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The notion of α-large families of finite subsets of an infinite set is defined for every
countable ordinal number α, extending the known notion of large families. The
definition of the α-large families is based on the transfinite hierarchy of the Schreier
families Sα, α ă ω1. We prove the existence of such families on the cardinal number
2ℵ0 and we study their properties. As an application, based on those families we
construct a reflexive space Xα

2ℵ0 , α ă ω1 with density the continuum, such that
every bounded non-norm convergent sequence txkuk has a subsequence generating
�α1 as a spreading model.

© 2014 Published by Elsevier B.V.

0. Introduction

One of the most significant examples of Banach spaces is Tsirelson space (see [7,14]), presented in the
nineteen seventies. The main property of this space, is that it fails to contain a copy of c0 or �p, answering
in the negative a problem posed by Banach. It is still an open problem whether there exist Tsirelson type
spaces in the non-separable setting. A version of this problem has recently been solved in the negative
direction in [10], namely it was shown that spaces spanned by an uncountable basic sequence such that
their norm satisfies an implicit formula, similar to the one of Tsirelson space (see [7]), always contain a copy
of c0 or �p. To be more precise, if κ is an uncountable ordinal number, B is a hereditary and compact family
of finite subsets of κ, 0 ă θ ă 1 is a real number, and } ¨ }θ,B is the unique norm defined on c00pκq satisfying
the following implicit formula
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}x}θ,B “ max
#

}x}8, sup
#

θ
n
ÿ

i“1
}Eix}θ,B : tEiu

d
i“1 is B-admissible

++

then the completion of pc00pκq, } ¨ }θ,Bq contains a copy of c0 or �p.
As it seems not possible to have a non-separable space, that strongly resembles Tsirelson space, a natural

question is which properties of this space can be transferred to the non-separable setting. Besides being
reflexive, one of the main properties of Tsirelson space, is that it admits only �1 as a spreading model,
i.e. every bounded sequence without a norm convergent subsequence has a subsequence that generates a
spreading model equivalent to the usual basis of �1. The main purpose of this paper is the construction of
a non-separable reflexive Banach space X2ℵ0 , with the aforementioned property.

Theorem. There exists a reflexive Banach space X2ℵ0 generated by an unconditional basic sequence teξuξă2ℵ0 ,
admitting only �1 as a spreading model.

The construction of this space is based on the notion of α-large families, which is defined as follows. If A
is an infinite set, B is a hereditary and compact family of finite subsets of A and α is a countable ordinal
number, we say that B is α-large, if its restriction on every infinite subset of A, in a certain sense, contains
a copy of Sα, the Schreier family of order α. Equivalently, if its restriction on every infinite subset of A, has
Cantor–Bendixson index, greater than or equal to ωα ` 1. We prove the existence of such families on the
cardinal number 2ℵ0 , by constructing for α ă ω1, Gα an α-large, hereditary and compact family of finite
subsets of t0, 1uN. We believe that these families are of independent interest, as they retain some of the
most important properties of the families Sα, α ă ω1. They are therefore a generalization of the Schreier
families, defined on the continuum and a study of them is included in the paper.

In the first section of the paper, we define the notion of α-large families of finite subsets of an infinite set
and a brief study of them is given.

The second section is devoted to the construction of the families tGαuαăω1 . Initially, using the Schreier
family S1 and diagonalization, we recursively define some auxiliary families Gα, α ă ω1, which are subsets
of rt0, 1uNsăω ˆ t0, 1uN. The construction method used, imposes strong Schreier like properties on the
families Gα, which are in fact the projection of Gα, on the component rt0, 1uNsăω. Next, properties of these
families, which are crucial for the proof of the main result are included, among others, the fact that for
α ă ω1, Gα is an α-large, compact and hereditary family of finite subsets of t0, 1uN. Some additional results
concerning the similarity of the Gα to the Sα, α ă ω1 are proven.

The third section is concentrated on the construction of the space X2ℵ0 . The first step is the definition
of a sequence of spaces tpXn, } ¨ }nqun, each one based on the family Gn. In particular, the norm of these
spaces is defined on c00p2ℵ0q in a similar manner as the norm of Schreier space is defined on c00pNq (see
[12]) and they all have the unit vector basis teξuξă2ℵ0 as an unconditional Schauder basis. For n P N, the
main two properties of the space Xn are the following. Firstly, every subsequence of the basis admits only
�1 as a spreading model and secondly the space Xn is c0 saturated. Next, using the spaces Xn, n P N and
Tsirelson space T , a norm is defined on c00p2ℵ0q, in the following manner. For x P c00p2ℵ0q, set

}x} “

›

›

›

›

›

8
ÿ

n“1

1
2n }x}nen

›

›

›

›

›

T

.

The completion of c00p2ℵ0q with this norm is the desired space X2ℵ0 , which has the unit vector basis teξuξă2ℵ0

as an unconditional Schauder basis. The proof of the fact that this space admits only �1 as a spreading
model, relies on the study of the behavior of the } ¨ }n norms on a normalized weakly null sequence txkuk

in X2ℵ0 . Moreover, using the fact that the spaces Xn are c0 saturated, we prove that every subspace of X2ℵ0

contains a copy of a subspace of T , which yields that the space is reflexive.
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The fourth, and final, section concerns the construction, for α ă ω1, of reflexive spaces Xα
2ℵ0 having an

unconditional Schauder basis with size 2ℵ0 , admitting �α1 as a unique spreading model. The construction
method used is a variation of the one used for the space X2ℵ0 .

1. α-Large families

We introduce the notion of α-large families which concerns the complexity of a family B of finite subsets of
a given infinite set A. This notion extends the well known concept of large families and it is defined using the
transfinite hierarchy of the Schreier families tSαuαăω1 , first introduced in [1]. After providing the definition
of α-large families we also give a useful characterization linking this notion with the Cantor–Bendixson
index of a compact and hereditary family of finite subsets of a given infinite set.

Notation. Let A be a set, B be a family of subsets of A, B be a subset of A and k be a natural number. We
define

rBs
k

“ tF Ă B : #F “ ku

and

B æ B “ tF P B : F Ă Bu.

If F is a family of subsets of the natural numbers, L is an infinite subset of N and φ : N Ñ L is the
uniquely defined order preserving bijection, we define

FrLs “
�

φpF q : F P F
(

.

Definition 1.1. Let A be an infinite set and B a family of finite subsets of A.

(i) We say that B is large, if for every k P N, and B infinite subset of A, we have that rBsk X B ‰ ∅.
(ii) Given a countable ordinal number α, we say that B is α-large, if for every B infinite subset of A, there

exists a one to one map φ : N Ñ B, such that φpF q P B, for every F P Sα.

Remark 1.2. Using Ramsey theorem and a simple diagonalization argument, it is easy to see that B is large,
if and only if it is 1-large.

The following lemma is an easy consequence of Theorem 1 from [8].

Lemma 1.3. Let F , G be hereditary and compact families of finite subsets of the natural numbers, such that
for every L infinite subset of the natural numbers, the Cantor–Bendixson index of F æ L, is strictly smaller
than the Cantor–Bendixson index of G æ L. Then for every M infinite subset of the natural numbers, there
exists L a further infinite subset of M , such that F æ L Ă G æ L.

Proposition 1.4. Let A be an infinite set, B be a hereditary and compact family of finite subsets of A and α

be a countable ordinal number. Then, the following assertions are equivalent:

(i) B is α-large.
(ii) For every B infinite subset of A, the Cantor–Bendixson index of B æ B is greater than or equal to

ωα ` 1.
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Proof. Given that (i) holds, (ii) is an immediate consequence of the fact that the Cantor–Bendixson index
of Sα is equal to ωα ` 1 for every countable ordinal number α (see Proposition 4.10 from [1]).

For the converse, we may clearly assume that B is a hereditary and compact family of finite subsets of
the natural numbers. For a given countable ordinal α, if (ii) holds, we shall prove the following statement.

For every infinite subset of the natural numbers M , there exists L an infinite subset of M , such that
SαrLs Ă B.

The desired result evidently follows from the above. To prove this statement, we distinguish three cases.

Case 1: α “ 1. Assume that for every infinite subset of the natural numbers M , the Cantor–Bendixson
index of B æ M is infinite. This means that every such M contains as subsets elements of B, of
unbounded cardinality. Since B is hereditary, we conclude that it is large and therefore it also is
1-large.

