, Lemma 2.8(iv) and Corollary 2.9, we
conclude the desired result. [

Corollary 2.12. Let {(Fx,o)}x be a sequence in Uﬁ<w1 G5 with {rIfiﬁ(F;67 or)}k tending to infinity. Then, if
F is an accumulation point of {Fy}i, we have that #F < 1.

Proof. Let F' be an accumulation point of {F}, and assume that there are 71 # 72 in F'. Then there exists
L an infinite subset of the natural numbers, such that 7,7 € Fj, for every k € L. Corollary 2.10 yields that
|71 A To| = min(F}, o), for all k € L. We conclude that |71 A 72| = ©, i.e. 71 = 72, a contradiction. [J

The following two lemmas will both be useful in the sequel.

Lemma 2.13. Let a be a countable ordinal number and (F,o) € 94,,. Let also o’ € {0,1}", such that o' A T =
o AT forall € F. Then the following hold:

() (1,0

"Ye49,.
(ii) min(F,o’) =

min(F, o) and max(F,o') = max(F, o).

Proof. We prove this lemma by transfinite induction. The case o = 1 follows easily from the definition
of 4. Assume now that the result holds for every § < «. The case where « is a limit ordinal number is
trivial, assume therefore that a = 8 + 1 and let (F,0) € ¥, o’ € {0,1}" such that the assumptions of the
lemma are satisfied. Notice that it is enough to show that (i) is true, since part (ii) of the conclusion follows
immediately from (i) and Corollary 2.9.

We treat first the case when (F, o) is skipped, i.e. there exists (F},0;)?_, a skipped branching of o in ¥,
with F = U?=1 F;. To show that (F,o’) € %,, it suffices to show that (F}, o), is a skipped branching
of o’.

Notice that it is enough to show that o Aoy = 6’ Aoy for i = 1,...,d, which, by Lemma 2.7, is equivalent
toocrno;, Zono fori=1,...,d.

Fix 1 <4 < d and chose 7 € F;. Lemma 2.8(iii) yields that o A 0; = 0 AT = 0/ A 7. Once more, Lemma 2.7
yields that c Aoy, =0 ATEZ 0 Ao,

Assume now that (F, o) is attached, i.e. there exists (F;,0)%; an attached branching of o in %3, with
F = U?Zl F;. Since, by the inductive assumption, the conclusion holds for the (F},0),i=1,...,d,0, it is
straightforward to check that (F;,0’)%_, an attached branching of o’ in ¥ and therefore (F,0’) € 4,. [

Lemma 2.14. Let (F,o0) € Uz, 95 and o’ € {0, 1} such that o A T & o' AT for all T € F. Then, if
a=min{f: (F,0) € 93}, a is not a limit ordinal number and the following hold:

(i) If a =1, then #F = 1.
(ii) If o = B+ 1, then there exists 0" € {0,1}N with (F,0") € 9.

Proof. The fact that « is not a limit ordinal number follows trivially from Definition 2.4. The case v = 1
is easy, we shall therefore only prove the case a =  + 1. Since (F,0) ¢ 95, it is either skipped or attached.
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Assume first that there is (Fj,0;)%_; a skipped branching of ¢ in ¥ with F = U;‘i=1 F,. Ifd = 1,
then o” = oy is evidently the desired element of {0,1}". We will therefore prove that d = 1. Towards a
contradiction, assume that d > 2 and choose 7, € I, 75 € F5.

Lemma 2.8(iii) yields that 0 A 71 = 0 A 01 & 0 A 09 = 0 A T2. By the assumption, o A 71 & ¢’ A 7 and
using Lemma 2.7 we conclude that o A 71 = o A ¢’. Similarly, we conclude that ¢ A 75 = o A ¢/. We have
shown that o A 0/ = o A ¢/, which is absurd.

If (F,0) is attached, then using similar arguments and Lemma 2.8(iv), one can prove the desired re-
sult. [

Proposition 2.15. Let o be a countable ordinal number, (F,0) € 9, and G be a non-empty subset of F. Then
(G,0)€Y,.

Proof. We proceed by transfinite induction. For o = 1 the result easily follows from the definition of ¢;.
Assume that the statement is true for every 8 < a. The case when « is a limit ordinal number is an easy
consequence of the inductive assumption and Corollary 2.9. Assume therefore that a = 8+ 1 and let (F, o)
bein 4, and G c F.

Consider first the case, when (F, o) is skipped and (F;)?_; be a skipped branching of ¢ in %3, such that
F= U?:l ;.

Set {i1 <--- <ipy={ie{l,...,d} :Gn F; # F} and G; = G n Iy, for j = 1,...,p. By the inductive
assumption, (G;,0y;) is in % for j = 1,...,p and, evidently, it is enough to show that (G;, oy, )1;-’:1 is a
skipped branching of o.