Case 2: α is a limit ordinal number. Then there is tβkuk a strictly increasing sequence of ordinal numbers
with supk βk “ α, such that Sα “

Ť

ktF P Sβk
: minF ě ku.

Using Lemma 1.3, choose L1 Ą ¨ ¨ ¨ Ą Lk Ą ¨ ¨ ¨ infinite subsets of M , such that Sβk
æ Lk Ă B, for all k.

Choose L “ t�1 ă ¨ ¨ ¨ ă �k ă ¨ ¨ ¨u an infinite subsets of M , with �m P Lk, for every m ě k. It is not hard
to check that SαrLs Ă B.

Case 3: α is a successor ordinal number. If α “ β ` 1, then the following holds.

For every M infinite subset of the naturals and n P N, there exists L a further infinite subset of M , such
that pSβ ˚ Anq æ L Ă B, where

Sβ ˚ An “

#

n
ď

i“1
Fi : Fi P Sβ , i “ 1, . . . , n

+

.

The above statement follows form Lemma 1.3 and the fact that the Cantor–Bendixson index of Sβ ˚ An

is equal to ωβn ` 1 ă ωα.
Therefore, given M an infinite subset of the natural numbers, we may choose L1 Ą ¨ ¨ ¨ Ą Ln Ą . . . infinite

subsets of M such that pSβ ˚ Anq æ Ln Ă B.
Choose L “ t�1 ă ¨ ¨ ¨ ă �n ă ¨ ¨ ¨u an infinite subsets of M , with �m P Ln, for every m ě n. Once more,

it is not hard to check that SαrLs Ă B. l

2. A transfinite sequence of compact and hereditary families of finite subsets of t0, 1uN

In this section we define a transfinite sequence Gα, α ă ω1 of compact and hereditary families of finite
subsets of t0, 1uN with each Gα being α-large for α ă ω1. We shall first recursively define an auxiliary
transfinite sequence tGαuαăω1 of subsets of rt0, 1uNsăω ˆ t0, 1uN, which will then be used to define the Gα

for α ă ω1. We then prove the main properties of these families and we conclude this section by showing
the Gα have some similar properties to the Schreier families Sα.

Notation. For σ “ tσpiqu8
i“1 and τ “ tτpiqu8

i“1 in t0, 1uN, we define σ ^ τ and |σ ^ τ | as follows:

(i) σ ^ τ “ σ and |σ ^ τ | “ 8, if σ “ τ .
(ii) σ ^ τ “ ∅ and |σ ^ τ | “ 0, if σp1q ‰ τp1q.
(iii) σ ^ τ “ tσpiqu�i“1 and |σ ^ τ | “ �, if σ ‰ τ, σp1q “ τp1q and � “ minti P N : σpi ` 1q ‰ τpi ` 1qu.



S.A. Argyros, P. Motakis / Topology and its Applications 172 (2014) 47–67 51
For s “ tspiquki“1 and t “ ttpiqu�i“1 finite sequences of 0’s and 1’s, we say that s is an initial segment of t
and write s Ď t, if k ď � and spiq “ tpiq for i “ 1, . . . , k. We say that s is a proper initial segment of t and
write s Ł t, if s Ď t and s ‰ t.

Definition 2.1. We define G1 to be all pairs pF, σq, where F “ tτiu
d
i“1 P rt0, 1uNsăω, d P N and σ P t0, 1uN,

such that the following are satisfied:

(i) σ ‰ τi for i “ 1, . . . , d.
(ii) σ ^ τ1 ‰ ∅ and if d ą 1, then σ ^ τ1 Ł σ ^ τ2 Ł ¨ ¨ ¨ Ł σ ^ τd.
(iii) d ď |σ ^ τ1|.

Define ĄminpF, σq “ |σ ^ τ1| and ĄmaxpF, σq “ |σ ^ τd|.

Assume that α is a countable ordinal number, Gβ have been defined for β ă α and that for pF, σq P Gβ ,
ĄminpF, σq and ĄmaxpF, σq have also been defined.

Definition 2.2. Let β ă α, pFi, σiq
d
i“1, d P N be a finite sequence of elements of Gβ and σ P t0, 1uN.

We say that pFi, σiq
d
i“1 is a skipped branching of σ in Gβ , if the following are satisfied:

(i) The Fi, i “ 1, . . . , d are pairwise disjoint.
(ii) σ ‰ σi for i “ 1, . . . , d.
(iii) σ ^ σ1 ‰ ∅ and if d ą 1, then σ ^ σ1 Ł σ ^ σ2 Ł ¨ ¨ ¨ Ł σ ^ σd.
(iv) |σ ^ σi| ă ĄminpFi, σiq for i “ 1, . . . , d.
(v) d ď |σ ^ σ1|.

Definition 2.3. Let β ă α, σ P t0, 1uN and pFi, σqdi“1, d P N be a finite sequence of elements of Gβ .
We say that pFi, σqdi“1 is an attached branching of σ in Gβ if the following are satisfied:

(i) The Fi, i “ 1, . . . , d are pairwise disjoint.
(ii) If d ą 1, then ĄmaxpFi, σq ă ĄminpFi`1, σq, for i “ 1, . . . , d ´ 1.
(iii) d ď ĄminpF1, σq.

We are now ready to define Gα, distinguishing two cases.

Definition 2.4. If α is a successor ordinal number with α “ β ` 1, we define Gα to be all pairs pF, σq, where
F P rt0, 1uNsăω and σ P t0, 1uN, such that one of the following is satisfied:

(i) pF, σq P Gβ .
(ii) There is pFi, σiq

d
i“1 a skipped branching of σ in Gβ such that F “

Ťd
i“1 Fi.

In this case we say that pF, σq is skipped. Moreover set ĄminpF, σq “ |σ ^ σ1| and ĄmaxpF, σq “ |σ ^ σd|.
(iii) There is pFi, σqdi“1 an attached branching of σ in Gβ such that F “

Ťd
i“1 Fi.

In this case we say that pF, σq is attached. Moreover set ĄminpF, σq “ ĄminpF1, σq and ĄmaxpF, σq “

ĄmaxpFd, σq.

If α is a limit ordinal number, fix tβnun a strictly increasing sequence of ordinal numbers with supn βn “ α.
We define

Gα “

8
ď

�

pF, σq P Gβn
: ĄminpF, σq ě n

(

.

n“1
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Remark 2.5. If α is a limit ordinal number, the sequence tβnun may be chosen in such a manner that the
following are satisfied:

Gα “

8
ď

n“1

�

pF, σq P Gβn
: ĄminpF, σq ě n

(

and

Sα “

8
ď

n“1
tF P Sβn

: minF ě nu.

From now on, we shall assume that this is the case.

Remark 2.6. Translating Definitions 2.1, 2.2, 2.3 and 2.4 one obtains the following:

(i) If pF, σq P G1, then #F ď ĄminpF, σq.
(ii) If pF, σq P Gβ`1 and pFi, σiq

d
i“1 is a skipped branching of σ in Gβ such that F “

Ťd
i“1 Fi, then we have

that d ď ĄminpF, σq.
(iii) If pF, σq P Gβ`1 and pFi, σqdi“1 is an attached branching of σ in Gβ such that F “

Ťd
i“1 Fi, then we

have that d ď ĄminpF, σq.

We now proceed to prove some key properties of the families Gα.

Lemma 2.7. Let σ, σ1, τ P t0, 1uN, not all equal. The following are equivalent:

(i) σ ^ τ Ł σ ^ σ1.
(ii) σ ^ τ “ σ1 ^ τ .

Proof. Assume that (i) holds. We have that τpjq “ σpjq “ σ1pjq, for j “ 1, . . . , |σ ^ τ |. Whereas, for
j “ |σ ^ τ | ` 1, we have that τpjq ‰ σpjq “ σ1pjq. Therefore, |σ1 ^ τ | “ |σ ^ τ |, which means that
σ ^ τ “ σ1 ^ τ .

The inverse is proved similarly. l

Lemma 2.8. Let α be a countable ordinal number and pF, σq P Gα. Then there exist τm, τM in F such that
the following are satisfied:

(i) ĄminpF, σq “ |σ ^ τm| and ĄmaxpF, σq “ |σ ^ τM |.
(ii) For τ P F we have that σ ^ τm Ď σ ^ τ Ď σ ^ τM .

Moreover, if α is a successor ordinal number with α “ β ` 1 the following hold:

(iii) If pF, σq is skipped and pFi, σiq
d
i“1 is a skipped branching of σ in Gβ such that F “

Ťd
i“1 Fi, then for

i “ 1, . . . , d and τ P Fi, we have that σ ^ σi “ σ ^ τ .
(iv) If pF, σq is attached and pFi, σqdi“1 is an attached branching of σ in Gβ such that F “

Ťd
i“1 Fi, then

for 1 ď i ă j ď d and τ1 P Fi, τ2 P Fj, we have that σ ^ τ1 Ł σ ^ τ2.

Proof. We prove this lemma by transfinite induction. For α “ 1 the desired result follows immediately from
the definition of G1. Assume now that α is a countable ordinal number and that the statement holds for
every pF, σq P Gβ , for every β ă α. If α is a limit ordinal number, then the result follows trivially from the
inductive assumption and the definition of Gα. Assume therefore that α “ β ` 1 and let pF, σq P Gα.
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We treat first the case when pF, σq is skipped. Let pFi, σiq
d
i“1 be a skipped branching of σ in Gβ , such

that F “
Ťd

i“1 Fi.
We first prove part (iii), i.e. for τ P Fi, we have that σ ^ σi “ σ ^ τ , i “ 1, . . . , d.
By the inductive assumption, there exists τ im P Fi such that ĄminpFi, σiq “ |σ1 ^ τ im| and for every τ P Fi

we have that σi ^ τ im Ď σi ^ τ .
Since, by definition, |σ ^ σi| ă ĄminpFi, σiq “ |σi ^ τ im| ď |σi ^ τ |, it follows that σ ^ σi Ł σi ^ τ and by

Lemma 2.7 σ ^ σi “ σ ^ τ .
Choosing any τm P F1 and τM P Fd, it is easy to see that (i) and (ii) are satisfied.
Assume now that pF, σq is attached. Let pFi, σqdi“1 be an attached branching of σ in Gβ , such that

F “
Ťd

i“1 Fi.
By the inductive assumption, there exist τ im, τ iM P Fi such that ĄminpFi, σq “ |σ ^ τ im|, ĄmaxpFi, σq “

|σ ^ τ iM | and for every τ P Fi we have that σ ^ τ im Ď σ ^ τ Ď σ ^ τ iM .
We will show that for 1 ď i ă j ď d, we have that σ ^ τ iM Ł σ ^ τ jm. This proves both (iv) and that

τm “ τ1
m, τM “ τdM have the desired properties.

However, this follows immediately from the fact that |σ^ τ iM | “ ĄmaxpFi, σq ă ĄminpFj , σq “ |σ^ τ jm|. l

The following result is an immediate consequence of Lemma 2.8.

Corollary 2.9. Let α be a countable ordinal number and pF, σq P Gα. Then the following hold:

(i) ĄminpF, σq “ mint|σ ^ τ | : τ P F u.
(ii) ĄmaxpF, σq “ maxt|σ ^ τ | : τ P F u.

Corollary 2.10. Let α be a countable ordinal number and pF, σq P Gα, such that #F ě 2. Then

ĄminpF, σq ď min
�

|τ1 ^ τ2| : τ1, τ2 P F with τ1 ‰ τ2
(

.

Proof. Let τ1 ‰ τ2 be in F . By Lemma 2.8, there exists τm P F , such that ĄminpF, σq “ |σ ^ τm| and
σ ^ τm Ď σ ^ τ1 as well as σ ^ τm Ď σ ^ τ2. It follows that σ ^ τm Ď τ1 ^ τ2. We conclude that ĄminpF, σq ď

|τ1 ^ τ2|. l

Lemma 2.11. Let α be a countable ordinal number and pF, σq P Gα, such that #F ě 2. Then there exists
σ1 P t0, 1uN, such that pF, σ1q P Gα and

Ąmin
`

F, σ1
˘

“ min
�

|τ1 ^ τ2| : τ1, τ2 P F with τ1 ‰ τ2
(

.

Proof. We prove this lemma by transfinite induction on α. Assume that α “ 1, pF, σq P G1, such that #F ě 2
and F “ tτiu

d
i“1, d ě 2 such that the assumptions of Definition 2.1 are satisfied. Then σ^τ1 Ł σ^τ2 and by

Lemma 2.7 we have that σ ^ τ1 “ τ1 ^ τ2. We conclude that ĄminpF, σq “ |σ ^ τ1| “ |τ1 ^ τ2|. Corollary 2.10
yields that ĄminpF, σq “ mint|τ1 ^ τ2| : τ1, τ2 P F with τ1 ‰ τ2u and hence, the desired σ1 is σ itself.

Assume now that α is a countable ordinal number and that the conclusion holds for every β ă α.
If α is a limit ordinal number, choose tβnun a strictly increasing sequence of ordinal numbers with

supn βn “ α, such that the assumptions of Definition 2.4 are satisfied. Let pF, σq P Gα with #F ě 2. Then
there is n P N such that pF, σq P Gβn

and ĄminpF, σq ě n. Corollary 2.10 yields the following:

min
�

|τ1 ^ τ2| : τ1, τ2 P F with τ1 ‰ τ2
(

ě n. (1)

By the inductive assumption, there exists σ1 P t0, 1uN with pF, σ1q P Gβn
and ĄminpF, σ1q “ mint|τ1 ^ τ2| :

τ1, τ2 P F with τ1 ‰ τ2u. By (1) we have that ĄminpF, σ1q P Gα.
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Assume now that α is a successor ordinal number with α “ β ` 1 and let pF, σq P Gα with #F ě 2. If
pF, σq P Gβ , then the inductive assumption yields the desired result. If this is not the case, then pF, σq is
either skipped, or attached. If it is attached, then there is pFi, σiq

d
i“1 an attached branching of σ, such that

F “
Ťd

i“1 Fi. If d “ 1, then pF, σ1q P Gβ and by the inductive assumption we are done. Otherwise, choose
τ1 P F1, τ2 P F2. Lemma 2.8(iii) yields that σ ^ τ1 “ σ ^ σ1 Ł σ ^ σ2 “ σ ^ τ2 and by Lemma 2.7 we have
that σ ^ τ1 “ τ1 ^ τ2. We conclude that ĄminpF, σq “ |σ ^ σ1| “ |σ ^ τ1| “ |τ1 ^ τ2| and therefore, applying
Corollary 2.10 we have that σ is the desired σ1.

If on the other hand pF, σq is attached, using similar reasoning, Lemma 2.8(iv) and Corollary 2.9, we
conclude the desired result. l

Corollary 2.12. Let tpFk, σkquk be a sequence in
Ť

βăω1
Gβ with tĄminpFk, σkquk tending to infinity. Then, if

F is an accumulation point of tFkuk, we have that #F ď 1.

Proof. Let F be an accumulation point of tFkuk, and assume that there are τ1 ‰ τ2 in F . Then there exists
L an infinite subset of the natural numbers, such that τ1, τ2 P Fk, for every k P L. Corollary 2.10 yields that
|τ1 ^ τ2| ě ĄminpFk, σkq, for all k P L. We conclude that |τ1 ^ τ2| “ 8, i.e. τ1 “ τ2, a contradiction. l

The following two lemmas will both be useful in the sequel.

Lemma 2.13. Let α be a countable ordinal number and pF, σq P Gα. Let also σ1 P t0, 1uN, such that σ1 ^ τ “

σ ^ τ for all τ P F . Then the following hold:

(i) pF, σ1q P Gα.
(ii) ĄminpF, σ1q “ ĄminpF, σq and ĄmaxpF, σ1q “ ĄmaxpF, σq.

Proof. We prove this lemma by transfinite induction. The case α “ 1 follows easily from the definition
of G1. Assume now that the result holds for every β ă α. The case where α is a limit ordinal number is
trivial, assume therefore that α “ β ` 1 and let pF, σq P Gα, σ1 P t0, 1uN such that the assumptions of the
lemma are satisfied. Notice that it is enough to show that (i) is true, since part (ii) of the conclusion follows
immediately from (i) and Corollary 2.9.