Obviously, assumptions (i), (ii) and (iii) from Definition 2.2 are satisfied.

Corollary 2.9 yields that HE(Fij,Uij) < ﬁﬁYl(Gj,aij) and hence (iv) is satisfied. Moreover p < d <
|o A o1] < |o A o, ], which means that (v) is also satisfied.

If on the other hand (F, o) is attached, using similar reasoning and Corollary 2.9, the desired result can
be easily proven. []

We are now ready to define the families G, for a < w; and prove their main properties.
Definition 2.16. For a countable ordinal number o we define
Go = {F = {0,1}" : there exists o € {0, 1}" with (F,0) € 4,} U {@}.

Remark 2.17. It is clear that {G,},<. is an increasing family of finite subsets of {0, 1}. Proposition 2.15
also yields that G, is hereditary for all a < w;.

Proposition 2.18. Let a be a countable ordinal number. Then G, is a-large. In particular, for every B infinite
subset of {0,1} there exists a one to one map ¢ : N — B with ¢(F) € G, for every F € S, and a < wy.

Proof. Let B be an infinite subset of {0,1}". Choose {7}, pairwise disjoint elements of B and o € {0, 1},
with limy 74 = o, such that 0 A 7, & 0 A 741 for all k € N. Define ¢ : N — B, with ¢(k) = 7.
We shall inductively prove that for every a < w; and F' € &4, the following hold:

(i) (¢(F),0)

—~

€
(ii) min(p(F),0) = |0 A Tmin r| and max(¢(F),0) = |0 A Tmax F|-

o

The case a = 1 can be easily derived from the definition of 4. Assume now that « is a countable ordinal
number and that the statement is true for every F'€ Sg and 8 < a.
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We treat first the case when « is a limit ordinal number. Choose {3, }, a strictly increasing sequence of
ordinal numbers with sup,, 6, = «, such that

e}
Go = U {(G.0") €95, - min(G,0’) = n}

n=1

as well as
o0
So = U{FGSBn : min F > n}.
n=1

Then, if F' € S,, there exists n € N with F' € Sg, and min F' > n. The inductive assumption yields that
((F),0) € 93, and min(¢(F),0) = |0 A Tmin | = min F = n. We conclude that (¢(F),0) € %, and, of
course, min(¢(F), o) = |0 A Tomin 7|

Assume now that @« = 8+ 1 and let F' € S,. Then there exist min F' < F; < --- < Fy in Sg with
= U?:l 122

The inductive assumption yields that (¢(F;),0)? , is an attached branching of o in ¥ and hence
(G(F).0) € G N

Moreover, min(¢(F),o) = min(¢(F1),0) = |0 A Tmin ;| = |0 A Tmin | Similarly, we conclude that
max(¢(F),0) = |0 A Tmax r|. O

Remark 2.19. With a little more effort, it can be proven that for a < wy, G, is not a+ 1-large. In particular,
there does not exist a one to one map ¢ : N — {0,1}", such that ¢(F) € G, for every F € So41. To be
even more precise, for every A infinite subset of {0, 1}, there exists B a countable subset of A, such that
the Cantor—Bendixson index of G, | B is equal to w® + 1 for all & < w;. Since we do not make use of this
fact, we omit the proof.

The main result concerning the families G, @ < w; is the following.

Theorem 2.20. Let o be a countable ordinal number. Then G, is an «-large, hereditary and compact family
of finite subsets of {0,1}".

Proof. All we need to prove, is that G, is compact and we do so by transfinite induction. Let us first treat
the case o = 1 and assume F' is in the closure of Gj.

If F is finite, since G; is hereditary, then F' € Gy. It is therefore sufficient to show that F' cannot be
infinite. Since G; is hereditary, we may assume that F is countable and let {7; : i € N} be an enumeration
of F.

We conclude, that setting Fy, = {7; : ¢ = 1,...,k}, then Fj € G; and #F}, = k. Choose {0}, a sequence
in {0, 1}" such that (Fy,0%) € % for all k.

Remark 2.6 yields that k < r;l\lfl(Fk, or) for all k. On the other hand, by Corollary 2.10 we have that
min(Fy, 1) < |11 A 72|. We conclude that k < |71 A 7| for all k € N, which is obviously not possible.

Assuming now that « is a countable ordinal number such that Gg is compact for every f < «, we will
show that the same is true for G,.

We treat first the case in which « is a limit ordinal number. Fix {3,}, a strictly increasing sequence of
ordinal numbers with sup,, 5, = a such that

Yo = U {(F,0) €%, : min(F, o) > n}.

n=1
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Let F' be in the closure of G,. As previously, if F' is finite then it is in G, and it is therefore enough to
show that F' cannot be infinite. Once more, we may assume that F' = {7; : i € N}. Setting Fy, = {71, ..., 7%},
we have that Fj € G,, therefore there exists {ox}r, with (Fy, 0k) € 9.

Using Corollary 2.10 we have that min(Fy, o) < |7 A 72| = d. In other words, (Fy,o%) € 9s,, » with
ni, < d for all k. Passing, if necessary, to a subsequence, we have that (F,o0x) € 93, , for all k. We conclude
that F' € Gg, , in other words Gg, is not compact, which is absurd.

Assume now that « = 8 + 1. Let F' be in the closure of G,. As previously, it is enough to show that F’
cannot be infinite. Once more, we may assume that F' = {r; : i € N}.

Set F, = {m; :i=1,...,k}, for all k. Then Fj € G,, i.e. there exists o such that (Fy, o) € 4,. Setting
d = |11 A 7|, Corollary 2.10, yields the following:

min(Fy,04) < d for all k. (2)

By Definition 2.4, Remark 2.6 and (2), for every k € N, there exist {Ff};-n:’“'l pairwise disjoint sets in Gg,
with Fj, = U;n:kl Ff and my < d. Passing to a subsequence, we may assume that m; = m, for all k.

By the compactness of Gz, we may pass to a further subsequence and find G1,Ga,...,G,, € Gg, such
that limg F]k =Gy, forj=1,...,m.

We conclude that F = limy, Fy, = limy, (]2, F}) = U2, G;. Since [ J-, G; is a finite set, this cannot be
the case. []

Although the initial motivation behind the definition of the G, families was the construction of a non-
separable reflexive space with ¢; as a unique spreading model, we believe that they are of independent
interest, as they retain many of the properties of the families S,. They are therefore a version of these
families, defined on the Cantor set {0, 1}N. We present a few more properties the G, have in common with
the S,.

Lemma 2.21. Let o < 8 be countable ordinal numbers. Then there exists n € N such that
{(F,o)e %, : min(F, o) > n} < Y.

Proof. Fix a a countable ordinal number. We prove this proposition by means of transfinite induction,
starting with 8 = « 4 1. In this case the result follows from the definition of ¥4, for n = 1.

Assume now that § is a countable ordinal number with @ < 3, such that the statement holds for every
a <y < fB.If B =~+1, by the inductive assumption, there exists n € N, such that {(F,0) € ¥, :
min(F, o) > n} ¢ ,. Evidently, we also have that {(F,o) € %, : min(F,0) > n} c %.

If B is a limit ordinal number, fix {8x}r a strictly increasing sequence of ordinal numbers, such that
8 = limy By and

Gy = U{(F,a) €9, : min(F,o0) > k}.
k

Choose ko € N with a < S,. By the inductive assumption, there exists m € N, such that {(F,o0) € ¥, :
min(F,0) = m} c 95, - Setting n = max{ko, m}, we have the desired result. []

Lemma 2.22. Let a < 8 be countable ordinal numbers. Then there exists n € N U {0} such that 9, < Y341

Proof. Fix 8 a countable ordinal number. We proceed by transfinite induction on «a. In the case a = 1,
it is easily checked that ¢ < 9. Assume now that « is a countable ordinal with o < §, such that the
statement holds for every v < a. If & = v + 1, then by the inductive assumption there exists n € N u {0}
with &, < 93,,,. We conclude that ¥, < 95 (,41). If @ is a limit ordinal, fix {ax}x a strictly increasing
sequence of ordinal numbers, such that o = limy a, and
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—~

@G, = U{(F,O’) €9, : min(F,o) = k}.
k

Lemma 2.21 yields that there exists m € N with {(F,0) € 4, : min(F,0) > m} c %. The inductive
assumption, yields that for k = 1,...,m — 1, there exists n; € N u {0} with ¥,, < 951y, . Setting n =
max{m,ni,...,Nm—_1}, it can be easily checked that ¥, € 951,. [

Proposition 2.23. Let o < 8 be countable ordinal numbers. Then there exists n € N such that
{Fe Go: #F =2 and min{|7’1 ATl T, 0 € F,m # 7'2} > n} c Gg.

Proof. Let @ < 3 be countable ordinal numbers. Choose n € N such that the conclusion of Lemma 2.21 is
satisfied. We show that this n is the desired natural number. Let F' € G, with #F > 2 and min{|r; A 72 :
71,72 € F, 71 # 72} = n. Then there exists o € {0, 1} with (F,0) € 4,. Lemma 2.11 yields that there exists
o' € {0,1}" such that (F,¢’) € %, and min(F,¢’) > n. By the choice of n, we have that (F,¢’) € ¥, i.e.
Fe gﬁ. ]

The following proposition is an obvious conclusion of Lemma 2.22
Proposition 2.24. Let o < /5 be countable ordinal numbers. Then there exists n € NU{0} such that G, < Gayn.