We treat first the case when pF, σq is skipped, i.e. there exists pFi, σiq
d
i“1 a skipped branching of σ in Gβ ,

with F “
Ťd

i“1 Fi. To show that pF, σ1q P Gα, it suffices to show that pFi, σiq
d
i“1 is a skipped branching

of σ1.
Notice that it is enough to show that σ^σi “ σ1 ^σi for i “ 1, . . . , d, which, by Lemma 2.7, is equivalent

to σ ^ σi Ł σ ^ σ1 for i “ 1, . . . , d.
Fix 1 ď i ď d and chose τ P Fi. Lemma 2.8(iii) yields that σ^σi “ σ^τ “ σ1 ^τ . Once more, Lemma 2.7

yields that σ ^ σi “ σ ^ τ Ł σ ^ σ1.
Assume now that pF, σq is attached, i.e. there exists pFi, σqdi“1 an attached branching of σ in Gβ , with

F “
Ťd

i“1 Fi. Since, by the inductive assumption, the conclusion holds for the pFi, σq, i “ 1, . . . , d, σ1, it is
straightforward to check that pFi, σ

1qdi“1 an attached branching of σ1 in Gβ and therefore pF, σ1q P Gα. l

Lemma 2.14. Let pF, σq P
Ť

βăω1
Gβ and σ1 P t0, 1uN such that σ ^ τ Ł σ1 ^ τ for all τ P F . Then, if

α “ mintβ : pF, σq P Gβu, α is not a limit ordinal number and the following hold:

(i) If α “ 1, then #F “ 1.
(ii) If α “ β ` 1, then there exists σ2 P t0, 1uN with pF, σ2q P Gβ.

Proof. The fact that α is not a limit ordinal number follows trivially from Definition 2.4. The case α “ 1
is easy, we shall therefore only prove the case α “ β ` 1. Since pF, σq R Gβ , it is either skipped or attached.
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Assume first that there is pFi, σiq
d
i“1 a skipped branching of σ in Gβ with F “

Ťd
i“1 Fi. If d “ 1,

then σ2 “ σ1 is evidently the desired element of t0, 1uN. We will therefore prove that d “ 1. Towards a
contradiction, assume that d ě 2 and choose τ1 P F1, τ2 P F2.

Lemma 2.8(iii) yields that σ ^ τ1 “ σ ^ σ1 Ł σ ^ σ2 “ σ ^ τ2. By the assumption, σ ^ τ1 Ł σ1 ^ τ1 and
using Lemma 2.7 we conclude that σ ^ τ1 “ σ ^ σ1. Similarly, we conclude that σ ^ τ2 “ σ ^ σ1. We have
shown that σ ^ σ1 Ł σ ^ σ1, which is absurd.

If pF, σq is attached, then using similar arguments and Lemma 2.8(iv), one can prove the desired re-
sult. l

Proposition 2.15. Let α be a countable ordinal number, pF, σq P Gα and G be a non-empty subset of F . Then
pG, σq P Gα.

Proof. We proceed by transfinite induction. For α “ 1 the result easily follows from the definition of G1.
Assume that the statement is true for every β ă α. The case when α is a limit ordinal number is an easy
consequence of the inductive assumption and Corollary 2.9. Assume therefore that α “ β ` 1 and let pF, σq

be in Gα and G Ă F .
Consider first the case, when pF, σq is skipped and pFiq

d
i“1 be a skipped branching of σ in Gβ , such that

F “
Ťd

i“1 Fi.
Set ti1 ă ¨ ¨ ¨ ă ipu “ ti P t1, . . . , du : G X Fi ‰ ∅u and Gj “ G X Fij for j “ 1, . . . , p. By the inductive

assumption, pGj , σij q is in Gβ for j “ 1, . . . , p and, evidently, it is enough to show that pGj , σij q
p
j“1 is a

skipped branching of σ.
Obviously, assumptions (i), (ii) and (iii) from Definition 2.2 are satisfied.
Corollary 2.9 yields that ĄminpFij , σij q ď ĄminpGj , σij q and hence (iv) is satisfied. Moreover p ď d ď

|σ ^ σ1| ď |σ ^ σi1 |, which means that (v) is also satisfied.
If on the other hand pF, σq is attached, using similar reasoning and Corollary 2.9, the desired result can

be easily proven. l

We are now ready to define the families Gα, for α ă ω1 and prove their main properties.

Definition 2.16. For a countable ordinal number α we define

Gα “
�

F Ă t0, 1u
N : there exists σ P t0, 1u

N with pF, σq P Gα

(

Y t∅u.

Remark 2.17. It is clear that tGnunăω is an increasing family of finite subsets of t0, 1uN. Proposition 2.15
also yields that Gα is hereditary for all α ă ω1.

Proposition 2.18. Let α be a countable ordinal number. Then Gα is α-large. In particular, for every B infinite
subset of t0, 1uN there exists a one to one map φ : N Ñ B with φpF q P Gα for every F P Sα and α ă ω1.

Proof. Let B be an infinite subset of t0, 1uN. Choose tτkuk pairwise disjoint elements of B and σ P t0, 1uN,
with limk τk “ σ, such that σ ^ τk Ł σ ^ τk`1 for all k P N. Define φ : N Ñ B, with φpkq “ τk.

We shall inductively prove that for every α ă ω1 and F P Sα, the following hold:

(i) pφpF q, σq P Gα.
(ii) ĄminpφpF q, σq “ |σ ^ τmin F | and ĄmaxpφpF q, σq “ |σ ^ τmax F |.

The case α “ 1 can be easily derived from the definition of G1. Assume now that α is a countable ordinal
number and that the statement is true for every F P Sβ and β ă α.
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We treat first the case when α is a limit ordinal number. Choose tβnun a strictly increasing sequence of
ordinal numbers with supn βn “ α, such that

Gα “

8
ď

n“1

�`

G, σ1
˘

P Gβn
: Ąmin

`

G, σ1
˘

ě n
(

as well as

Sα “

8
ď

n“1
tF P Sβn

: minF ě nu.

Then, if F P Sα, there exists n P N with F P Sβn
and minF ě n. The inductive assumption yields that

pφpF q, σq P Gβn
and ĄminpφpF q, σq “ |σ ^ τmin F | ě minF ě n. We conclude that pφpF q, σq P Gα and, of

course, ĄminpφpF q, σq “ |σ ^ τmin F |.
Assume now that α “ β ` 1 and let F P Sα. Then there exist minF ď F1 ă ¨ ¨ ¨ ă Fd in Sβ with

F “
Ťd

i“1 Fi.
The inductive assumption yields that pφpFiq, σqdi“1 is an attached branching of σ in Gβ and hence

pφpF q, σq P Gα.
Moreover, ĄminpφpF q, σq “ ĄminpφpF1q, σq “ |σ ^ τmin F1 | “ |σ ^ τmin F |. Similarly, we conclude that

ĄmaxpφpF q, σq “ |σ ^ τmax F |. l

Remark 2.19. With a little more effort, it can be proven that for α ă ω1, Gα is not α`1-large. In particular,
there does not exist a one to one map φ : N Ñ t0, 1uN, such that φpF q P Gα, for every F P Sα`1. To be
even more precise, for every A infinite subset of t0, 1uN, there exists B a countable subset of A, such that
the Cantor–Bendixson index of Gα æ B is equal to ωα ` 1 for all α ă ω1. Since we do not make use of this
fact, we omit the proof.

The main result concerning the families Gα, α ă ω1 is the following.

Theorem 2.20. Let α be a countable ordinal number. Then Gα is an α-large, hereditary and compact family
of finite subsets of t0, 1uN.

Proof. All we need to prove, is that Gα is compact and we do so by transfinite induction. Let us first treat
the case α “ 1 and assume F is in the closure of G1.

If F is finite, since G1 is hereditary, then F P G1. It is therefore sufficient to show that F cannot be
infinite. Since G1 is hereditary, we may assume that F is countable and let tτi : i P Nu be an enumeration
of F .

We conclude, that setting Fk “ tτi : i “ 1, . . . , ku, then Fk P G1 and #Fk “ k. Choose tσkuk a sequence
in t0, 1uN such that pFk, σkq P G1 for all k.