The following fact is proven in [10, Proposition 7.4]. If £ is an infinite cardinal number, then there exists
a large, hereditary and compact family of finite subsets of «, if and only if x is not w-Erdés. The following
question arises naturally.

Question. Let x be an infinite cardinal number which is not w-Erdds and a be a countable ordinal number.
Does there exist an a-large, hereditary and compact family of finite subsets of k7

3. The space X,xq

In this section we define the space X,», and prove that it is reflexive, has an unconditional Schauder
basis of length the continuum and that it admits only ¢; as a spreading model. In the beginning we define a
sequence of non-separable spaces X,,, n € N. Each one is defined using the family G, in a similar manner as
the Schreier family S; is used to define the space in [12]. Then the construction of X,x, is presented, which
combines the spaces X,, and Tsirelson space, using a method first appeared in [6]. In the end the properties
of the space Xqx, are deduced by directly using the structure of the families G,,.

Before proceeding to the definition of the spaces X,, and X,x,, let us first recall the notion of /¢ spreading
models.

Definition 3.1. Let {z4}r be a sequence in a Banach space and a be a countable ordinal number. We say
that {z\}r generates an £§ spreading model, if there exists a constant ¢ > 0 such that for every F € S, and
every real numbers {A;}xer the following holds:

2 AkTk

keF

=c Z |>\k|

Let us from now on fix a one to one and onto map 7 — &, from {0, 1} to the cardinal number 2%0.
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Definition 3.2. For n € N define a norm on cOO(ZNU) in the following manner:

(i) For n € N, we may identify an F' € G,, with a linear functional F : cyo(2%°) — R in the following manner.
For o = >} _ony Aceg € coo(2%0)

F(z) =) A,

TEF

(ii) For € coo(280) define

|z = sup{|F(z)| : F € Gn}.

Set X,, to be the completion of (cgo(28), | - ||n)-
Proposition 3.3. Let n € N. Then the following hold:

(i) The space X,, is co saturated.
(ii) The unit vector basis {e¢}¢oxo is a normalized, suppression unconditional and weakly null basis of X,,,
with the length of the continuum.
(iii) Any subsequence of the unit vector basis admits only ¢y as a spreading model.

Proof. To prove (i), notice that since G, is compact and contains only finite sets, it is scattered. The
main Theorem from [11] yields that C'(G,) is ¢o saturated. Evidently, the map T : X,, — C(G,) with
Txz(F) = F(z) is an isometric embedding and therefore, X,, is ¢y saturated.

Property (ii) follows from the fact that G, is hereditary and property (iii) is a consequence of the fact
that G, is 1-large. [

Remark 3.4. For a cardinal number s and B a compact, hereditary and large family of finite subsets of k,
one may define a ¢y saturated space Xz, in the same manner as in Definition 3.2. Then any subsequence
of the unit vector basis {e¢}e< admits only ¢; as a spreading model. Therefore the problem of finding a
basic sequence of length x, admitting only ¢; as a spreading model, is reduced to the existence of such a
family B. As it is proven in [10, Proposition 7.4], this is equivalent to x not being w-Erdds.

It is also worth noting, that for a given cardinal number k, it is easy to construct a reflexive space X
with a basis {e¢}e<, having the property that every subspace has a sequence admitting ¢, as a spreading
model. As proven in [5,9,13], any space X with an unconditional basis, embeds as a complemented subspace
in a space with a symmetric basis D. As noted in [3], the construction in [5] has the following additional
property. Every subspace of D contains a copy of a subspace of X. One may therefore embed Tsirelson
space T into a space D with a symmetric basis {e,},, saturated with subspaces of T. Since this basis is
symmetric, it may naturally be extended to a basis {e¢}¢<. to define a space X having the desired property.
However, this space also admits spreading models not equivalent to ¢;. For instance, the basis itself being
symmetric and not equivalent to ¢, fails this property.

By T we denote Tsirelson space as defined in [7] and by {e,}, we denote its usual basis. We are now
ready to define the space Xyx,, using the spaces X,,, Tsirelson space T and a method first appeared
in [6].
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Definition 3.5. Define the following norm on cyg(2%°). For x € cog(2%°)

1
e = > o Iz lnen
n=1 T
Set Xox, to be the completion of (coo(2%0), || - |)-
Set A= | X | swen|r and for & < 2%, & = fe.. Since {eg}eon, is normalized and suppression uncon-

ditional in X,,, and {e,}, is 1-unconditional in T', we conclude that {€¢}¢_ox, is a normalized suppression
unconditional basis of Xox,.

For n € N define P, : Xon, — X,, with P,z = 2%;2 Evidently P, is well defined and ||P,| < 1, for all
n € N.

The main result is the following, which is a combination of Proposition 3.16 and Corollary 3.18, which
will be presented in the sequel.

Theorem 3.6. The space Xoxo is a non-separable reflexive space with a suppression unconditional Schauder
basis with the length of the continuum, having the following property. Every normalized weakly null sequence
in Xono has a subsequence that generates an €7 spreading model, for every n € N.

Lemma 3.7. Let {é¢, }r be a subsequence of the basis {€¢}¢_ona of Xono. Then it has a subsequence that
generates an £} spreading model for every n € N.

Proof. Set B = {7 : &, = & for some k € N}. By Proposition 2.18 there exists a one to one map ¢ : N — B
such that ¢(F) € G,, for every F € S,, and n € N.

Pass to L an infinite subset of the natural numbers such that the map QNS : L — 2% with qB(j) = &4(y) I8
strictly increasing. We will show that {é¢, , }jer admits an /7 spreading model for every n € N.

By unconditionality, it is enough to show that there are positive constants ¢,, such that for every n € N,
FeS,, FcLand {t;}jer positive real numbers, we have that

Z i€y | = Cn Z tj-

jeF jeF

By definition, we have that | >, pt;ée, [ = 2 2ijer tice, i, ln and by the choice of ¢, we have that

¢(F) € G,,. Hence, ¢(F)(ZjeF tjeg¢(j)) = ZjeF t; which yields that || ZjeF tiee, [n = ZjeF t;.
We finally conclude that |3, pt;ée, ., | = 2 Yjerti- O

Proposition 3.8. Let {z}xr be a normalized, disjointly supported block sequence of {€¢}e_ono, such that
limsupy, |zx|o > 0. Then {xi}r has a subsequence that generates an £} spreading model for every n € N.

Proof. By unconditionality, it is quite clear, that by passing, if necessary, to a subsequence of {xj}, there
exist € > 0 and {é, }1 a subsequence of {€¢}¢_ oo, such that for any A;, ..., Ay, real numbers, one has that

>¢€

m
DI
k=1

m
D7 Aiée,
k=1

Lemma 3.7 yields the desired result. []

Proposition 3.9. Let {x}}i be a normalized block sequence in Xqng, such that limg, | P,xg|, = 0, for alln € N.
Then {xk}r has a subsequence equivalent to a block sequence in T. In particular, {x;}r has a subsequence
that generates an {7 spreading model for every n € N.
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Proof. Using a sliding hump argument, it is easy to see, that passing, if necessary, to a subsequence of {zy} 1,
there exists {x}) increasing intervals of the natural numbers, such that if we set yx = >, . o | @k n€n,
then {zy}x is equivalent to {yx}x. [

Lemma 3.10. Let {x}}r be a normalized, disjointly supported block sequence of {€¢}¢ono, such that the
following holds. There exist ¢ > 0, ng € N, (Fj, 01) € G, for k€ N and o € {0, 1} satisfying the following:

(i) |Fx(ag)| > ¢ for all k e N.
(ii) The Fy, are pairwise disjoint.
(iii) o # oy for all k e N.
)
)

(iv) 0 Aok &0 A Okqq for all ke N.
(v) |o A o] < min(Fy, o) for all k € N.

Then {x}r generates an £} spreading model for every n € N.

Proof. By changing the signs of the x, we may assume that Fj(xy) > ¢ for all k € N.
Arguing in a similar manner as in the proof of Proposition 2.18 one can inductively prove that for every
n € N and G € §,, the following hold:

(@) (Ukeg Fr:0) € Gnpin-
(b) min(Uyeqx Fr»0) = |0 A Omin ¢| and max (e Fr,0) = |0 A Omax cl-

Since {xy}r is unconditional, it is enough find positive constants ¢, > 0, such that fixing G € S,, and

{Ak }kec non-negative reals, we have the following:

Z )\kfk

keG

> Cp Z )\k

keG

Properties (a) and (b), yield that F' = | J,. Fi € Gno+n. This means the following:

Z ATr|| = Pno-‘rn(Z )\kl'k>
keG keG no+n
2
= 2no+n Z )\kxk
keG no+n

2c
= 2n0+n Z )\k. D
keG

Lemma 3.11. Let {zx}r be a normalized, disjointly supported block sequence of {€¢}¢_ono, such that the
following holds. There exist ¢ >0, ng € N, o € {0,1}Y, a sequence {F}.}x in Gy, satisfying the following:

(i)

(ii) The sets Fy, are pairwise disjoint.