Remark 2.6 yields that k ď ĄminpFk, σkq for all k. On the other hand, by Corollary 2.10 we have that
ĄminpFk, σkq ď |τ1 ^ τ2|. We conclude that k ď |τ1 ^ τ2| for all k P N, which is obviously not possible.

Assuming now that α is a countable ordinal number such that Gβ is compact for every β ă α, we will
show that the same is true for Gα.

We treat first the case in which α is a limit ordinal number. Fix tβnun a strictly increasing sequence of
ordinal numbers with supn βn “ α such that

Gα “

8
ď

�

pF, σq P Gβn
: ĄminpF, σq ě n

(

.

n“1
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Let F be in the closure of Gα. As previously, if F is finite then it is in Gα and it is therefore enough to
show that F cannot be infinite. Once more, we may assume that F “ tτi : i P Nu. Setting Fk “ tτ1, . . . , τku,
we have that Fk P Gα, therefore there exists tσkuk, with pFk, σkq P Gα.

Using Corollary 2.10 we have that ĄminpFk, σkq ď |τ1 ^ τ2| “ d. In other words, pFk, σkq P Gβnk
, with

nk ď d for all k. Passing, if necessary, to a subsequence, we have that pFk, σkq P Gβn0
, for all k. We conclude

that F P Gβn0
, in other words Gβn0

is not compact, which is absurd.
Assume now that α “ β ` 1. Let F be in the closure of Gα. As previously, it is enough to show that F

cannot be infinite. Once more, we may assume that F “ tτi : i P Nu.
Set Fk “ tτi : i “ 1, . . . , ku, for all k. Then Fk P Gα, i.e. there exists σk such that pFk, σkq P Gα. Setting

d “ |τ1 ^ τ2|, Corollary 2.10, yields the following:

ĄminpFk, σkq ď d for all k. (2)

By Definition 2.4, Remark 2.6 and (2), for every k P N, there exist tF k
j u

mk
j“1 pairwise disjoint sets in Gβ ,

with Fk “
Ťmk

j“1 F
k
j and mk ď d. Passing to a subsequence, we may assume that mk “ m, for all k.

By the compactness of Gβ , we may pass to a further subsequence and find G1, G2, . . . , Gm P Gβ , such
that limk F

k
j “ Gj , for j “ 1, . . . ,m.

We conclude that F “ limk Fk “ limkp
Ťm

j“1 F
k
j q “

Ťm
j“1 Gj . Since

Ťm
j“1 Gj is a finite set, this cannot be

the case. l

Although the initial motivation behind the definition of the Gα families was the construction of a non-
separable reflexive space with �1 as a unique spreading model, we believe that they are of independent
interest, as they retain many of the properties of the families Sα. They are therefore a version of these
families, defined on the Cantor set t0, 1uN. We present a few more properties the Gα have in common with
the Sα.

Lemma 2.21. Let α ă β be countable ordinal numbers. Then there exists n P N such that
�

pF, σq P Gα : ĄminpF, σq ě n
(

Ă Gβ .

Proof. Fix α a countable ordinal number. We prove this proposition by means of transfinite induction,
starting with β “ α ` 1. In this case the result follows from the definition of Gβ , for n “ 1.

Assume now that β is a countable ordinal number with α ă β, such that the statement holds for every
α ă γ ă β. If β “ γ ` 1, by the inductive assumption, there exists n P N, such that tpF, σq P Gα :
ĄminpF, σq ě nu Ă Gγ . Evidently, we also have that tpF, σq P Gα : ĄminpF, σq ě nu Ă Gβ .

If β is a limit ordinal number, fix tβkuk a strictly increasing sequence of ordinal numbers, such that
β “ limk βk and

Gβ “
ď

k

�

pF, σq P Gβk
: ĄminpF, σq ě k

(

.

Choose k0 P N with α ă βk0 . By the inductive assumption, there exists m P N, such that tpF, σq P Gα :
ĄminpF, σq ě mu Ă Gβk0

. Setting n “ maxtk0,mu, we have the desired result. l

Lemma 2.22. Let α ă β be countable ordinal numbers. Then there exists n P N Y t0u such that Gα Ă Gβ`n.

Proof. Fix β a countable ordinal number. We proceed by transfinite induction on α. In the case α “ 1,
it is easily checked that G1 Ă Gβ . Assume now that α is a countable ordinal with α ă β, such that the
statement holds for every γ ă α. If α “ γ ` 1, then by the inductive assumption there exists n P N Y t0u

with Gγ Ă Gβ`n. We conclude that Gα Ă Gβ`pn`1q. If α is a limit ordinal, fix tαkuk a strictly increasing
sequence of ordinal numbers, such that α “ limk αk and



58 S.A. Argyros, P. Motakis / Topology and its Applications 172 (2014) 47–67
Gα “
ď

k

�

pF, σq P Gαk
: ĄminpF, σq ě k

(

.

Lemma 2.21 yields that there exists m P N with tpF, σq P Gα : ĄminpF, σq ě mu Ă Gβ . The inductive
assumption, yields that for k “ 1, . . . ,m ´ 1, there exists nk P N Y t0u with Gαk

Ă Gβ`nk
. Setting n “

maxtm,n1, . . . , nm´1u, it can be easily checked that Gα Ă Gβ`n. l

Proposition 2.23. Let α ă β be countable ordinal numbers. Then there exists n P N such that

�

F P Gα : #F ě 2 and min
�

|τ1 ^ τ2| : τ1, τ2 P F, τ1 ‰ τ2
(

ě n
(

Ă Gβ .

Proof. Let α ă β be countable ordinal numbers. Choose n P N such that the conclusion of Lemma 2.21 is
satisfied. We show that this n is the desired natural number. Let F P Gα with #F ě 2 and mint|τ1 ^ τ2| :
τ1, τ2 P F, τ1 ‰ τ2u ě n. Then there exists σ P t0, 1uN with pF, σq P Gα. Lemma 2.11 yields that there exists
σ1 P t0, 1uN such that pF, σ1q P Gα and ĄminpF, σ1q ě n. By the choice of n, we have that pF, σ1q P Gβ , i.e.
F P Gβ . l

The following proposition is an obvious conclusion of Lemma 2.22

Proposition 2.24. Let α ă β be countable ordinal numbers. Then there exists n P NYt0u such that Gα Ă Gβ`n.

The following fact is proven in [10, Proposition 7.4]. If κ is an infinite cardinal number, then there exists
a large, hereditary and compact family of finite subsets of κ, if and only if κ is not ω-Erdős. The following
question arises naturally.

Question. Let κ be an infinite cardinal number which is not ω-Erdős and α be a countable ordinal number.
Does there exist an α-large, hereditary and compact family of finite subsets of κ?

3. The space X2ℵ0

In this section we define the space X2ℵ0 and prove that it is reflexive, has an unconditional Schauder
basis of length the continuum and that it admits only �1 as a spreading model. In the beginning we define a
sequence of non-separable spaces Xn, n P N. Each one is defined using the family Gn in a similar manner as
the Schreier family S1 is used to define the space in [12]. Then the construction of X2ℵ0 is presented, which
combines the spaces Xn and Tsirelson space, using a method first appeared in [6]. In the end the properties
of the space X2ℵ0 are deduced by directly using the structure of the families Gn.

Before proceeding to the definition of the spaces Xn and X2ℵ0 , let us first recall the notion of �α1 spreading
models.

Definition 3.1. Let txkuk be a sequence in a Banach space and α be a countable ordinal number. We say
that txkuk generates an �α1 spreading model, if there exists a constant c ą 0 such that for every F P Sα and
every real numbers tλkukPF the following holds:

›

›

›

›

ÿ

kPF

λkxk

›

›

›

›

ě c
ÿ

kPF

|λk|.

Let us from now on fix a one to one and onto map τ Ñ ξτ from t0, 1uN to the cardinal number 2ℵ0 .
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Definition 3.2. For n P N define a norm on c00p2ℵ0q in the following manner:

(i) For n P N, we may identify an F P Gn with a linear functional F : c00p2ℵ0q Ñ R in the following manner.
For x “

ř

ξă2ℵ0 λξeξ P c00p2ℵ0q

F pxq “
ÿ

τPF

λξτ .

(ii) For x P c00p2ℵ0q define

}x}n “ sup
�ˇ

ˇF pxq
ˇ

ˇ : F P Gn

(

.

Set Xn to be the completion of pc00p2ℵ0q, } ¨ }nq.

Proposition 3.3. Let n P N. Then the following hold:

(i) The space Xn is c0 saturated.
(ii) The unit vector basis teξuξă2ℵ0 is a normalized, suppression unconditional and weakly null basis of Xn,

with the length of the continuum.
(iii) Any subsequence of the unit vector basis admits only �1 as a spreading model.

Proof. To prove (i), notice that since Gn is compact and contains only finite sets, it is scattered. The
main Theorem from [11] yields that CpGnq is c0 saturated. Evidently, the map T : Xn Ñ CpGnq with
TxpF q “ F pxq is an isometric embedding and therefore, Xn is c0 saturated.

Property (ii) follows from the fact that Gn is hereditary and property (iii) is a consequence of the fact
that Gn is 1-large. l

Remark 3.4. For a cardinal number κ and B a compact, hereditary and large family of finite subsets of κ,
one may define a c0 saturated space XB, in the same manner as in Definition 3.2. Then any subsequence
of the unit vector basis teξuξăκ admits only �1 as a spreading model. Therefore the problem of finding a
basic sequence of length κ, admitting only �1 as a spreading model, is reduced to the existence of such a
family B. As it is proven in [10, Proposition 7.4], this is equivalent to κ not being ω-Erdős.

It is also worth noting, that for a given cardinal number κ, it is easy to construct a reflexive space X

with a basis teξuξăκ, having the property that every subspace has a sequence admitting �1 as a spreading
model. As proven in [5,9,13], any space X with an unconditional basis, embeds as a complemented subspace
in a space with a symmetric basis D. As noted in [3], the construction in [5] has the following additional
property. Every subspace of D contains a copy of a subspace of X. One may therefore embed Tsirelson
space T into a space D with a symmetric basis tenun, saturated with subspaces of T . Since this basis is
symmetric, it may naturally be extended to a basis teξuξăκ to define a space X having the desired property.
However, this space also admits spreading models not equivalent to �1. For instance, the basis itself being
symmetric and not equivalent to �1, fails this property.

By T we denote Tsirelson space as defined in [7] and by tenun we denote its usual basis. We are now
ready to define the space X2ℵ0 , using the spaces Xn, Tsirelson space T and a method first appeared
in [6].
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Definition 3.5. Define the following norm on c00p2ℵ0q. For x P c00p2ℵ0q

}x} “

›

›

›

›

›

8
ÿ

n“1

1
2n }x}nen

›

›

›

›

›

T

.

Set X2ℵ0 to be the completion of pc00p2ℵ0q, } ¨ }q.

Set λ “ }
ř8

n“1
1
2n en}T and for ξ ă 2ℵ0 , ẽξ “

1
λeξ. Since teξuξă2ℵ0 is normalized and suppression uncon-

ditional in Xn, and tenun is 1-unconditional in T , we conclude that tẽξuξă2ℵ0 is a normalized suppression
unconditional basis of X2ℵ0 .

For n P N define Pn : X2ℵ0 Ñ Xn with Pnx “
1
2nx. Evidently Pn is well defined and }Pn} ď 1, for all

n P N.
The main result is the following, which is a combination of Proposition 3.16 and Corollary 3.18, which

will be presented in the sequel.

Theorem 3.6. The space X2ℵ0 is a non-separable reflexive space with a suppression unconditional Schauder
basis with the length of the continuum, having the following property. Every normalized weakly null sequence
in X2ℵ0 has a subsequence that generates an �n1 spreading model, for every n P N.

Lemma 3.7. Let tẽξkuk be a subsequence of the basis tẽξuξă2ℵ0 of X2ℵ0 . Then it has a subsequence that
generates an �n1 spreading model for every n P N.

Proof. Set B “ tτ : ξτ “ ξk for some k P Nu. By Proposition 2.18 there exists a one to one map φ : N Ñ B

such that φpF q P Gn for every F P Sn and n P N.
Pass to L an infinite subset of the natural numbers such that the map φ̃ : L Ñ 2ℵ0 with φ̃pjq “ ξφpjq is

strictly increasing. We will show that tẽξφpjq ujPL admits an �n1 spreading model for every n P N.
By unconditionality, it is enough to show that there are positive constants cn such that for every n P N,

F P Sn, F Ă L and ttjujPF positive real numbers, we have that
›

›

›

›

ÿ

jPF

tj ẽξφpjq

›

›

›

›

ě cn
ÿ

jPF

tj .

By definition, we have that }
ř

jPF tj ẽξφpjq } ě
λ
2n }

ř

jPF tjeξφpjq }n and by the choice of φ, we have that
φpF q P Gn. Hence, φpF qp

ř

jPF tjeξφpjq q “
ř

jPF tj which yields that }
ř

jPF tjeξφpjq }n “
ř

jPF tj .
We finally conclude that }

ř

jPF tj ẽξφpjq } ě
λ
2n

ř

jPF tj . l

Proposition 3.8. Let txkuk be a normalized, disjointly supported block sequence of tẽξuξă2ℵ0 , such that
lim supk }xk}8 ą 0. Then txkuk has a subsequence that generates an �n1 spreading model for every n P N.

Proof. By unconditionality, it is quite clear, that by passing, if necessary, to a subsequence of txkuk, there
exist ε ą 0 and tẽξkuk a subsequence of tẽξuξă2ℵ0 , such that for any λ1, . . . , λm real numbers, one has that

›

›

›

›

›

m
ÿ

k“1
λkxk

›

›

›

›

›

ą ε

›

›

›

›

›

m
ÿ

k“1
λkẽξk

›

›

›

›

›

.

Lemma 3.7 yields the desired result. l

Proposition 3.9. Let txkuk be a normalized block sequence in X2ℵ0 , such that limk }Pnxk}n “ 0, for all n P N.
Then txkuk has a subsequence equivalent to a block sequence in T . In particular, txkuk has a subsequence
that generates an �n1 spreading model for every n P N.
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Proof. Using a sliding hump argument, it is easy to see, that passing, if necessary, to a subsequence of txkuk,
there exists tIkuk increasing intervals of the natural numbers, such that if we set yk “

ř

nPIk
1
2n }xk}nen,

then txkuk is equivalent to tykuk. l

Lemma 3.10. Let txkuk be a normalized, disjointly supported block sequence of tẽξuξă2ℵ0 , such that the
following holds. There exist c ą 0, n0 P N, pFk, σkq P Gn0 for k P N and σ P t0, 1uN satisfying the following:

(i) |Fkpxkq| ą c for all k P N.
(ii) The Fk are pairwise disjoint.
(iii) σ ‰ σk for all k P N.
(iv) σ ^ σk Ł σ ^ σk`1 for all k P N.
(v) |σ ^ σk| ă ĄminpFk, σkq for all k P N.

Then txkuk generates an �n1 spreading model for every n P N.

Proof. By changing the signs of the xk, we may assume that Fkpxkq ą c for all k P N.
Arguing in a similar manner as in the proof of Proposition 2.18 one can inductively prove that for every

n P N and G P Sn the following hold:

(a) p
Ť

kPG Fk, σq P Gn0`n.
(b) Ąminp

Ť

kPG Fk, σq “ |σ ^ σmin G| and Ąmaxp
Ť

kPG Fk, σq “ |σ ^ σmax G|.

Since txkuk is unconditional, it is enough find positive constants cn ą 0, such that fixing G P Sn and
tλkukPG non-negative reals, we have the following:

›

›

›

›

ÿ

kPG

λkxk

›

›

›

›

ą cn
ÿ

kPG

λk.

Properties (a) and (b), yield that F “
Ť

kPG Fk P Gn0`n. This means the following:
›

›

›

›

ÿ

kPG

λkxk

›

›

›

›

ě

›

›

›

›

Pn0`n

ˆ

ÿ

kPG

λkxk

˙›

›

›

›

n0`n

“
2

2n0`n

›

›

›

›

ÿ

kPG

λkxk

›

›

›

›

n0`n

ą
2c

2n0`n

ÿ

kPG

λk. l

Lemma 3.11. Let txkuk be a normalized, disjointly supported block sequence of tẽξuξă2ℵ0 , such that the
following holds. There exist c ą 0, n0 P N, σ P t0, 1uN, a sequence tFkuk in Gn0 satisfying the following:

(i) |Fkpxkq| ą c for all k P N.
(ii) The sets Fk are pairwise disjoint.
(iii) pFk, σq P Gn0 for all k P N.
(iv) ĄmaxpFk, σq ă ĄminpFk`1, σq, for all k P N.