(iii) (Fi,0) € 9p, for all k e N.

(iv) max(Fy,0) < min(Fyy1,0), for all k € N.

|Fy(zk)| > ¢ for all k e N.

Then {x}i generates an €7 spreading model for every n € N.

Proof. The proof is identical to the proof of Lemma 3.10. []
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Lemma 3.12. Let {xy}r be a sequence in Xox, and n € N such that limy, | P,z |, = 0. Then for every e > 0
there exists kg € N such that for every k = ko the following holds:

|F(zi)| <& for every F € Gy.

Proof. Fix ¢ > 0. Choose kg € N, such that |P,zx[n = 5= |zk]n < 5x¢, for every k > ko. By definition of

the norm | - ||,, this means the following;:
’F(xk)‘ < ¢ forevery F € G,. N

Lemma 3.13. Let {x}x be a normalized, disjointly supported block sequence of {€¢}e—ono, such that
limg |zk|eo = 0 and there exists n € N such that limsupy, |Poaklln, > 0. Assume moreover, that if
no = min{n : limsupy |P,xk|ln > 0}, there exist ¢ > 0, o € {0,1} and {Fi}r a sequence in G, satis-
fying the following:

(i) |Fx(ag)| > ¢ for all k e N.
(ii) The sets Fy are pairwise disjoint.
(i) (Fg,0) € %, for all k € N.

Then {xi}r has a subsequence that generates an £} spreading model for every n € N.

Proof. We shall prove that for every kg, m natural numbers, there exist k > kg and G < Fj such that
|Gr(k)| > ¢/2 and min(Gy, o) > m.

If the above statement is true, we may clearly choose {Gy}r in G,, satisfying the assumptions of
Lemma 3.11, which will complete the proof.

We assume that ng > 2, as the case ng = 1 uses similar arguments and the fact that limy, |2[s = 0.

Fix kg, m € N. By Lemma 3.12, choose k > kg, such that the following holds:

c
|F(2x)] < . for every F' € Gpy—1. (3)
We distinguish two cases.

Case 1: There is (FF,oF)%_, a skipped branching of o in 4, with Fy = U(ii=1 Fk.
Case 2: There is (FF,o)%_; an attached branching of o in 4,1 with F}, = Ule FF.

In either case, by Proposition 2.15 we have that if we set Gy = U?:m+1 Fik, then (G, 0) € 9,,. Moreover,
(3) yields that |G (zx)| > ¢/2.

All that remains, is to show that min(Gy, o) > m.

If we are in case 1, then min(Gy, o) = |0 A 0¥, 1 |. By Definition 2.2 we have that |0 A o¥| < |0 A 0¥ 4]

for i = 1,...,m, which of course yields that |o A ¥, ;| > m.
If, on the other hand, we are in case 2, then H/—l\i_I/l(G]W o) = nﬁﬁﬁ(Ffle, o). By Definition 2.3 we have that
min(FF, o) < max(Ff,0) < min(FF, |, 0) for i = 1,...,m, which yields that min(F%_,,0) >m. [

Lemma 3.14. Let {x}r be a normalized, disjointly supported block sequence of {€¢}¢ono, such that there
exists n € N such that limsupy, |Pp2k|n > 0. Then, passing if necessary, to a subsequence, there exist ¢ > 0
and (Fg, 0r) € 9, satisfying the following:

(i) The Fy, are pairwise disjoint.
(ii) |Fg(zk)| > ¢ for all k € N.
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Proof. Pass to a subsequence of {zj}; and choose € > 0, such that the following holds:

1
| Prxklln = 2—n||kan >¢, forall keN.

By the definition of the norm |- |, there exist (Fj, o) € %, with |Fj(zx)| > 2", for all k € N. By virtue of
Proposition 2.15 and the fact that {z}x is disjointly supported, we may assume that the F}, are pairwise
disjoint. Setting ¢ = 2™¢ finishes the proof. []

Proposition 3.15. Let {zx}r be a normalized, disjointly supported block sequence of {€¢}¢ono, such that
limg, |2k | = 0 and there exists n € N such that limsupy, | Prxglln > 0. Then {x}r has a subsequence that
generates an {7 spreading model for every n € N.

Proof. Set ng = min{n : limsupy |P,zk|, > 0} and as in the proof of Lemma 3.13 let us assume that
ng = 2. Apply Lemmas 3.14 and 3.12, pass to a subsequence of {x}; and find ¢ > 0, (Fy, 0x) € 9%,, such
that the following are satisfied:

(i) The Fy, are pairwise disjoint.
(i) |Fg(zk)| > c for all k e N.
(iii) |F(x)| < c/4 for every ke Nand F € Gp_1.