Then txkuk generates an �n1 spreading model for every n P N.

Proof. The proof is identical to the proof of Lemma 3.10. l
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Lemma 3.12. Let txkuk be a sequence in X2ℵ0 and n P N such that limk }Pnxk}n “ 0. Then for every ε ą 0
there exists k0 P N such that for every k ě k0 the following holds:

ˇ

ˇF pxkq
ˇ

ˇ ă ε for every F P Gn.

Proof. Fix ε ą 0. Choose k0 P N, such that }Pnxk}n “
1
2n }xk}n ă

1
2n ε, for every k ě k0. By definition of

the norm } ¨ }n, this means the following:
ˇ

ˇF pxkq
ˇ

ˇ ă ε for every F P Gn. l

Lemma 3.13. Let txkuk be a normalized, disjointly supported block sequence of tẽξuξă2ℵ0 , such that
limk }xk}8 “ 0 and there exists n P N such that lim supk }Pnxk}n ą 0. Assume moreover, that if
n0 “ mintn : lim supk }Pnxk}n ą 0u, there exist c ą 0, σ P t0, 1uN and tFkuk a sequence in Gn0 satis-
fying the following:

(i) |Fkpxkq| ą c for all k P N.
(ii) The sets Fk are pairwise disjoint.
(iii) pFk, σq P Gn0 for all k P N.

Then txkuk has a subsequence that generates an �n1 spreading model for every n P N.

Proof. We shall prove that for every k0,m natural numbers, there exist k ě k0 and Gk Ă Fk such that
|Gkpxkq| ą c{2 and ĄminpGk, σq ą m.

If the above statement is true, we may clearly choose tGkuk in Gn0 satisfying the assumptions of
Lemma 3.11, which will complete the proof.

We assume that n0 ě 2, as the case n0 “ 1 uses similar arguments and the fact that limk }xk}8 “ 0.
Fix k0,m P N. By Lemma 3.12, choose k ě k0, such that the following holds:

ˇ

ˇF pxkq
ˇ

ˇ ă
c

2m for every F P Gn0´1. (3)

We distinguish two cases.

Case 1: There is pF k
i , σ

k
i qdi“1 a skipped branching of σ in Gn0´1 with Fk “

Ťd
i“1 F

k
i .

Case 2: There is pF k
i , σqdi“1 an attached branching of σ in Gn0´1 with Fk “

Ťd
i“1 F

k
i .

In either case, by Proposition 2.15 we have that if we set Gk “
Ťd

i“m`1 F
k
i , then pGk, σq P Gn0 . Moreover,

(3) yields that |Gkpxkq| ą c{2.
All that remains, is to show that ĄminpGk, σq ą m.
If we are in case 1, then ĄminpGk, σq “ |σ ^ σk

m`1|. By Definition 2.2 we have that |σ ^ σk
i | ă |σ ^ σk

i`1|

for i “ 1, . . . ,m, which of course yields that |σ ^ σk
m`1| ą m.

If, on the other hand, we are in case 2, then ĄminpGk, σq “ ĄminpF k
m`1, σq. By Definition 2.3 we have that

ĄminpF k
i , σq ď ĄmaxpF k

i , σq ă ĄminpF k
i`1, σq for i “ 1, . . . ,m, which yields that ĄminpF k

m`1, σq ą m. l

Lemma 3.14. Let txkuk be a normalized, disjointly supported block sequence of tẽξuξă2ℵ0 , such that there
exists n P N such that lim supk }Pnxk}n ą 0. Then, passing if necessary, to a subsequence, there exist c ą 0
and pFk, σkq P Gn satisfying the following:

(i) The Fk are pairwise disjoint.
(ii) |Fkpxkq| ą c for all k P N.



S.A. Argyros, P. Motakis / Topology and its Applications 172 (2014) 47–67 63
Proof. Pass to a subsequence of txkuk and choose ε ą 0, such that the following holds:

}Pnxk}n “
1
2n }xk}n ą ε, for all k P N.

By the definition of the norm } ¨ }n, there exist pFk, σkq P Gn with |Fkpxkq| ą 2nε, for all k P N. By virtue of
Proposition 2.15 and the fact that txkuk is disjointly supported, we may assume that the Fk are pairwise
disjoint. Setting c “ 2nε finishes the proof. l

Proposition 3.15. Let txkuk be a normalized, disjointly supported block sequence of tẽξuξă2ℵ0 , such that
limk }xk}8 “ 0 and there exists n P N such that lim supk }Pnxk}n ą 0. Then txkuk has a subsequence that
generates an �n1 spreading model for every n P N.

Proof. Set n0 “ mintn : lim supk }Pnxk}n ą 0u and as in the proof of Lemma 3.13 let us assume that
n0 ě 2. Apply Lemmas 3.14 and 3.12, pass to a subsequence of txkuk and find c ą 0, pFk, σkq P Gn0 such
that the following are satisfied:

(i) The Fk are pairwise disjoint.
(ii) |Fkpxkq| ą c for all k P N.
(iii) |F pxkq| ă c{4 for every k P N and F P Gn0´1.

Passing to a further subsequence, choose σ P t0, 1uN such that limk σk “ σ. We distinguish two cases.

Case 1: limk maxt|Gpxkq| : G Ă Fk with pG, σq P Gn0u “ 0.
Case 2: lim supk maxt|Gpxkq| : G Ă Fk with pG, σq P Gn0u ą 0.

Let us first treat case 1. Pass once more to a subsequence of txkuk, satisfying the following:

(a) maxt|Gpxkq| : G Ă Fk with pG, σq P Gn0u ă c{4, for all k P N.
(b) σ ‰ σk, for every k P N.
(c) σ ^ σk Ł σ ^ σk`1 for all k P N.

We shall prove the following. For every k, there exists Gk Ă Fk, such that the following hold:

(d) |Gkpxkq| ą c{2.
(e) |σ ^ σk| ă ĄminpGk, σkq.

Combining (b), (c), (d) and (e), we conclude that the assumptions of Lemma 3.10 are satisfied, which
proves the desired result, in case 1.

Set G2
k “ tτ P Fk : σk ^ τ “ σ ^ τu. Proposition 2.15 and Lemma 2.13 yield that pG2

k, σq P Gn0 . Setting
F 1
k “ FkzG2

k, property (a) yields that |F 1
kpxkq| ą 3c{4.

Set G1
k “ tτ P F 1

k : σk ^ τ Ł σ ^ τu. Once more, Proposition 2.15 yields that pG1
k, σkq P Gn0 , however

Lemma 2.14 yields that G1
k P Gn0´1 and therefore, by (iii) we have that |G1

kpxkq| ă c{4.
Set Gk “ F 1

kzG1
k. Then we have that |Gkpxkq| ą c{2, i.e. (d) holds.

We will show that (e) also holds. By Corollary 2.9, there exists τ P Gk, with ĄminpGk, σkq “ |σk ^ τ |.
Since τ R G2

k, we have that |σk ^ τ | ‰ |σ ^ τ |.
We will show that |σ ^ τ | ă |σk ^ τ |. Assume that this is not the case, i.e. |σk ^ τ | ă |σ ^ τ |. In other

words, σk ^ τ Ł σ ^ τ . This means that τ P G1
k, a contradiction.
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We conclude that σ ^ τ Ł σk ^ τ . Lemma 2.7 yields that σ ^ τ “ σk ^ σ. Applying Lemma 2.7 once
more, we conclude that σ ^ σk Ł σk ^ τ , i.e. |σ ^ σk| ă |σk ^ τ | “ ĄminpGk, σkq, which completes the proof
for case 1.

It only remains to treat case 2. Observe, that in this case, we may easily pass to a subsequence of txkuk,
satisfying the assumptions of Lemma 3.13. This completes the proof. l

Combining Propositions 3.8, 3.9 and 3.15, one obtains the following.

Proposition 3.16. Let txkuk be a normalized weakly null sequence in X2ℵ0 . Then txkuk has a subsequence
that generates an �n1 spreading model for every n P N.

Proposition 3.17. The space X2ℵ0 is saturated with subspaces of Tsirelson space.

Proof. It is an immediate consequence of Proposition 3.16 that X2ℵ0 does not contain a copy of c0. By
Proposition 3.3, the spaces Xn are c0 saturated and therefore, the operators Pn : X2ℵ0 Ñ Xn, are strictly
singular.

We conclude, that in any infinite dimensional subspace Y of X2ℵ0 , n0 P N and ε ą 0, there exists x P Y

with }x} “ 1 and }Pnx}n ă ε for n “ 1, . . . , n0. One may easily construct a normalized sequence in Y ,
satisfying the assumption of Proposition 3.9, which completes the proof. l

In particular, the previous result yields that neither c0 nor �1 embed into X2ℵ0 . Using James’ well known
theorem for spaces with an unconditional basis, we conclude the following.

Corollary 3.18. The space X2ℵ0 is reflexive.

Remark 3.19. As is well known (see [2, Lemma 37]), if txkuk is a normalized weakly null sequence in a
Banach space X and x P X, then txkuk admits an �1 spreading model, if and only if txk ´ xuk admits an
�1 spreading model as well. Since X2ℵ0 is reflexive and every normalized weakly null sequence admits an �1
spreading model, we conclude that any bounded sequence in X2ℵ0 , without a norm convergent subsequence,
admits an �1 spreading model. In other words, every spreading model admitted by X2ℵ0 , is either trivial or
equivalent to the usual basis of �1.

4. Spaces admitting �α1 as a unique spreading model

The purpose of the present section, is to give an outline of the construction, for a given countable ordinal
number α, of a non-separable reflexive space Xα

2ℵ0 , having the following property. Every normalized weakly
null sequence in Xα

2ℵ0 has a subsequence that generates an �α1 spreading model.

Definition 4.1. Let α be a countable ordinal number. Define } ¨ }Tα
to be the unique norm on c00pNq that

satisfies the following implicit formula, for every x P c00pNq:

}x}Tα
“ max

#

}x}8,
1
2 sup

d
ÿ

i“1
}Eix}Tα

+

,

where the supremum is taken over all E1 ă ¨ ¨ ¨ ă Ed subsets of the natural numbers with tminEi : i “

1, . . . , du P Sα.
Define the Tsirelson space of order α, denoted by Tα, to be the completion of c00pNq with the aforemen-

tioned norm.
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The space Tα is reflexive and the unit vector basis tenun, forms a 1-unconditional basis for Tα. Moreover,
every normalized weakly null sequence in Tα, has a subsequence that generates an �α1 spreading model. For
more details see [4].

Given a countable ordinal number α, we shall construct tGα
n un an increasing sequence of families of finite

subsets of t0, 1uN, strongly related to tGnun. As before, we first define some auxiliary families G α
n , n P N.

Definition 4.2. We define G α
1 to be all pairs pF, σq, where F “ tτiu

d
i“1 P rt0, 1uNsăω, d P N and σ P t0, 1uN,

such that the following are satisfied:

(i) σ ‰ τi for i “ 1, . . . , d.
(ii) σ ^ τ1 ‰ ∅ and if d ą 1, then σ ^ τ1 Ł σ ^ τ2 Ł ¨ ¨ ¨ Ł σ ^ τd.
(iii) t|σ ^ τi| : i “ 1, . . . , du P Sα.

Define ĄminpF, σq “ |σ ^ τ1| and ĄmaxpF, σq “ |σ ^ τd|.

Assume that n P N, G α
k have been defined for k ď n and that for pF, σq P G α

k , ĄminpF, σq and ĄmaxpF, σq

have also been defined.

Definition 4.3. Let pFi, σiq
d
i“1, d P N be a finite sequence of elements of G α

n and σ P t0, 1uN.
We say that pFi, σiq

d
i“1 is a skipped branching of σ in G α

n , if the following are satisfied:

(i) The Fi, i “ 1, . . . , d are pairwise disjoint.
(ii) σ ‰ σi for i “ 1, . . . , d.
(iii) σ ^ σ1 ‰ ∅ and if d ą 1, then σ ^ σ1 Ł σ ^ σ2 Ł ¨ ¨ ¨ Ł σ ^ σd.
(iv) |σ ^ σi| ă ĄminpFi, σiq for i “ 1, . . . , d.
(v) t|σ ^ σi| : i “ 1, . . . , du P Sα.

Definition 4.4. Let σ P t0, 1uN and pFi, σqdi“1, d P N be a finite sequence of elements of G α
n .

We say that pFi, σqdi“1 is an attached branching of σ in G α
n if the following are satisfied:

(i) The Fi, i “ 1, . . . , d are pairwise disjoint.
(ii) If d ą 1, then ĄmaxpFi, σq ă ĄminpFi`1, σq, for i “ 1, . . . , d ´ 1.
(iii) tĄminpFi, σq : i “ 1, . . . , du P Sα.

We are now ready to define G α
n`1.

Definition 4.5. We define G α
n`1 to be all pairs pF, σq, where F P rt0, 1uNsăω and σ P t0, 1uN, such that one

of the following is satisfied:

(i) pF, σq P G α
n .

(ii) There is pFi, σiq
d
i“1 a skipped branching of σ in G α

n such that F “
Ťd

i“1 Fi.
In this case we say that pF, σq is skipped. Moreover set ĄminpF, σq “ |σ ^ σ1| and ĄmaxpF, σq “ |σ ^ σd|.

(iii) There is pFi, σqdi“1 an attached branching of σ in G α
n such that F “

Ťd
i“1 Fi.

In this case we say that pF, σq is attached. Moreover set ĄminpF, σq “ ĄminpF1, σq and ĄmaxpF, σq “

ĄmaxpFd, σq.

Definition 4.6. For a countable ordinal number α and n P N we define

Gα
n “

�

F Ă t0, 1u
N : there exists σ P t0, 1u

N with pF, σq P G α
n

(

Y t∅u.
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Remark 4.7. It is clear that for α “ 1, G α
n “ Gn, for every n P N. Moreover, for a countable ordinal number α,

every result stated for Gn, up to Proposition 2.15, holds also for G α
n and the proofs are identical. On the

other hand, if for n P N we denote by Sn
α the convolution of Sα with itself n times, Proposition 2.18 can be

restated as follows.

Proposition 4.8. Let α be a countable ordinal number. Then for every B infinite subset of t0, 1uN there exists
a one to one map φ : N Ñ B with φpF q P Gα

n for every F P Sn
α and n P N.

Theorem 2.20 takes the following form and the proof uses the compactness of Sα and Corollary 2.12.

Theorem 4.9. Let α be a countable ordinal number and n P N. Then Gα
n is an α-large, hereditary and compact

family of finite subsets of t0, 1uN.

In order to define the desired space Xα
2ℵ0 , one takes the same steps as in the previous section. All proofs

are identical.

Definition 4.10. For α a countable ordinal number and n P N define a norm on c00p2ℵ0q in the following
manner:

(i) For n P N, we may identify an F P Gα
n with a linear functional F : c00p2ℵ0q Ñ R in the following

manner. For x “
ř

ξă2ℵ0 λξeξ P c00p2ℵ0q

F pxq “
ÿ

τPF

λξτ .

(ii) For x P c00p2ℵ0q define

}x}
α
n “ sup

�ˇ

ˇF pxq
ˇ

ˇ : F P Gα
n

(

.

Set Xα
n to be the completion of pc00p2ℵ0q, } ¨ }αnq.

Definition 4.11. Define the following norm on c00p2ℵ0q. For x P c00p2ℵ0q

}x} “

›

›

›

›

›

8
ÿ

n“1

1
2n }x}

α
nen

›

›

›

›

›

Tα

.

Set Xα
2ℵ0 to be the completion of pc00p2ℵ0q, } ¨ }q.

Theorem 4.12. The space Xα
2ℵ0 is a non-separable reflexive space with a suppression unconditional Schauder

basis with the length of the continuum, having the following property. Every normalized weakly null sequence
in Xα

2ℵ0 has a subsequence that generates an �α1 spreading model.
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