Passing to a further subsequence, choose o € {0, 1} such that limj o}, = 0. We distinguish two cases.

Case 1: limy max{|G(xy)| : G < Fy, with (G,0) € %,,} = 0.
Case 2: limsup, max{|G(zy)| : G < Fy with (G,0) € %,,} > 0.

Let us first treat case 1. Pass once more to a subsequence of {xy}x, satisfying the following:

(a) max{|G(zy)|: G < Fy with (G,0) € 9,,} < ¢/4, for all k € N.
(b) o # oy, for every k e N.
(¢) 0 Aok &0 Aoy forall keN.

We shall prove the following. For every k, there exists Gy < Fj, such that the following hold:

(d) |Gr(zr)] > c/2.

(e) |o A ok| < min(Gy, o).

Combining (b), (c), (d) and (e), we conclude that the assumptions of Lemma 3.10 are satisfied, which
proves the desired result, in case 1.

Set Gf = {17 € F, : 0, AT =0 A T}. Proposition 2.15 and Lemma 2.13 yield that (G},0) € 4,,. Setting
F] = F,\GY, property (a) yields that |F} (zx)| > 3¢/4.

Set Gi, = {7 € F| : o), AT = 0 A 7}. Once more, Proposition 2.15 yields that (G}, 0x) € %,,, however
Lemma 2.14 yields that G}, € G,,,—1 and therefore, by (iii) we have that |G} (zr)| < ¢/4.

Set Gy, = FJ\G},. Then we have that |Gx(zx)| > ¢/2, i.e. (d) holds.

We will show that (e) also holds. By Corollary 2.9, there exists 7 € Gy, with min(Gg,0%) = |ok A 7].
Since 7 ¢ G}, we have that o A T| # |0 A 7.

We will show that |0 A 7| < |o) A 7|. Assume that this is not the case, i.e. |ox A 7| < |0 A 7|. In other
words, oy A T & 0 A 7. This means that 7 € G}, a contradiction.
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We conclude that 0 A 7 & 0 A 7. Lemma 2.7 yields that o A 7 = o A 0. Applying Lemma 2.7 once
more, we conclude that o A oy = 0% A T, L€, |0 A 0| < |0k A 7| = min(Gg, o), which completes the proof
for case 1.

It only remains to treat case 2. Observe, that in this case, we may easily pass to a subsequence of {z},
satisfying the assumptions of Lemma 3.13. This completes the proof. []

Combining Propositions 3.8, 3.9 and 3.15, one obtains the following.

Proposition 3.16. Let {zx}r be a normalized weakly null sequence in Xono. Then {xi}r has a subsequence
that generates an {7 spreading model for every n € N.

Proposition 3.17. The space Xon, is saturated with subspaces of Tsirelson space.

Proof. It is an immediate consequence of Proposition 3.16 that X,x, does not contain a copy of ¢y. By
Proposition 3.3, the spaces X,, are ¢y saturated and therefore, the operators P, : Xoxg — X, are strictly
singular.

We conclude, that in any infinite dimensional subspace Y of X%, ng € N and € > 0, there exists x € Y
with ||| = 1 and |P,z|, < € for n = 1,...,n9. One may easily construct a normalized sequence in Y,
satisfying the assumption of Proposition 3.9, which completes the proof. []

In particular, the previous result yields that neither ¢y nor ¢; embed into Xy, . Using James’ well known
theorem for spaces with an unconditional basis, we conclude the following.

Corollary 3.18. The space Xqx, is reflexive.

Remark 3.19. As is well known (see [2, Lemma 37]), if {x}; is a normalized weakly null sequence in a
Banach space X and x € X, then {x}; admits an ¢; spreading model, if and only if {x} — 2} admits an
{1 spreading model as well. Since Xyx, is reflexive and every normalized weakly null sequence admits an ¢;
spreading model, we conclude that any bounded sequence in Xyx,, without a norm convergent subsequence,
admits an ¢; spreading model. In other words, every spreading model admitted by Xyx,, is either trivial or
equivalent to the usual basis of /7.

4. Spaces admitting £ as a unique spreading model

The purpose of the present section, is to give an outline of the construction, for a given countable ordinal
number «, of a non-separable reflexive space X3y, having the following property. Every normalized weakly
null sequence in X3, has a subsequence that generates an ¢¢ spreading model.

Definition 4.1. Let o be a countable ordinal number. Define || - |z, to be the unique norm on cyo(N) that
satisfies the following implicit formula, for every x € cgo(N):

d
1
|#lz., = maX{lwlom §Sup; EMITQ},

where the supremum is taken over all Ey < --- < Eg4 subsets of the natural numbers with {min E; : i =
1,...,d} € S,.

Define the Tsirelson space of order «, denoted by T, to be the completion of ¢go(N) with the aforemen-
tioned norm.
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The space T, is reflexive and the unit vector basis {e, },, forms a 1-unconditional basis for T,. Moreover,
every normalized weakly null sequence in T, has a subsequence that generates an ¢§ spreading model. For
more details see [4].

Given a countable ordinal number «, we shall construct {G<},, an increasing sequence of families of finite
subsets of {0, 1}, strongly related to {G,},. As before, we first define some auxiliary families 4%, n € N.

Definition 4.2. We define % to be all pairs (F, o), where F = {1;}¢_, € [{0,1}Y]=*, d € N and ¢ € {0, 1},
such that the following are satisfied:

(i) o#7fori=1,...,d.
(i) ornmm#Fandifd>1,thenoc AT EoATRE - &0 AT
(iii) {loanm|: i=1,...,d} € S,.

Define min(F, o) = |o A 71| and max(F, o) = |o A 74l-

Assume that n € N, % have been defined for k < n and that for (F,0) € 42, min(F, o) and max(F, o)
have also been defined.

Definition 4.3. Let (F},0;)¢_,, d € N be a finite sequence of elements of 4% and o € {0, 1}.
We say that (F;,0;)%, is a skipped branching of o in 4, if the following are satisfied:

(i) The F;,i =1,...,d are pairwise disjoint.

(ii) o #o0; fori=1,...,d.

(iii) o Anoy #Dandif d > 1, thenoc Ao Z o AT & -+ &0 A Og.
(iv) |o A 05| < min(F;,0;) fori=1,...,d.

(V) {lonoy|: i=1,...,d} € S,.

Definition 4.4. Let o € {0,1}" and (F;, o)L, d € N be a finite sequence of elements of ¥2.
We say that (F;, o), is an attached branching of o in 4 if the following are satisfied:

(i) The F;,i=1,...,d are pairwise disjoint.
(i) If d > 1, then max(F}, o) < min(Fi4q,0), fori=1,...,d —1.
(iti) {min(Fy,0): i=1,...,d} € S,.

We are now ready to define 4%, ;.

Definition 4.5. We define 4, to be all pairs (F,c), where F € [{0,1}"]=% and o € {0, 1}", such that one
of the following is satisfied:

(i) (F,0)e 9>
(ii) There is (F},0;); a skipped branching of o in 4 suclil\that F= U?:l F;.
In this case we say that (F, o) is skipped. Moreover set min(F, o) = |0 A 01| and max(F, o) = |0 A o4].
(iii) There is (F;, )%, an attached branching of o in 4% such that F' = ngl F;.
In this case we say that (F,o) is attached. Moreover set min(F,o) = min(Fy, o) and max(F,o) =
max(Fy, o).

Definition 4.6. For a countable ordinal number o and n € N we define

Gy ={F < {0,1}" : there exists o € {0, 1}" with (F,0) e 92} U {2}
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Remark 4.7. It is clear that for a = 1, 4% = 4,,, for every n € N. Moreover, for a countable ordinal number «,
every result stated for ¢, up to Proposition 2.15, holds also for ¢% and the proofs are identical. On the
other hand, if for n € N we denote by SJ the convolution of S, with itself n times, Proposition 2.18 can be
restated as follows.

Proposition 4.8. Let a be a countable ordinal number. Then for every B infinite subset of {0, 1} there exists
a one to one map ¢ : N — B with ¢(F) € G% for every F € S and n € N.

Theorem 2.20 takes the following form and the proof uses the compactness of S, and Corollary 2.12.

Theorem 4.9. Let o be a countable ordinal number and n € N. Then G is an a-large, hereditary and compact
family of finite subsets of {0, 1}V.

In order to define the desired space X2y, , one takes the same steps as in the previous section. All proofs
are identical.

Definition 4.10. For o a countable ordinal number and n € N define a norm on cp(2%°) in the following

manner:

(i) For n € N, we may identify an F' € G with a linear functional F : coo(2%°) — R in the following
manner. For z = 3. _x, Aceg € coo(2%0)

F(z) =) A,

TeEF

(ii) For z € cgo(2%0) define
[z|s = sup{|F(x)| :Fe gg}

Set X2 to be the completion of (cgo(2%0), | - [2).

n

Definition 4.11. Define the following norm on cgo(2%°). For € cgo(2%0)

0

1
3 pellelen

n=1

=] =

To

Set XSy, to be the completion of (coo(280), | - ).

Theorem 4.12. The space Xy, is a non-separable reflexive space with a suppression unconditional Schauder
basis with the length of the continuum, having the following property. Every normalized weakly null sequence
in X9, has a subsequence that generates an ({ spreading model.
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